Physicochemical and Compositional Characterization of a Wild Fruit from the Angolan Miombo: Anisophyllea boehmii Engl.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survey Methodology
2.2. Plant Material
2.3. Morphological Characterization
2.4. Proximate Composition of Fruits
2.5. Polyphenol Analysis
2.5.1. Polyphenol Extraction
2.5.2. Total Phenolic Content (TPC)
2.5.3. Phenolic Compound Analysis
2.6. Carotenoid Analysis
2.6.1. Carotenoid Extraction
2.6.2. Saponification
2.6.3. Total Carotenoid Quantification
2.6.4. Determination of Carotenoid Profiles
2.7. Aroma Compound Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Main Results of the Survey
3.2. Main Characteristics of the Fruits and Overall Composition
3.3. Polyphenolic Compounds
3.4. Carotenoids
3.5. Aromatic Profile
3.6. Relationship Between Composition and Collection Area
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Timko, J.A.; Waeber, P.O.; Kozak, R.A. The Socio-Economic Contribution of Non-Timber Forest Products to Rural Livelihoods in Sub-Saharan Africa: Knowledge Gaps and New Directions. Int. For. Rev. 2010, 12, 284–294. [Google Scholar] [CrossRef]
- Dewees, P.A.; Campbell, B.M.; Katerere, Y.; Sitoe, A.; Cunningham, A.B.; Angelsen, A.; Wunder, S. Managing the Miombo Woodlands of Southern Africa: Policies, Incentives and Options for the Rural Poor. J. Nat. Resour. Policy Res. 2010, 2, 57–73. [Google Scholar] [CrossRef]
- Ribeiro, N.S.; Snook, L.K.; Nunes De Carvalho Vaz, I.C.; Alves, T. Gathering Honey from Wild and Traditional Hives in the Miombo Woodlands of the Niassa National Reserve, Mozambique: What Are the Impacts on Tree Populations? Glob. Ecol. Conserv. 2019, 17, e00552. [Google Scholar] [CrossRef]
- Nkengurutse, J.; Houmy, N.; Mansouri, F.; Moumen, A.B.; Caid, H.S.; Khalid, A. Preliminary Chemical Characterization of Amashindwi (Anisophyllea boehmii Engl.) Kernels and Kernel Oil. J. Mater. Environ. Sci. 2016, 7, 1996–2005. [Google Scholar]
- Ryan, C.M.; Pritchard, R.; McNicol, I.; Owen, M.; Fisher, J.A.; Lehmann, C. Ecosystem Services from Southern African Woodlands and Their Future under Global Change. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150312. [Google Scholar] [CrossRef]
- Campbell, B. The Miombo in Transition: Woodlands and Welfare in Africa; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 1996; ISBN 979-8764-07-2. [Google Scholar]
- Hakizimana, P.; Masharabu, T.; Bangirinama, F.; Habonimana, B.; Bogaert, J. Analyse du rôle de la biodiversité végétale des forêts de Kigwena et de Rumonge au Burundi. Tropicultura 2011, 29, 28–38. [Google Scholar]
- Binaki, A.F.; Loumouamou, B.W.; Bassiloua, J.B.; Biassala, E.T.; Bopoundza, F.C.; Niamayoua, R.K.; Silou, T. Morphological and Physicochemical Characteristics of the Fruits of Anisophyllea quangensis Engl. Ex Henriq from the Savannah Surrounding the City of Brazzaville-Congo. J. Food Nutr. Sci. 2024, 12, 213–221. [Google Scholar] [CrossRef]
- Nkengurutse, J.; Mansouri, F.; Bekkouch, O.; Ben Moumen, A.; Masharabu, T.; Gahungu, G.; Serghini, H.C.; Khalid, A. Chemical Composition and Oral Toxicity Assessment of Anisophyllea boehmii Kernel Oil: Potential Source of New Edible Oil with High Tocopherol Content. Food Chem. 2019, 278, 795–804. [Google Scholar] [CrossRef]
- Sanfilippo, M. Trinta Árvores e Arbustos do Miombo Angolano: Guia de Campo Para a Identificação, 1st ed.; ONG COSPE (Cooperazione per lo Sviluppo dei Paesi Emergenti): FLorence, Italy, 2014. [Google Scholar]
- Ibrahim, K.G.; Siulapwa, N.; Chivandi, E.; Mwambungu, A.; Sichilima, W.; Erlwanger, K. Lipid Profile and Proximate Analysis of the Seeds of Anisophyllea Boehmii. Res. J. Chem. Environ. Sci. 2015, 3, 22–26. [Google Scholar]
- Kalaba, F.K. The Role of Indigenous Fruit Trees in the Rural Livelihoods: A Case of the Mwekera Area, Copperbelt Province, Zambia. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2007. [Google Scholar]
- Lofa, A.M.; Mourato, M.P.; Prista, C.; Sousa, I.; Ferreira, R.B. Chemical and Nutritional Characterization of Loengo (Anisophyllea boehmii) Fruits as a Source of Important Bioactive with Impact on Health. Front. Food Sci. Technol. 2024, 4, 1443185. [Google Scholar] [CrossRef]
- Tchobo, F.P. Caractérisation du Beurre de Pentadesma Butyracea Sabine, Fonctionnalisation des Triacylglycérols par Transfert Acyle Sélectif en Biocatalyse. Ph.D. Thesis, Université Montpellier II (France) & Universté d’Abomey-Calavi (Benin), Montpellier, France, 2008. [Google Scholar]
- Haj, A.H.E. Converting Apple, Blueberry, and Cranberry Waste Biomass into a Powder Food Ingredient. Master’s Thesis, Bioresource Engineering, McGill University, Montreal, QC, Canada, 2022. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Chin, L.; Servent, A.; Hor, S.; Mith, H.; Bugaud, C. Predictive Models for Estimating the Sugar Content and Organic Acids in Processed Mangoes Based on the Initial Content. Int. J. Food Sci. Technol. 2024, 59, 9547–9558. [Google Scholar] [CrossRef]
- Thanh, C.; Mith, H.; Peng, C.; Servent, A.; Poss, C.; Laillou, A.; Phal, S.; Avallone, S. Assessment of the Nutritional Profiles and Potentially Toxic Elements of Wild and Farmed Freshwater Fish in Cambodia. J. Food Compos. Anal. 2024, 133, 106357. [Google Scholar] [CrossRef]
- Servent, A.; Hector, L.; Jobard, G.; Dornier, M. Coupling Crossflow Microfiltration and Nanofiltration for the Concentration of Aroma Compounds in a Raspberry Hydroalcoholic Extract. J. Food Process Eng. 2024, 47, e14739. [Google Scholar] [CrossRef]
- Mertz, C.; Gancel, A.-L.; Gunata, Z.; Alter, P.; Dhuique-Mayer, C.; Vaillant, F.; Perez, A.M.; Ruales, J.; Brat, P. Phenolic Compounds, Carotenoids and Antioxidant Activity of Three Tropical Fruits. J. Food Compos. Anal. 2009, 22, 381–387. [Google Scholar] [CrossRef]
- Peng, Y.; Ma, C.; Li, Y.; Leung, K.S.-Y.; Jiang, Z.-H.; Zhao, Z. Quantification of Zeaxanthin Dipalmitate and Total Carotenoids in Lycium Fruits (Fructus Lycii). Plant Foods Hum. Nutr. 2005, 60, 161–164. [Google Scholar] [CrossRef]
- Britton, G.; Liaanen-Jensen, S.; Pfander, H. Carotenoids; Birkhaüser: Basel, Switzerland, 1995; Volume 1B, Spectroscopy. [Google Scholar]
- Mertz, C.; Brat, P.; Caris-Veyrat, C.; Gunata, Z. Characterization and Thermal Lability of Carotenoids and Vitamin C of Tamarillo Fruit (Solanum betaceum Cav.). Food Chem. 2010, 119, 653–659. [Google Scholar] [CrossRef]
- Marin-Castro, U.R.; Garcia-Alvarado, M.Á.; Vargas-Ortiz, M.; Salgado-Cervantes, M.A.; Servent, A.; Pallet, D. Sensory and Nutritional Qualities of ‘Manila’ Mango Ready-to-Eat Puree Enhanced Using Mild Flash Vacuum Expansion Processing. Fruits 2021, 76, 248–257. [Google Scholar] [CrossRef]
- Kalaba, F.K.; Chirwa, P.W.; Prozesky, H.; Ham, C. The Role of Indigenous Fruit Trees in Rural Livelihoods: The Case of Communities in the Mwekera Area, Copperbelt Province, Zambia. Acta Hortic. 2009, 806, 129–136. [Google Scholar] [CrossRef]
- Mpasiwakomu, A.R.; Nyomora, A.M.S.; Gimbi, A.A. Diversity and Utilization of Wild Edible Plant Species from the Uvinza Miombo Woodlands, Tanzania. Huria J. 2017, 24, 150–168. [Google Scholar]
- Mendelsohn, J.; Weber, B. An Atlas and Profile of Huambo: Its Environment and People; Development Workshop (DW): Luanda, Angola, 2013. [Google Scholar]
- Malaisse, F. How to Live and Survive in Zambezian Open Forest (Miombo Ecoregion); Les Presses Agronomiques de Gembloux: Gembloux, Belgium, 2010; ISBN 978-2-87016-106-7. [Google Scholar]
- Onivogui, G.; Zhang, H.; Mlyuka, E.; Diaby, M.; Song, Y. Chemical Composition, Nutritional Properties and Antioxidant Activity of Monkey Apple (Anisophyllea laurina Br. Ex Sabine). J. Food Nutr. Res. 2014, 2, 281–287. [Google Scholar] [CrossRef]
- Santos, M.B.D.; Cardoso, R.L.; Fonseca, A.A.d.O.; Conceição, M.d.N. Characterization and quality of Umbu-caja fruits (Spondias tuberosa X S. mombin) procceeding from the Southern Reconcavo in Bahia. Rev. Bras. Frutic. 2010, 32, 1089–1097. [Google Scholar] [CrossRef]
- Guedes, M.N.S.; Rufini, J.C.M.; Azevedo, A.M.; Pinto, N.A.V.D. Fruit Quality of Jabuticaba Progenies Cultivated in a Tropical Climate of Altitude. Fruits 2014, 69, 449–458. [Google Scholar] [CrossRef]
- Shree, S.P.; Nanjappanavar, A.G.; Patil, S.N.; Lokesh, M.S.; Gandolkar, K.; Hadlegeri, R. Impact of Net House and Open Field Cultivation on Quality Parameters of Banana (Musa Spp.) Varieties. Plant Arch. 2024, 24, 915–920. [Google Scholar] [CrossRef]
- Richards, K.; Tran, K.; Levine, R.; Luo, R.; Maia, J.; Sabaa-Srur, A.; Maciel, M.; Melo, E.; Moraes, M.; Godoy, H.; et al. Improved Extraction of Soluble Solids from Some Brazilian and North American Fruits. Nat. Prod. J. 2014, 4, 201–210. [Google Scholar] [CrossRef]
- Dimkova, S.; Ivanova, D.; Stefanova, B.; Marinova, N.; Todorova, V. Chemical and Technological Characteristic of Plum Cultivars of Prunus Domestica L. Bulg. J. Agric. Sci. 2018, 24, 43–47. [Google Scholar]
- Kante-Traore, H.; Ilboudo, A.; Semde, Z.; Lodoun, A.; Sanou, M.; Samadoulougou, P.M.J.; Ky, L.; Guira, M.; Lingani, H.S.; Dicko, H.M. Physico-Chemical and Nutritional Characteristics of Five Varieties and One Accession of Mango from Burkina Faso. Food Nutr. Sci. 2024, 15, 1299–1316. [Google Scholar] [CrossRef]
- Kendrick, E.L.; Shipley, L.A.; Hagerman, A.E.; Kelley, L.M. Fruit and Fibre: The Nutritional Value of Figs for a Small Tropical Ruminant, the Blue Duiker (Cephalophus Monticola). Afr. J. Ecol. 2009, 47, 556–566. [Google Scholar] [CrossRef]
- Samuel, I. Nutritional Evaluation of Selected Browse Plants Consumed by Small Ruminants in Northern Sudan Savannah of Nigeria. Asian J. Adv. Agric. Res. 2018, 5, 1–8. [Google Scholar] [CrossRef]
- Aurore, G.; Parfait, B.; Fahrasmane, L. Bananas, Raw Materials for Making Processed Food Products. Trends Food Sci. Technol. 2009, 20, 78–91. [Google Scholar] [CrossRef]
- Forster, M.; Rodríguez, E.R.; Martín, J.D.; Romero, C.D. Distribution of Nutrients in Edible Banana Pulp. Food Technol Biotechnol 2003, 41, 167–171. [Google Scholar]
- Shi, S.; Ma, X.; Xu, W.; Zhou, Y.; Wu, H.; Wang, S. Evaluation of 28 Mango Genotypes for Physicochemical Characters, Antioxidant Capacity, and Mineral Content. J. Appl. Bot. Food Qual. 2015, 88, 264–273. [Google Scholar] [CrossRef]
- Ding, P.; Tee, Y.K. Physicochemical Characteristics of Dabai (Canarium odontophyllum Miq.) Fruit. Fruits 2011, 66, 47–52. [Google Scholar] [CrossRef]
- Maldonado-Celis, M.E.; Yahia, E.M.; Bedoya, R.; Landázuri, P.; Loango, N.; Aguillón, J.; Restrepo, B.; Guerrero Ospina, J.C. Chemical Composition of Mango (Mangifera indica L.) Fruit: Nutritional and Phytochemical Compounds. Front. Plant Sci. 2019, 10, 1073. [Google Scholar] [CrossRef]
- Sarni-Manchado, P.; Cheynier, V. Les Polyphénols En Agroalimentaire; TEC&DOC, Lavoisier: Paris, France, 2006; ISBN 2-7430-0805-9. [Google Scholar]
- Aaby, K.; Skrede, G.; Wrolstad, R.E. Phenolic Composition and Antioxidant Activities in Flesh and Achenes of Strawberries (Fragaria ananassa). J. Agric. Food Chem. 2005, 53, 4032–4040. [Google Scholar] [CrossRef]
- Sanou, M.; Kanté-Traoré, H.; Haro, K.; Somda, S.; Offei, F.; Zhang, Y.; Parkouda, C.; Dicko, M.H. Biochemical Properties and Biotechnological Potential of Mango Biowastes for Economical Valorization in Burkina Faso. Waste Biomass Valorization 2025, 16, 53–73. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Bioactive Compounds in Banana and Their Associated Health Benefits–A Review. Food Chem. 2016, 206, 1–11. [Google Scholar] [CrossRef]
- De Souza, V.R.; Pereira, P.A.P.; Da Silva, T.L.T.; De Oliveira Lima, L.C.; Pio, R.; Queiroz, F. Determination of the Bioactive Compounds, Antioxidant Activity and Chemical Composition of Brazilian Blackberry, Red Raspberry, Strawberry, Blueberry and Sweet Cherry Fruits. Food Chem. 2014, 156, 362–368. [Google Scholar] [CrossRef]
- Zitouni, H.; Hssaini, L.; Ouaabou, R.; Viuda-Martos, M.; Hernández, F.; Ercisli, S.; Ennahli, S.; Messaoudi, Z.; Hanine, H. Exploring Antioxidant Activity, Organic Acid, and Phenolic Composition in Strawberry Tree Fruits (Arbutus unedo L.) Growing in Morocco. Plants 2020, 9, 1677. [Google Scholar] [CrossRef]
- Liaudanskas, M.; Okulevičiūtė, R.; Lanauskas, J.; Kviklys, D.; Zymonė, K.; Rendyuk, T.; Žvikas, V.; Uselis, N.; Janulis, V. Variability in the Content of Phenolic Compounds in Plum Fruit. Plants 2020, 9, 1611. [Google Scholar] [CrossRef]
- Mahmood, T.; Anwar, F.; Abbas, M.; Saari, N. Effect of Maturity on Phenolics (Phenolic Acids and Flavonoids) Profile of Strawberry Cultivars and Mulberry Species from Pakistan. Int. J. Mol. Sci. 2012, 13, 4591–4607. [Google Scholar] [CrossRef] [PubMed]
- Nagar, E.E.; Okun, Z.; Shpigelman, A. In Vitro Bioaccessibility of Polyphenolic Compounds: The Effect of Dissolved Oxygen and Bile. Food Chem. 2023, 404, 134490. [Google Scholar] [CrossRef]
- Giordano, E.; Quadro, L. Lutein, Zeaxanthin and Mammalian Development: Metabolism, Functions and Implications for Health. Arch. Biochem. Biophys. 2018, 647, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Assanvo, B.J.; Niamké, M.A.; Bahi, P.L.E.; Coxam, V.; Kati, S.; Koffi, K.M. Pulpe de 4 variétés de papaye (Carica papaya) vendues sur le marché d’Abidjan-Côte d’Ivoire. Am. J. Innov. Res. Appl. Sci. 2022, 15, 247–265. [Google Scholar]
- Silvino, R.; Silva, G.; Dos Santos, O.V. Qualidade nutricional e parâmetros morfológicos do fruto cajá (Spondias mombin L.). DESAFIOS-Rev. Interdiscip. Univ. Fed. Tocantins 2017, 4, 3–11. [Google Scholar] [CrossRef]
- Sabuz, A.A.; Molla, M.M.; Khan, M.H.H.; Chowdhury, M.G.F.; Pervin, S.; Alam, M.; Khatun, A.; Al-Rafi, I.; Al-Zihad, M.R. Comparison of Physicochemical Composition, Antioxidant Activity and Common Phytochemicals of Selected BARI Mango Varieties and Commercial Cultivar, Langra. Food Chem. Adv. 2024, 4, 100580. [Google Scholar] [CrossRef]
- Dhuique-Mayer, C.; Servent, A.; Messan, C.; Achir, N.; Dornier, M.; Mendoza, Y. Bioaccessibility of Biofortified Sweet Potato Carotenoids in Baby Food: Impact of Manufacturing Process. Front. Nutr. 2018, 5, 98. [Google Scholar] [CrossRef]
- Rajendran, S.; Silcock, P.; Bremer, P. Flavour Volatiles of Fermented Vegetable and Fruit Substrates: A Review. Molecules 2023, 28, 3236. [Google Scholar] [CrossRef]
- Chastrette, M.; Cretin, D.; Aïdi, E. Structure-Odor Relationships: Using Neural Networks in the Estimation of Camphoraceous or Fruity Odors and Olfactory Thresholds of Aliphatic Alcohols. J. Chem. Inf. Comput. Sci. 1996, 36, 108–113. [Google Scholar] [CrossRef]
- Xu, X.; Bi, S.; Lao, F.; Chen, F.; Liao, X.; Wu, J. Comprehensive Investigation on Volatile and Non-Volatile Metabolites in Broccoli Juices Fermented by Animal- and Plant-Derived Pediococcus Pentosaceus. Food Chem. 2021, 341, 128118. [Google Scholar] [CrossRef]
- Burdock, G.A. Fenaroli’s Handbook of Flavor Ingredients, 6th ed.; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2010; ISBN 978-1-4200-9077-2. [Google Scholar]
- Sohail, A.; Al-Dalali, S.; Wang, J.; Xie, J.; Shakoor, A.; Asimi, S.; Shah, H.; Patil, P. Aroma Compounds Identified in Cooked Meat: A Review. Food Res. Int. 2022, 157, 111385. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.-C.; Chiang, P.-Y. Accentuation of the Browning Characteristics and Functional Properties of Aged Tomatoes (Solanum lycopersicum Cv.). Food Chem. X 2024, 22, 101499. [Google Scholar] [CrossRef]
- Yan, J.; Alewijn, M.; Ruth, S.M. van From Extra Virgin Olive Oil to Refined Products: Intensity and Balance Shifts of the Volatile Compounds versus Odor. Molecules 2020, 25, 2469. [Google Scholar] [CrossRef]
- Juhari, N.H.; Bredie, W.L.P.; Toldam-Andersen, T.B.; Petersen, M.A. Characterization of Roselle Calyx from Different Geographical Origins. Food Res. Int. 2018, 112, 378–389. [Google Scholar] [CrossRef]
- Li, T.; Jiang, T.; Liu, N.; Wu, C.; Xu, H.; Lei, H. Biotransformation of Phenolic Profiles and Improvement of Antioxidant Capacities in Jujube Juice by Select Lactic Acid Bacteria. Food Chem. 2021, 339, 127859. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, R.; Xiao, Z.; Zhu, J.; Sun, X.; Wang, P. Characterization of Ester Odorants of Apple Juice by Gas Chromatography-Olfactometry, Quantitative Measurements, Odour Threshold, Aroma Intensity and Electronic Nose. Food Res. Int. 2019, 120, 92–101. [Google Scholar] [CrossRef]
- Janzantti, N.S.; Monteiro, M. HS–GC–MS–O Analysis and Sensory Acceptance of Passion Fruit during Maturation. J. Food Sci. Technol. 2017, 54, 2594–2601. [Google Scholar] [CrossRef]
- Steinhaus, M.; Sinuco, D.; Polster, J.; Osorio, C.; Schieberle, P. Characterization of the Key Aroma Compounds in Pink Guava (Psidium guajava L.) by Means of Aroma Re-Engineering Experiments and Omission Tests. J. Agric. Food Chem. 2009, 57, 2882–2888. [Google Scholar] [CrossRef]
- Buchecker, F.; Baum, A.; Loos, H.M.; Buettner, A. Follow Your Nose-Traveling the World of Odorants in New Cars. Indoor Air 2022, 32, e13014. [Google Scholar] [CrossRef]
- Wang, J.; Ming, Y.; Li, Y.; Huang, M.; Luo, S.; Li, H.; Li, H.; Wu, J.; Sun, X.; Luo, X. Characterization and Comparative Study of the Key Odorants in Caoyuanwang Mild-Flavor Style Baijiu Using Gas Chromatography–Olfactometry and Sensory Approaches. Food Chem. 2021, 347, 129028. [Google Scholar] [CrossRef]
- Pripdeevech, P.; Khummueng, W.; Park, S.-K. Identification of Odor-Active Components of Agarwood Essential Oils from Thailand by Solid Phase Microextraction-GC/MS and GC-O. J. Essent. Oil Res. 2011, 23, 46–53. [Google Scholar] [CrossRef]
- Wei, C.-B.; Liu, S.-H.; Liu, Y.-G.; Lv, L.-L.; Yang, W.-X.; Sun, G.-M. Characteristic Aroma Compounds from Different Pineapple Parts. Molecules 2011, 16, 5104–5112. [Google Scholar] [CrossRef]
- Fernández-Trujillo, J.; Dos-Santos, N.; Martínez-Alcaraz, R.; Le Bleis, I. Non-Destructive Assessment of Aroma Volatiles from a Climacteric Near-Isogenic Line of Melon Obtained by Headspace Stir-Bar Sorptive Extraction. Foods 2013, 2, 401–414. [Google Scholar] [CrossRef]
- Lasekan, O.; Abbas, K.A. Distinctive Exotic Flavor and Aroma Compounds of Some Exotic Tropical Fruits and Berries: A Review. Crit. Rev. Food Sci. Nutr. 2012, 52, 726–735. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, R.; Xiao, Z.; Sun, X.; Wang, P.; Zhu, J.; Cao, X. Characterization of Volatile Compounds of Rosa Roxburghii Tratt by Gas Chromatography-Olfactometry, Quantitative Measurements, Odor Activity Value, and Aroma Intensity. Molecules 2021, 26, 6202. [Google Scholar] [CrossRef]
- Popescu, D.I.; Botoran, O.R.; Ionete, R.E.; Sandru, D.; Sutan, N.A.; Niculescu, V.-C. Highlighting the Terroir Influence on the Aromatic Profile of Two Romanian White Wines. Appl. Sci. 2024, 14, 19. [Google Scholar] [CrossRef]
- Schmidtke, L.M.; Antalick, G.; Šuklje, K.; Blackman, J.W.; Boccard, J.; Deloire, A. Cultivar, Site or Harvest Date: The Gordian Knot of Wine Terroir. Metabolomics 2020, 16, 52. [Google Scholar] [CrossRef]
- Mignard, P.; Beguería, S.; Giménez, R.; Font I Forcada, C.; Reig, G.; Moreno, M.Á. Effect of Genetics and Climate on Apple Sugars and Organic Acids Profiles. Agronomy 2022, 12, 827. [Google Scholar] [CrossRef]
- Coklar, H. Antioxidant Capacity and Phenolic Profile of Berry, Seed, and Skin of Ekşikara (Vitis vinifera L) Grape: Influence of Harvest Year and Altitude. Int. J. Food Prop. 2017, 20, 2071–2087. [Google Scholar] [CrossRef]
- Mansour, G.; Ghanem, C.; Mercenaro, L.; Nassif, N.; Hassoun, G.; Del Caro, A. Effects of Altitude on the Chemical Composition of Grapes and Wine: A Review. OENO One 2022, 56, 227–239. [Google Scholar] [CrossRef]
- Sinela, A.; Rawat, N.; Mertz, C.; Achir, N.; Fulcrand, H.; Dornier, M. Anthocyanins Degradation during Storage of Hibiscus Sabdariffa Extract and Evolution of Its Degradation Products. Food Chem. 2017, 214, 234–241. [Google Scholar] [CrossRef]
- Villavicencio, J.D.; Zoffoli, J.P.; Plotto, A.; Contreras, C. Aroma Compounds Are Responsible for an Herbaceous Off-Flavor in the Sweet Cherry (Prunus avium L.) Cv. Regina during Fruit Development. Agronomy 2021, 11, 2020. [Google Scholar] [CrossRef]
- CIQUAL. Table de Composition Nutritionnelle des Aliments. ANSES 2020. Available online: https://ciqual.anses.fr/ (accessed on 10 January 2025).
Components | Samples | |||
---|---|---|---|---|
Ab21 | AbM22 | AbHb22 | AbHa22 | |
Mass per fruit (g) | - | 14.3 (1.0) a | 14.0 (1.1) a | 13.4 (1.1) a |
Pulp mass per fruit (g) | - | 8.2 (0.7) a | 7.7 (1.0) a | 7.2 (1.2) a |
Pulp mass fraction obtained after processing (%) | - | 57.7 (1.7) a | 55.1 (2.1) a | 53.2 (2.3) a |
Longitudinal diameter (mm) | - | 30.6 (2.0) a | 28.5 (2.3) b | 29.1 (2.0) b |
Transverse diameter (mm) | - | 23.9 (1.2) b | 24.6 (1.9) ab | 24.0 (1.4) a |
DM (g·100 g−1) | 24.71 (0.51) a | 21.89 (0.15) c | 22.73 (0.21) b | 20.24 (0.19) d |
TSSs (g·100 g−1 FM) | 19.80 (0.40) a | 17.91 (0.38) b | 18.05 (0.54) b | 16.29 (0.24) c |
pH | 3.27 (0.05) a | 3.14 (0.07) bc | 3.11 (0.03) c | 3.24 (0.02) ab |
TA (g eq.cit·100 g−1 FM) | 2.62 (0.08) a | 1.99 (0.01) bc | 1.86 (0.06) c | 2.09 (0.03) b |
TSSs/TA (gsugar·gacid−1) | 7.57 (0.30) c | 9.00 (0.18) b | 9.71 (0.25) a | 7.79 (0.20) c |
Total protein (g·100 g−1 DM) | 6.51 (0.23) b | 6.20 (0.01) b | 8.36 (0.94) a | 7.92 (0.03) a |
Lipids (g·100 g−1 DM) | 3.48 (0.31) a | 3.75 (0.11) a | 3.53 (0.13) a | 3.75 (0.23) a |
Insoluble Dietary Fibers | ||||
NDFs (g·100 g−1 DM) | 20.99 (0.31) a | 15.48 (0.17) d | 18.05 (0.11) c | 20.25 (0.07) b |
ADFs (g·100 g−1 DM) | 15.24 (0.04) a | 9.93 (0.21) d | 12.04 (0.33) c | 13.57 (0.43) b |
ADL (g·100 g−1 DM) | 8.97 (0.08) a | 5.55 (0.38) d | 6.57 (0.09) c | 7.96 (0.56) b |
Sugars | ||||
Sucrose (g·100 g−1 DM) | 18.14 (0.20) d | 35.05 (0.83) a | 31.50 (0.36) b | 23.08 (0.18) c |
Glucose (g·100 g−1 DM) | 12.71 (0.15) ab | 13.04 (0.11) a | 12.37 (0.23) b | 12.39 (0.11) b |
Fructose (g·100 g−1 DM) | 14.95 (0.20) b | 15.98 (0.40) a | 14.93 (0.64) b | 15.15 (0.06) ab |
Organic Acids | ||||
Citric acid (g·100 g−1 DM) | 11.47 (0.22) b | 11.04 (0.07) b | 9.58 (0.22) c | 12.52 (0.11) a |
Malic acid (g·100g−1 DM) | 5.39 (0.16) a | 4.89 (0.14) ab | 4.32 (0.26) c | 4.41 (0.27) bc |
Minerals | ||||
Total Ash (g·100 g−1 DM) | 5.51 (0.12) a | 4.37 (0.03) c | 4.27 (0.07) c | 5.17 (0.07) b |
P (g·100 g−1 DM) | 0.111 (0.001) a | 0.093 (0.001) c | 0.104 (0.001) b | 0.092 (0.001) c |
K (g·100 g−1 DM) | 1.254 (0.009) a | 1.036 (0.001) b | 1.013 (0.002) c | 1.248 (0.002) a |
Ca (g·100 g−1 DM) | 0.256 (0.001) a | 0.197 (0.002) b | 0.151 (0.005) d | 0.163 (0.001) c |
Mg (g·100 g−1 DM) | 0.181 (0.001) a | 0.134 (0.001) c | 0.166 (0.003) b | 0.181 (0.001) a |
Na (g·100 g−1 DM) | 0.006 (0.001) a | 0.003 (0.001) b | 0.004 (0.001) b | 0.004 (0.001) b |
Cu (mg·kg−1 DM) | 7.48 (0.35) a | 7.36 (0.03) a | 6.80 (0.05) b | 5.59 (0.23) c |
Fe (mg·kg−1 DM) | 29.82 (1.67) a | 30.03 (1.56) a | 30.73 (3.49) a | 25.29 (1.77) a |
Mn (mg·kg−1 DM) | 202.47 (0.76) a | 133.63 (0.52) b | 113.74 (2.95) c | 202.73 (0.50) a |
Zn (mg·kg−1 DM) | 15.00 (0.38) a | 7.58 (0.29) c | 9.80 (0.46) b | 8.93 (0.29) b |
B (mg·kg−1 DM) | 19.37 (0.35) a | 15.37 (0.15) b | 16.08 (0.96) b | 16.44 (0.24) b |
Energy value (kJ·100 g−1 DM) | 1008 (25) | 1317 (27) | 1257 (41) | 1121 (15) |
HPLC-DAD | HPLC-MS | |||||
---|---|---|---|---|---|---|
Peak Nr. | RT (min) | λmax (nm) | MS− (m/z) | MS2 (m/z) | Compounds | Content (mg·100 g−1 DM) |
1 | 22.4 | 244, 282, 344 | ND | ND | NI | - |
2 | 25.5 | 280, 516 | 447 | 285 | Cyanidin 3-O-glucoside (C3G) | 45.22 (1.28) 1 |
3 | 30.1 | 262, 356 | 625 | 316 | Myricetin O-glucoside rhamnoside | 1.44 (0.09) 2 |
4 | 30.6 | 262, 356 | 625 | 316 | Myricetin O-glucoside rhamnoside | 1.71 (0.15) 2 |
5 | 33.8 | 258, 354 | 609 | 301 | Quercetin O-glucoside rhamnoside | 0.75 (0.09) 2 |
6 | 34.2 | 258, 354 | 609 | 301 | Quercetin O-glucoside rhamnoside | 1.64 (0.34) 2 |
7 | 34.4 | 258, 354 | 463 | 301 | Quercetin O-glucoside | 2.76 (0.21) 2 |
8 | 35.1 | 258, 354 | 463 | 301 | Quercetin O-glucoside | 2.95 (0.37) 2 |
9 | 37.5 | 240, 356 | ND | ND | NI | - |
10 | 48.0 | 256, 372 | 301 | ND | Quercetin | 0.14 (0.06) 2 |
Peak | RT (min) | Identified Compounds | λmax (nm) | % III/II |
---|---|---|---|---|
1 | 20.72 | Antheraxanthin | (422); 444; 472 | 58 |
2 | 22.29 | Zeaxanthin | (426); 451; 476 | 23 |
3 | 28.06 | β-Cryptoxanthin | (424); 452; 476 | 18 |
4 | 32.05 | Lutein | (424); 446; 473 | 52 |
5 | 34.67 | β-Carotene | (424); 452; 476 | 15 |
Aroma Compound | Odor Description | References |
---|---|---|
Alcohols | ||
Ethanol * | Apple, sweet, strong, alcoholic | [57] |
Heptan-4-ol | Floral | [58] |
Hexan-1-ol * | Ethereal, fruity, sweet, green | [59] |
(Z)-hex-3-en-1-ol * | Fresh green cut grass, vegetable | [59] |
(E)-hex-2-en-1-ol | Green, leafy, fruity | [59] |
2-Ethylhexan-1-ol | Fruity, oily, sweet, reminiscent of roses | [60] |
Aldehydes and Ketones | ||
Hexanal * | Green, grassy | [59] |
(E)-pent-2-enal | Sweet, herbaceous | [61] |
(E)-hex-3-enal | Green, fruity, apple-like | [60] |
Heptanal | Very strong, fatty, harsh, pungent odor and an unpleasant, fatty taste | [60] |
(E)-2-Hexen-1-al | Sweet, fragrant, almond, fruity green, leafy, apple, plum, vegetable odor | [60] |
(Z)-hept-4-enal | Oily, fishy | [61] |
Benzaldehyde * | Almonds, cherry, sweetness, burnt sugar | [57] |
2-phenylacetaldehyde | Honey-like | [62] |
Nonanal | Citrus, green, citronella, grass | [61] |
Pentan-3-one * | Sweet, green | [63] |
2-methylpent-1-en-3-one | Citrus-like, orange, dried flower, rose | [64] |
Pentane-2,3-dione | Sweet odor similar to quinone | [60] |
Acetoin | Sweet, butter, cream | [65] |
Pent-1-en-3-one | Green, pungent, mustard | [63] |
Heptan-3-one | Fruity, green, fatty, sweet, ethereal, powerful odor and a melon, banana flavor | [60] |
Esters | ||
Ethyl Acetate * | Pineapple, fruity, ethereal | [57] |
Ethyl 2-furanpropionate | Fruity odor reminiscent of chamomile | [60] |
Ethyl 2-methylpropanoate * | Sweet | [57] |
Methyl butanoate | Ether, fruity, sweet | [65] |
Ethyl butyrate * | Apple, strawberry, fruity, pineapple | [57] |
Ethyl (E)-but-2-enoate | Fruity, rum, caramellic | [66] |
Ethyl 2-methylbutanoate * | Powerful, green, fruity, apple-like odor | [60] |
Ethyl 3-methylbutanoate | Strong, fruity, vinous, apple-like odor on dilution | [60] |
Butyl acetate | Strong, fruity odor, burning, and then sweet taste reminiscent of pineapple | [60] |
Diethyl carbonate * | Plastic | [67] |
3-methylbutyl acetate * | Fruity, banana, sweet, fragrant, powerful, reminiscent of pear | [60] |
Ethyl (Z)-but -2-enoate | Powerful, sour, caramellic, fruity | [60] |
Methyl hexanoate | Fruity, fatty | [66] |
Ethyl hexanoate | Apple peel, fruit, green apple | [57] |
Hexyl acetate | Pleasant fruity, apple, cherry, bittersweet taste suggestive of pear | [60] |
(Z)-hex-3-enyl acetate | Powerful, green, fruity, floral note reminiscent of banana | [60] |
(E)-hex-2-enyl acetate | Green, fruity | [57] |
(E)-Ethyl 2-hexenoate | Fruity, green, pulpy pineapple and apple odor | [60] |
Ethyl benzoate * | Somewhat fruity, similar to ylang-ylang | [60] |
3-Methylbut-2-enyl acetate | Fruity, green apple, banana, melon | [60] |
Ethyl octanoate | Fruity, fat | [57] |
Ethyl (methylthio) acetate | Fruity | [60] |
Ethyl pentanoate | Fruity, sweet | [61] |
Methyl benzoate | Violet, floral | [68] |
Propyl acetate | Pleasant, bittersweet flavor reminiscent of pear on dilution | [60] |
Isobutyl acetate | Fruity, apple | [63] |
Butyl prop-2-enoate | Mushroom-like, geranium-like | [69] |
Furan | ||
2-EthylFuran | Sweet, chemical with clean, fresh, fruity lift | [60] |
Hydrocarbons | ||
1,2-dimethoxybenzene | Smoky | [70] |
1-methoxy-4-propylbenzene * | Anise-type odor with a sassafras undertone | [60] |
Limonene | Pleasant, lemon-like odor free from camphoraceous and turpentine-like odor | [60] |
1-Methyl-3-propan-2-ylbenzene | Citrus | [62] |
Ethylbenzene | Strong | [63] |
1,3-xylene | Sweet | [71] |
Estragole | Reminiscent of anise with a corresponding sweet taste | [60] |
Carboxylic acids | ||
Acetic acid | Sharp, pungent, vinegar, cheesy, fatty, sour | [57] |
Concentration (µg eq. 3-Heptanol·kg−1 FM) | Odor Threshold (µg·kg−1) | Evaluation of the Odor Activity Value | |||||||
---|---|---|---|---|---|---|---|---|---|
KI Lit. | KI Cal. | Aroma Compounds (Match Factor > 80%) | AbM22 | AbHb22 | AbHa22 | AbM22 | AbHb22 | AbHa22 | |
888 | 892 | Ethyl Acetate | 353 (34) b | 11 (12) a | 411 (31) b | 3300 f | 0.107 | 0.003 | 0.125 |
932 | 928 | Ethanol | 92 (12) c | 212 (1) b | 286 (17) a | 200,000 f | <0.001 | 0.001 | 0.001 |
1036 | 1035 | Ethyl butyrate | 13 (2) b | 26 (2) a | 15 (1) b | 0.18 g | 72.2 | 144.4 | 83.3 |
1052 | 1052 | Ethyl 2-Methylbutanoate | 18 (2) c | 41 (4) b | 53 (5) a | 0.006 h | 3000 | 6833 | 8833 |
1123 | 1128 | 3-methylbutyl acetate | <2.9 | <2.9 | 20 (2) | 3 i | - | - | 6.7 |
1160 | 1170 | Ethyl (Z)-but -2-enoate | 10 (1) b | 23 (2) a | 22 (2) a | Unkonwn | - | - | - |
1213 | 1217 | (E)-2-Hexen-1-al | 10 (1) a | 14 (3) a | 12 (2) a | 82 f | 0.12 | 0.17 | 0.15 |
1281 | 1285 | Heptan-4-ol | 8 (1) | <2.9 | <2.9 | Unkonwn | - | - | - |
1316 | 1317 | (Z)-hex-3-enyl acetate | 31 (5) a | 29 (2) a | 12 (1) b | 16 f | 1.9 | 1.8 | 0.8 |
1355 | 1351 | Hexan-1-ol | 9 (2) c | 22 (2) b | 36 (5) a | 1600 f | 0.006 | 0.014 | 0.023 |
1382 | 1382 | (Z)-hex-3-en-1-ol | 30 (5) b | 46 (6) a | 44 (6) a | 910 f | 0.03 | 0.06 | 0.02 |
1406 | 1407 | (E)-hex-2-en-1-ol | 33 (4) c | 54 (4) a | 19 (2) b | 100 f | 0.33 | 0.54 | 0.19 |
1603 | 1618 | 1-methoxy-4-Propylbenzene | <2.9 | 89 (9) a | 26 (2) b | Unknown | - | - | - |
1658 | 1664 | Ethyl benzoate | 39 (4) b | 205 (22) a | 22 (2) b | 53 j | 0.74 | 3.87 | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Costa, F.J.; Mertz, C.; Servent, A.; Achir, N.; Munanga, B.; Dornier, M. Physicochemical and Compositional Characterization of a Wild Fruit from the Angolan Miombo: Anisophyllea boehmii Engl. Agriculture 2025, 15, 1175. https://doi.org/10.3390/agriculture15111175
da Costa FJ, Mertz C, Servent A, Achir N, Munanga B, Dornier M. Physicochemical and Compositional Characterization of a Wild Fruit from the Angolan Miombo: Anisophyllea boehmii Engl. Agriculture. 2025; 15(11):1175. https://doi.org/10.3390/agriculture15111175
Chicago/Turabian Styleda Costa, Famoroso João, Christian Mertz, Adrien Servent, Nawel Achir, Bettencourt Munanga, and Manuel Dornier. 2025. "Physicochemical and Compositional Characterization of a Wild Fruit from the Angolan Miombo: Anisophyllea boehmii Engl." Agriculture 15, no. 11: 1175. https://doi.org/10.3390/agriculture15111175
APA Styleda Costa, F. J., Mertz, C., Servent, A., Achir, N., Munanga, B., & Dornier, M. (2025). Physicochemical and Compositional Characterization of a Wild Fruit from the Angolan Miombo: Anisophyllea boehmii Engl. Agriculture, 15(11), 1175. https://doi.org/10.3390/agriculture15111175