Near-Infrared Reflectance Spectroscopy Calibration for Trypsin Inhibitor in Soybean Seed and Meal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.1.1. Whole Seed
2.1.2. Meal Preparation
2.2. Spectral Methodology
2.3. Trypsin Inhibitor Quantification by HPLC
2.4. Model Creation, Cross-Validation, and Statistical Analysis
3. Results
3.1. Sample Concentration of Trypsin Inhibitor
3.2. Calibration Model Performance
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BBTI | Bowman–Birk trypsin inhibitor |
HPLC | high-performance liquid chromatography |
KTI | Kunitz trypsin inhibitor |
MBBTI | Meal Bowman–Birk trypsin inhibitor |
MKTI | Meal Kunitz trypsin inhibitor |
MTTI | Meal total trypsin inhibitor |
NIR | Near-infrared reflectance |
PLSR | Partial least squares regression |
RMSE | Root mean square error |
SBBTI | Seed Bowman–Birk trypsin inhibitor |
SKTI | Seed Kunitz trypsin inhibitor |
STTI | Seed total trypsin inhibitor |
References
- El-Shemy, H. Soybean and Nutrition; BoD—Books on Demand: Norderstedt, Germany, 2011. [Google Scholar]
- Friedman, M.; Brandon, D.L. Nutritional and health benefits of soy proteins. J. Agric. Food Chem. 2001, 49, 1069–1086. [Google Scholar] [CrossRef] [PubMed]
- Power BI Report. Available online: https://app.powerbi.com/view?r=eyJrIjoiNTU0MDIzZmMtYmMzYi00NmM3LTk3ODgtZjBiZGQzOTgxY2MwIiwidCI6ImQyNTQyNGQwLTY1MGUtNDZmYi1iZGYzLTQzNGQ1N2Y3YmE3ZCIsImMiOjN9 (accessed on 23 August 2024).
- Liener, I.E. Implications of antinutritional components in soybean foods. Crit. Rev. Food Sci. Nutr. 1994, 34, 31–67. [Google Scholar] [CrossRef] [PubMed]
- Vagadia, B.H.; Vanga, S.K.; Raghavan, V. Inactivation methods of soybean trypsin inhibitor—A review. Trends Food Sci. Technol. 2017, 64, 115–125. [Google Scholar] [CrossRef]
- Yen, J.T.; Jensen, A.H.; Simon, J. Effect of dietary raw soybean and soybean trypsin inhibitor on trypsin and chymotrypsin activities in the pancreas and in small intestinal juice of growing swine. J. Nutr. 1977, 107, 156–165. [Google Scholar] [CrossRef]
- Chen, J.; Wedekind, K.; Escobar, J. Trypsin Inhibitor and Urease Activity of Soybean Meal Products from Different Countries and Impact of Trypsin Inhibitor on Ileal Amino Acid Digestibility in Pig. J. Am. Oil Chem. Soc. 2020, 97, 1151–1163. [Google Scholar] [CrossRef]
- Fekadu Gemede, H. Antinutritional Factors in Plant Foods: Potential Health Benefits and Adverse Effects. Int. J. Nutr. Food Sci. 2014, 3, 284–289. [Google Scholar] [CrossRef]
- Hirota, M.; Ohmuraya, M.; Baba, H. The role of trypsin, trypsin inhibitor, and trypsin receptor in the onset and aggravation of pancreatitis. J. Gastroenterol. 2006, 41, 832–836. [Google Scholar] [CrossRef]
- Shea, Z.; Ogando do Granja, M.; Fletcher, E.B.; Zheng, Y.; Bewick, P.; Wang, Z.; Singer, W.M.; Zhang, B. A Review of Bioactive Compound Effects from Primary Legume Protein Sources in Human and Animal Health. Curr. Issues Mol. Biol. 2024, 46, 4203–4233. [Google Scholar] [CrossRef] [PubMed]
- Blow, D.M.; Janin, J.; Sweet, R.M. Mode of action of soybean trypsin inhibitor (Kunitz) as a model for specific protein–protein interactions. Nature 1974, 249, 54–57. [Google Scholar] [CrossRef]
- Kunitz, M. Crystalline soybean trypsin inhibitor. J. Gen. Physiol. 1947, 30, 291–310. [Google Scholar] [CrossRef]
- Birk, Y. Purification and some properties of a highly active inhibitor of trypsin and α-chymotrypsin from soybeans. Biochim. Biophys. Acta 1961, 54, 378–381. [Google Scholar] [CrossRef]
- Bowman, D.E. Fractions Derived from Soy Beans and Navy Beans Which Retard Tryptic Digestion of Casein. Proc. Soc. Exp. Biol. Med. 1944, 57, 139–140. [Google Scholar] [CrossRef]
- Onesti, S.; Brick, P.; Blow, D.M. Crystal structure of a Kunitz-type trypsin inhibitor from Erythrina coffra seeds. J. Mol. Biol. 1991, 217, 153–176. [Google Scholar] [CrossRef] [PubMed]
- Deshimaru, M.; Yoshimi, S.; Shioi, S.; Terada, S. Multigene Family for Bowman–Birk Type Proteinase Inhibitors of Wild Soja and Soybean: The Presence of Two BBI-A Genes and Pseudogenes. Biosci. Biotechnol. Biochem. 2004, 68, 1279–1286. [Google Scholar] [CrossRef] [PubMed]
- DiPietro, C.M.; Liener, I.E. Heat inactivation of the Kunitz and Bowman-Birk soybean protease inhibitors. J. Agric. Food Chem. 1989, 37, 39–44. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Qiu, L. Novel alleles among soybean Bowman-Birk proteinase inhibitor gene families. Sci. China C Life Sci. 2008, 51, 687–692. [Google Scholar] [CrossRef]
- Ruiz, N.; Parsons, C.M.; Stein, H.H.; Coon, C.N.; van Eys, J.E.; Miles, R.D. A Historical Look at the Soybean and Its Use for Animal Feed. 2020. Available online: https://nutrition.ansci.illinois.edu/sites/nutrition.ansci.illinois.edu/files/Ruiz%20et%20al.%2C%202020%20-%20A%20review_%20100%20years%20of%20soybean%20meal%20-%20Feedstuffs.pdf (accessed on 23 August 2024).
- Rafiee-Yarandi, H.; Alikhani, M.; Ghorbani, G.R.; Sadeghi-Sefidmazgi, A. Effects of temperature, heating time and particle size on values of rumen undegradable protein of roasted soybean. S. Afr. J. Anim. Sci. 2016, 46, 170–179. [Google Scholar] [CrossRef]
- Hsieh, J.-F.; Chen, S.-T. Comparative studies on the analysis of glycoproteins and lipopolysaccharides by the gel-based microchip and SDS-PAGE. Biomicrofluidics 2007, 1, 14102. [Google Scholar] [CrossRef]
- Rosso, M.L.; Shang, C.; Correa, E.; Zhang, B. An Efficient HPLC Approach to Quantify Kunitz Trypsin Inhibitor in Soybean Seeds. Crop Sci. 2018, 58, 1616–1623. [Google Scholar] [CrossRef]
- Torbica, A.M.; Živančev, D.R.; Nikolić, Z.T.; Đorđević, V.B.; Nikolovski, B.G. Advantages of the Lab-on-a-Chip Method in the Determination of the Kunitz Trypsin Inhibitor in Soybean Varieties. J. Agric. Food Chem. 2010, 58, 7980–7985. [Google Scholar] [CrossRef]
- Zhou, T.; Han, S.; Li, Z.; He, P. Purification and Quantification of Kunitz Trypsin Inhibitor in Soybean Using Two-Dimensional Liquid Chromatography. Food Anal. Methods 2017, 10, 3350–3360. [Google Scholar] [CrossRef]
- The Best HPLC Systems: A Buyer’s Review of Price and Features. Available online: https://www.labx.com/resources/the-best-hplc-systems-a-buyers-review-of-price-and-features/4819 (accessed on 4 April 2025).
- The Best NIR Systems: A Buyer’s Guide to Price and Features. Available online: https://www.labx.com/resources/the-best-nir-systems-a-buyers-guide-to-price-and-features/4960 (accessed on 4 April 2025).
- Le Pevelen, D.D.; Tranter, G.E. NIR Spectroscopy—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/chemistry/nir-spectroscopy (accessed on 24 August 2024).
- Blanco, M.; Villarroya, I. NIR spectroscopy: A rapid-response analytical tool. TrAC Trends Anal. Chem. 2002, 21, 240–250. [Google Scholar] [CrossRef]
- Norris, K.H. History of NIR. Available online: https://journals.sagepub.com/doi/abs/10.1255/jnirs.941 (accessed on 24 August 2024).
- Porep, J.U.; Kammerer, D.R.; Carle, R. On-line application of near infrared (NIR) spectroscopy in food production. Trends Food Sci. Technol. 2015, 46, 211–230. [Google Scholar] [CrossRef]
- Osborne, B.G.; Fearn, T.; Hindle, P.T. Practical NIR spectroscopy with applications in food and beverage analysis. In Longman Food Technology, 2nd ed.; Longman Scientific & Technical: Harlow, UK; New York, NY, USA; Wiley: Hoboken, NJ, USA, 1993; ISBN 978-0-470-22128-0. [Google Scholar]
- AACC International. Approved Methods of Analysis, 11th ed.; Method 39-21.01. Near-Infrared Reflectance Method for Protein and Oil Determination in Soybeans; AACC International: St. Paul, MN, USA, 2010. [Google Scholar] [CrossRef]
- Home—SoyBase. Available online: https://www.soybase.org/ (accessed on 4 April 2025).
- Lord, N.; Shang, C.; Rosso, L.; Zhang, B. Development of near-infrared reflectance spectroscopy calibration for sugar content in ground soybean seed using Perten DA7250 analyzer. Crop Sci. 2021, 61, 966–975. [Google Scholar] [CrossRef]
- Setarehdan, S.K.; Soraghan, J.J.; Littlejohn, D.; Sadler, D.A. Maintenance of a calibration model for near infrared spectrometry by a combined principal component analysis–partial least squares approach. Anal. Chim. Acta 2002, 452, 35–45. [Google Scholar] [CrossRef]
- Smith, M.R.; Jee, R.D.; Moffat, A.C.; Rees, D.R.; Broad, N.W. Optimisation of partial least squares regression calibration models in near-infrared spectroscopy: A novel algorithm for wavelength selection. Analyst 2003, 128, 1312–1319. [Google Scholar] [CrossRef]
- Hodson, T.O. Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geosci. Model Dev. 2022, 15, 5481–5487. [Google Scholar] [CrossRef]
- Pesic, M.B.; Vucelic-Radovic, B.V.; Barac, M.B.; Stanojevic, S.P.; Nedovic, V.A. Influence of Different Genotypes on Trypsin Inhibitor Levels and Activity in Soybeans. Sensors 2007, 7, 67–74. [Google Scholar] [CrossRef]
- Losso, J.N. The Biochemical and Functional Food Properties of the Bowman-Birk Inhibitor. Crit. Rev. Food Sci. Nutr. 2008, 48, 94–118. [Google Scholar] [CrossRef]
- Gitlin-Domagalska, A.; Maciejewska, A.; Dębowski, D. Bowman-Birk Inhibitors: Insights into Family of Multifunctional Proteins and Peptides with Potential Therapeutical Applications. Pharmaceuticals 2020, 13, 421. [Google Scholar] [CrossRef]
- Herwade, A.P.; Kasar, S.S.; Rane, N.R.; Ahmed, S.; Maras, J.S.; Pawar, P.K. Characterization of a Bowman–Birk type trypsin inhibitor purified from seeds of Solanum surattense. Sci. Rep. 2021, 11, 8648. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Chen, L.; Chen, X.; Chen, J.; Zhang, H. Near-infrared spectroscopy identification method of cashmere and wool fibers based on an optimized wavelength selection algorithm. Heliyon 2024, 10, e34537. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, D.; Brugger, D.; Windisch, W.; Thurner, S. Calibration Model for a Near Infrared Spectroscopy (NIRS) System to Control Feed Quality of Soy Cake Based on Feed Value Assessments In-Vitro. Chem. Eng. Trans. 2017, 58, 379–384. [Google Scholar] [CrossRef]
- Otsuka, M.; Fukui, Y.; Ozaki, Y. Comparative evaluation of bioactivity of crystalline trypsin for drying by Fourier-transformed infrared spectroscopy. Colloids Surf. B Biointerfaces 2009, 69, 194–200. [Google Scholar] [CrossRef]
TI Model | Range % | Mean % 1 | SD | CV |
---|---|---|---|---|
STTI | 2.62–13.13 | 8.39 | 1.87 | 0.22 |
SKTI | 0.49–7.78 | 4.40 | 1.06 | 0.24 |
SBBTI | 0.34–7.79 | 3.99 | 1.35 | 0.33 |
MTTI | 0.38–10.25 | 4.02 | 1.55 | 0.37 |
MKTI | 0.24–10.76 | 2.98 | 1.26 | 0.42 |
MBBTI | 0.0–4.27 | 1.14 | 0.72 | 0.63 |
Calibration | Validation | ||||
---|---|---|---|---|---|
TI Model | Sample Size | R2 | RMSE | R2 | RMSE |
STTI | 124 | 0.937 | 1.460 | 0.968 | 1.579 |
SKTI | 124 | 0.979 | 0.676 | 0.975 | 0.741 |
SBBTI | 124 | 0.027 | 1.269 | 0.017 | 1.287 |
MTTI | 112 | 0.892 | 1.398 | 0.864 | 1.560 |
MKTI | 112 | 0.059 | 1.116 | 0.052 | 1.126 |
MBBTI | 112 | 0.021 | 0.641 | 0.016 | 0.648 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fletcher, E.B.; Rosso, M.L.; Walker, T.; Huang, H.; Morota, G.; Zhang, B. Near-Infrared Reflectance Spectroscopy Calibration for Trypsin Inhibitor in Soybean Seed and Meal. Agriculture 2025, 15, 1062. https://doi.org/10.3390/agriculture15101062
Fletcher EB, Rosso ML, Walker T, Huang H, Morota G, Zhang B. Near-Infrared Reflectance Spectroscopy Calibration for Trypsin Inhibitor in Soybean Seed and Meal. Agriculture. 2025; 15(10):1062. https://doi.org/10.3390/agriculture15101062
Chicago/Turabian StyleFletcher, Elizabeth B., M. Luciana Rosso, Troy Walker, Haibo Huang, Gota Morota, and Bo Zhang. 2025. "Near-Infrared Reflectance Spectroscopy Calibration for Trypsin Inhibitor in Soybean Seed and Meal" Agriculture 15, no. 10: 1062. https://doi.org/10.3390/agriculture15101062
APA StyleFletcher, E. B., Rosso, M. L., Walker, T., Huang, H., Morota, G., & Zhang, B. (2025). Near-Infrared Reflectance Spectroscopy Calibration for Trypsin Inhibitor in Soybean Seed and Meal. Agriculture, 15(10), 1062. https://doi.org/10.3390/agriculture15101062