Effects of a Delayed Harvest and Additives on the Fermentation Quality of Corn Stalk Silage
Abstract
:1. Introduction
2. Methods and Materials
2.1. Material Preparation and Ensiling
2.2. Chemical and Microbiological Analysis
RFV: DDM% = 88.9 − 0.779 × ADF%
DMI% = 120/NDF%
RFV = (DMI% × DDM%)/1.29
2.3. Fermentation Analysis
2.4. Statistical Analysis
3. Results
3.1. Microbial Counts and Chemical Composition of Raw Materials
3.2. Chemical Composition of Corn Stalk Silage
3.3. Microbial Population of Corn Stalk Silage
4. Discussion
4.1. Chemical Composition, Digestion Index, and Microbial Population of Corn Stalks and Their Silages
4.2. pH and Organic Acid and NH3-N Contents of Corn Stalk Silage
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Global Corn Production from 2014/2015 to 2022/2023 (in Million Metric Tons)* [Graph]. 2023. Available online: https://www.statista.com/statistics/1156213/global-corn-production/ (accessed on 25 December 2023).
- Bhuvaneshwari, S.; Hettiarachchi, H.; Meegoda, J.N. Crop Residue Burning in India: Policy Challenges and Potential Solutions. Int. J. Environ. Res. Public Health 2019, 16, 832. [Google Scholar] [CrossRef]
- Jin, Z.; Katsumata, K.; Lam, T.; Iiyama, K. Covalent linkages between cellulose and lignin in cell walls of coniferous and nonconiferous woods. Biopolymers 2006, 83, 103–110. [Google Scholar] [CrossRef]
- Chen, D.; Xu, C.; Ye, H.; Shi, Y.; Sheng, Y.; Ge, S.; Zhang, M.; Wang, H. New Poplar-Derived Biocomposites via Single-Step Thermoforming Assisted by Phosphoric Acid Pretreatment. Polymers 2022, 14, 3636. [Google Scholar] [CrossRef] [PubMed]
- Steinfeld, H.G.; Gerber, P.; Wassenaar, T.D. Livestock’s Long Shadow: Environmental Issues and Options; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2006. [Google Scholar]
- Xin, Y.; Chen, C.; Zhong, Y.; Bu, X.; Huang, S.; Tahir, M.; Du, Z.; Liu, W.; Yang, W.; Li, J.; et al. Effect of storage time on the silage quality and microbial community of mixed maize and faba bean in the Qinghai-Tibet Plateau. Front. Microbiol. 2022, 13, 1090401. [Google Scholar] [CrossRef]
- Clark, A. Managing Cover Crops Profitably; Diane Publishing: Darby, PA, USA, 2008. [Google Scholar]
- Kung, L. A review on silage additives and enzymes. In Proceedings of the 59th Minneapolis Nutrition Conference, Minneapolis, MN, USA, 23 September 1998; pp. 121–135. Available online: http://cdn.canr.udel.edu/wp-content/uploads/2014/02/A-REVIEW-ON-SILAGE-ADDITIVES-AND-ENZYMES.pdf (accessed on 25 December 2023).
- Oladosu, Y.; Rafii, M.Y.; Abdullah, N.; Magaji, U.; Hussin, G.; Ramli, A.; Miah, G. Fermentation quality and additives: A case of rice straw silage. BioMed Res. Int. 2016, 2016, 7985167. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Ma, D.; Niu, H.; Chang, J.; Yu, J.; Tong, Q.; Li, S. Enzyme additives influence bacterial communities of Medicago sativa silage as determined by Illumina sequencing. AMB Express 2021, 11, 5. [Google Scholar] [CrossRef]
- Kim, D.; Lee, K.D.; Choi, K.C. Role of LAB in silage fermentation: Effect on nutritional quality and organic acid production—An overview. AIMS Agric. Food 2021, 6, 216–234. [Google Scholar] [CrossRef]
- Mathur, H.; Beresford, T.P.; Cotter, P.D. Health Benefits of Lactic Acid Bacteria (LAB) Fermentates. Nutrients 2020, 12, 1679. [Google Scholar] [CrossRef]
- Raman, J.; Kim, J.-S.; Choi, K.R.; Eun, H.; Yang, D.; Ko, Y.-J.; Kim, S.-J. Application of Lactic Acid Bacteria (LAB) in Sustainable Agriculture: Advantages and Limitations. Int. J. Mol. Sci. 2022, 23, 7784. [Google Scholar] [CrossRef]
- Weinberg, Z.G.; Ashbell, G. Engineering aspects of ensiling. Biochem. Eng. J. 2003, 13, 181–188. [Google Scholar] [CrossRef]
- Cheng, Q.; Li, P.; Xiao, B.; Yang, F.; Li, D.; Ge, G.; Jia, Y.; Bai, S. Effects of LAB inoculant and cellulase on the fermentation quality and chemical composition of forage soybean silage prepared with corn stover. Grassl. Sci. 2021, 67, 83–90. [Google Scholar] [CrossRef]
- Gao, J.L.; Wang, P.; Zhou, C.H.; Li, P.; Tang, H.Y.; Zhang, J.B.; Cai, Y. Chemical composition and in vitro digestibility of corn stover during field exposure and the fermentation characteristics of silage prepared with microbial additives. Asian-Australas. J. Anim. Sci. 2019, 32, 1854–1863. [Google Scholar] [CrossRef] [PubMed]
- Yemm, E.W.; Willis, A.J. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 1954, 57, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Gonthier, P.; Visentin, I.; Valentino, D.; Tamietti, G.; Cardinale, F. The Legitimate Name of a Fungal Plant Pathogen and the Ethics of Publication in the Era of Traceability. Sci. Eng. Ethics 2017, 23, 631–633. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Tilley, J.M.A.; Terry, R.A. A Two-Stage Technique for The In Vitro Digestion Of Forage Crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Rohweder, D.A.; Barnes, R.F.; Jorgensen, N. Proposed Hay Grading Standards Based on Laboratory Analyses for Evaluating Quality. J. Anim. Sci. 1978, 47, 747–759. [Google Scholar] [CrossRef]
- Kaiser, A.; Piltz, J.; Burns, H. Topfodder silage-a silage extension package for the grazing industries. In Proceedings of the Beef Products Program: Technology-Our Future, Tocal College, Paterson, Australia, 13 May 2003; pp. 95–97. [Google Scholar]
- Broderick, G.A.; Kang, J.H. Automated Simultaneous Determination of Ammonia and Total Amino Acids in Ruminal Fluid and In Vitro Media1. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Han, C.; Wang, G.; Yang, H. Study on the Coupling System of Grain-Grass-Livestock of Herbivorous Animal Husbandry in Agricultural Areas: A Case Study of Najitun Farm of Hulunbuir Agricultural Reclamation in China. Land 2022, 11, 691. [Google Scholar] [CrossRef]
- Guo, L.; Lu, Y.; Li, P.; Chen, L.; Gou, W.; Zhang, C. Effects of Delayed Harvest and Additives on Fermentation Quality and Bacterial Community of Corn Stalk Silage. Front. Microbiol. 2021, 12, 687481. [Google Scholar] [CrossRef]
- Cai, Y.; Du, Z.; Yamasaki, S.; Nguluve, D.; Tinga, B.; Macome, F.; Oya, T. Influence of microbial additive on microbial populations, ensiling characteristics, and spoilage loss of delayed sealing silage of Napier grass. Asian-Australas. J. Anim. Sci. 2020, 33, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Horst, E.H.; Bumbieris Junior, V.H.; Neumann, M.; López, S. Effects of the Harvest Stage of Maize Hybrids on the Chemical Composition of Plant Fractions: An Analysis of the Different Types of Silage. Agriculture 2021, 11, 786. [Google Scholar] [CrossRef]
- McEniry, J.; King, C.; O’Kiely, P. Silage fermentation characteristics of three common grassland species in response to advancing stage of maturity and additive application. Grass Forage Sci. 2014, 69, 393–404. [Google Scholar] [CrossRef]
- Huang, Y.; Liang, L.; Dai, S.; Wu, C.; Chen, C.; Hao, J. Effect of Different Regions and Ensiling Periods on Fermentation Quality and the Bacterial Community of Whole-Plant Maize Silage. Front. Microbiol. 2021, 12, 743695. [Google Scholar] [CrossRef]
- Wan, J.C.; Xie, K.Y.; Wang, Y.X.; Liu, L.; Yu, Z.; Wang, B. Effects of wilting and additives on the ensiling quality and in vitro rumen fermentation characteristics of sudangrass silage. Anim. Biosci. 2021, 34, 56–65. [Google Scholar] [CrossRef]
- Desta, S.T.; Yuan, X.; Li, J.; Shao, T. Ensiling characteristics, structural and nonstructural carbohydrate composition and enzymatic digestibility of Napier grass ensiled with additives. Bioresour. Technol. 2016, 221, 447–454. [Google Scholar] [CrossRef]
- Amer, S.; Hassanat, F.; Berthiaume, R.; Seguin, P.; Mustafa, A.F. Effects of water soluble carbohydrate content on ensiling characteristics, chemical composition and in vitro gas production of forage millet and forage sorghum silages. Anim. Feed. Sci. Technol. 2012, 177, 23–29. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Z.; Gentu, G.; Jia, Y.; Hou, M.; Cai, Y. Changes in microbial population and chemical composition of corn stover during field exposure and effects on silage fermentation and in vitro digestibility. Asian-Australas. J. Anim. Sci. 2019, 32, 815–825. [Google Scholar] [CrossRef]
- Pholsen, S.; Khota, W.; Pang, H.; Higgs, D.; Cai, Y. Characterization and application of lactic acid bacteria for tropical silage preparation. Anim. Sci. J. 2016, 87, 1202–1211. [Google Scholar] [CrossRef]
- Guan, Y.; Lv, H.; Wu, G.; Chen, J.; Wang, M.; Zhang, M.; Pang, H.; Duan, Y.; Wang, L.; Tan, Z. Effects of Lactic Acid Bacteria Reducing the Content of Harmful Fungi and Mycotoxins on the Quality of Mixed Fermented Feed. Toxins 2023, 15, 226. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Shang, S.; Zhao, X.; Zhang, W.; Zhang, X.; Bai, J.; Yang, Z.; Guo, K. Effect of additives and moisture on the fermentation quality and bacterial community of high moisture ear corn. Front. Microbiol. 2023, 14, 1251946. [Google Scholar] [CrossRef] [PubMed]
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage; Chalcombe Publications: Shedfield, UK, 1991. [Google Scholar]
- Kilic, A. Silo Feed (Instruction, Education and Application Proposals); Bilgehan Press: Izmir, Turkey, 1986. [Google Scholar]
- Kung, L., Jr.; Stokes, M.R. Analyzing silages for fermentation end products. Univ. Del. Coll. Agric. Nat. Resour. 2001, 11–17. [Google Scholar]
- Zou, Y.; Dong, S.; Du, Y.; Li, S.; Wang, Y.; Cao, Z. Effects of moisture content or particle size on the in situ degradability of maize silage and alfalfa haylage in lactating dairy cows. Anim. Nutr. 2016, 2, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef]
- Sa, D.W.; Lu, Q.; Wang, Z.; Ge, G.; Sun, L.; Jia, Y. The potential and effects of saline-alkali alfalfa microbiota under salt stress on the fermentation quality and microbial. BMC Microbiol. 2021, 21, 149. [Google Scholar] [CrossRef] [PubMed]
- Khota, W.; Pholsen, S.; Higgs, D.; Cai, Y. Comparative analysis of silage fermentation and in vitro digestibility of tropical grass prepared with Acremonium and Tricoderma species producing cellulases. Asian-Australas. J. Anim. Sci. 2018, 31, 1913–1922. [Google Scholar] [CrossRef]
- Li, D.-X.; Ni, K.-K.; Zhang, Y.-C.; Lin, Y.-L.; Yang, F.-Y. Influence of lactic acid bacteria, cellulase, cellulase-producing Bacillus pumilus and their combinations on alfalfa silage quality. J. Integr. Agric. 2018, 17, 2768–2782. [Google Scholar] [CrossRef]
- Lynd, L.R.; Weimer, P.J.; van Zyl, W.H.; Pretorius, I.S. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 2002, 66, 506–577. [Google Scholar] [CrossRef]
- Nkhata, S.G.; Ayua, E.; Kamau, E.H.; Shingiro, J.B. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci. Nutr. 2018, 6, 2446–2458. [Google Scholar] [CrossRef]
- Xiong, H.; Zhu, Y.; Wen, Z.; Liu, G.; Guo, Y.; Sun, B. Effects of Cellulase, Lactobacillus plantarum, and Sucrose on Fermentation Parameters, Chemical Composition, and Bacterial Community of Hybrid Pennisetum Silage. Fermentation 2022, 8, 356. [Google Scholar] [CrossRef]
- Kung, L., Jr.; Stokes, M.R.; Lin, C.J. Silage Additives. In Silage Science and Technology; Wiley: Hoboken, NJ, USA, 2003; pp. 305–360. [Google Scholar]
Harvest Time | LAB | TM | YM |
---|---|---|---|
Log10 cfu/g FM | |||
D0 | 5.47 | 5.73 a | 3.50 |
D20 | 5.39 | 5.41 b | 3.65 |
SEM | 0.07 | 0.09 | 0.05 |
p-value | 0.65 | 0.02 | 0.29 |
Harvest Time | Additives | DM | WSC | CP | NDF | ADF | IVDMD |
---|---|---|---|---|---|---|---|
% | % DM | ||||||
D0 | Control | 16.90 | 13.67 | 6.51 | 49.12 | 26.56 | 71.88 |
AL | 21.81 | 11.39 | 8.53 | 50.35 | 30.88 | 70.16 | |
Lp | 19.37 | 14.44 | 6.12 | 49.06 | 27.39 | 73.78 | |
TC | 19.40 | 13.89 | 6.39 | 47.18 | 27.56 | 73.06 | |
Lp+TC | 16.47 | 13.39 | 6.21 | 47.48 | 27.59 | 73.34 | |
mean | 18.79 B | 13.45 A | 6.75 | 48.51 | 28.00 B | 72.44 A | |
D20 | Control | 26.33 | 12.11 | 6.17 | 47.74 | 27.70 | 69.44 |
AL | 32.93 | 10.84 | 7.75 | 51.43 | 30.04 | 66.59 | |
Lp | 27.09 | 12.08 | 6.13 | 48.35 | 28.28 | 62.15 | |
TC | 26.93 | 11.99 | 6.09 | 50.34 | 28.77 | 68.78 | |
Lp+TC | 26.02 | 12.50 | 6.07 | 48.94 | 28.83 | 66.29 | |
mean | 28.32 A | 11.90 B | 6.49 | 49.36 | 28.72 A | 66.65 B | |
SEM | 1.69 | 0.37 | 0.28 | 0.44 | 0.41 | 1.18 | |
p-value | |||||||
H | <0.05 | <0.05 | 0.269 | 0.237 | <0.05 | <0.05 | |
Alfalfa hay | 82.71 | 7.81 | 17.00 | 50.02 | 34.01 | 73.66 |
Harvest Time | Additives | DM | WSC | CP | NDF | ADF | IVDMD |
---|---|---|---|---|---|---|---|
% | % DM | ||||||
D0 | Control | 16.43 b | 1.44 bc | 6.68 b | 55.82 a | 32.31 | 68.00 a |
AL | 20.18 a | 1.70 b | 7.56 a | 56.16 a | 35.48 | 62.74 b | |
Lp | 16.37 b | 1.11 c | 5.77 c | 56.42 a | 33.82 | 63.10 b | |
TC | 16.66 b | 1.63 bc | 6.77 b | 54.87 a | 32.16 | 66.39 ab | |
Lp+TC | 16.19 b | 2.37 a | 5.81 c | 51.58 b | 31.17 | 67.06 a | |
Mean | 17.17 B | 1.65 A | 6.52 A | 54.97 B | 32.99 B | 65.46 A | |
D20 | Control | 25.25 ab | 1.15 b | 4.93 bc | 56.20 b | 32.76 | 63.51 a |
AL | 30.56 a | 1.44 a | 6.77 a | 57.01 b | 32.74 | 63.13 a | |
Lp | 25.18 ab | 1.24 b | 4.77 bc | 58.93 a | 35.11 | 58.53 b | |
TC | 25.32 ab | 1.38 ab | 5.38 b | 56.13 b | 33.34 | 61.72 ab | |
Lp+TC | 24.12 b | 1.51 a | 4.65 c | 55.65 b | 32.57 | 62.25 ab | |
Mean | 26.09 A | 1.35 B | 5.44 B | 56.78 A | 33.30 A | 61.83 B | |
SEM | 1.62 | 0.11 | 0.32 | 0.58 | 0.42 | 0.89 | |
p-value | |||||||
H | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
A | 0.037 | <0.001 | <0.001 | 0.027 | 0.050 | 0.022 | |
H ×A | <0.001 | 0.015 | 0.161 | <0.001 | <0.001 | <0.001 |
Harvest Time | Additives | pH | NH3-N | LA | AA | LA/AA | PA | BA |
---|---|---|---|---|---|---|---|---|
% Total N | % DM | |||||||
D0 | Control | 3.70 | 4.55 abc | 3.25 b | 0.62 | 5.24 b | ND | ND |
AL | 3.72 | 5.56 a | 3.64 a | 0.58 | 6.28 a | ND | ND | |
Lp | 3.70 | 4.20 bc | 3.26 b | 0.62 | 5.26 b | ND | ND | |
TC | 3.73 | 3.51 bc | 3.26 b | 0.61 | 5.34 b | ND | ND | |
Lp+TC | 3.71 | 4.69 ab | 3.07 b | 0.61 | 5.03 b | ND | ND | |
Mean | 3.71 | 4.50 B | 3.29 A | 0.61 | 5.42 A | ND | ND | |
D20 | Control | 3.68 b | 7.33 b | 2.65 b | 0.65 | 4.08 b | ND | ND |
AL | 3.78 a | 8.84 a | 2.98 a | 0.61 | 4.89 a | ND | ND | |
Lp | 3.70 b | 5.75 b | 2.58 b | 0.61 | 4.23 b | ND | ND | |
TC | 3.68 b | 6.60 b | 2.61 b | 0.62 | 4.21 b | ND | ND | |
Lp+TC | 3.67 b | 7.06 b | 2.50 b | 0.60 | 4.17 b | ND | ND | |
Mean | 3.70 | 7.37 A | 2.66 B | 0.62 | 4.31 B | ND | ND | |
SEM | 0.01 | 0.52 | 0.12 | 0.01 | 0.22 | ND | ND | |
p-value | ||||||||
H | 0.237 | <0.001 | <0.001 | 0.495 | <0.001 | ND | ND | |
A | 0.002 | 0.006 | <0.001 | 0.321 | <0.001 | ND | ND | |
H × A | 0.009 | 0.006 | <0.001 | 0.671 | 0.646 | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.-L.; Li, Y.-F.; Yu, Y.-S.; Kim, H.-J.; Lee, W.-J.; Kim, J.-G. Effects of a Delayed Harvest and Additives on the Fermentation Quality of Corn Stalk Silage. Agriculture 2024, 14, 174. https://doi.org/10.3390/agriculture14020174
Wang L-L, Li Y-F, Yu Y-S, Kim H-J, Lee W-J, Kim J-G. Effects of a Delayed Harvest and Additives on the Fermentation Quality of Corn Stalk Silage. Agriculture. 2024; 14(2):174. https://doi.org/10.3390/agriculture14020174
Chicago/Turabian StyleWang, Li-Li, Yan-Fen Li, Young-Sang Yu, Hak-Jin Kim, Won-Jin Lee, and Jong-Geun Kim. 2024. "Effects of a Delayed Harvest and Additives on the Fermentation Quality of Corn Stalk Silage" Agriculture 14, no. 2: 174. https://doi.org/10.3390/agriculture14020174
APA StyleWang, L.-L., Li, Y.-F., Yu, Y.-S., Kim, H.-J., Lee, W.-J., & Kim, J.-G. (2024). Effects of a Delayed Harvest and Additives on the Fermentation Quality of Corn Stalk Silage. Agriculture, 14(2), 174. https://doi.org/10.3390/agriculture14020174