The rs1126616 Single Nucleotide Polymorphism of the Osteopontin Gene Is Independently Associated with Cardiovascular Events in a Chronic Kidney Disease Cohort
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Design and Participants
2.2. SNP Genotyping
2.3. Determination of OPN Levels
2.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chronic Kidney Disease Prognosis Consortium. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: A collaborative meta-analysis. Lancet 2010, 375, 2073–2081. [Google Scholar] [CrossRef]
- Betriu, A.; Martinez-Alonso, M.; Arcidiacono, M.V.; Cannata-Andía, J.B.; Pascual, J.; Valdivielso, J.M.; Fernández, E. Prevalence of subclinical atheromatosis and associated risk factors in chronic kidney disease: The NEFRONA study. Nephrol. Dial. Transplant. 2014, 29, 1415–1422. [Google Scholar] [CrossRef]
- Valdivielso, J.M.; Betriu, À.; Martínez-Alonso, M.; Arroyo, D.; Bermudez-Lopez, M.; Fernandez, E. for the NEFRONA investigators Factors predicting cardiovascular events in chronic kidney disease patients. Role of subclinical atheromatosis extent assessed by vascular ultrasound. PLoS ONE 2017, 12, e0186665. [Google Scholar] [CrossRef]
- D’Marco, L.; Bellasi, A.; Raggi, P. Cardiovascular Biomarkers in Chronic Kidney Disease: State of Current Research and Clinical Applicability. Dis. Markers 2015, 2015, 586569. [Google Scholar] [CrossRef]
- Bozic, M.; Méndez-Barbero, N.; Gutiérrez-Muñoz, C.; Betriu, À.; Egido, J.; Fernandez, E.; Martin-Ventura, J.L.; Valdivielso, J.M.; Blanco-Colio, L.M. Combination of biomarkers of vascular calcification and sTWEAK to predict cardiovascular events in chronic kidney disease. Atherosclerosis 2018, 270, 13–20. [Google Scholar] [CrossRef]
- Cho, H.-J.; Cho, H.-J.; Kim, H.-S. Osteopontin: A multifunctional protein at the crossroads of inflammation, atherosclerosis, and vascular calcification. Atheroscler. Rep. 2009, 11, 206–213. [Google Scholar] [CrossRef]
- Hirota, S.; Imakita, M.; Kohri, K.; Ito, A.; Morii, E.; Adachi, S.; Kim, H.M.; Kitamura, Y.; Yutani, C.; Nomura, S. Expression of osteopontin messenger RNA by macrophages in atherosclerotic plaques. A possible association with calcification. Am. J. Pathol. 1993, 143, 1003–1008. [Google Scholar]
- O’Brien, E.R.; Garvin, M.R.; Stewart, D.K.; Hinohara, T.; Simpson, J.B.; Schwartz, S.M.; Giachelli, C.M. Osteopontin is synthesized by macrophage, smooth muscle, and endothelial cells in primary and restenotic human coronary atherosclerotic plaques. Arter. Thromb. A J. Vasc. Boil. 1994, 14, 1648–1656. [Google Scholar] [CrossRef]
- Ikeda, T.; Shirasawa, T.; Esaki, Y.; Yoshiki, S.; Hirokawa, K. Osteopontin mRNA is expressed by smooth muscle-derived foam cells in human atherosclerotic lesions of the aorta. J. Clin. Investig. 1993, 92, 2814–2820. [Google Scholar] [CrossRef]
- Isoda, K.; Nishikawa, K.; Kamezawa, Y.; Yoshida, M.; Kusuhara, M.; Moroi, M.; Tada, N.; Ohsuzu, F. Osteopontin Plays an Important Role in the Development of Medial Thickening and Neointimal Formation. Circ. Res. 2002, 91, 77–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsui, Y.; Rittling, S.R.; Okamoto, H.; Inobe, M.; Jia, N.; Shimizu, T.; Akino, M.; Sugawara, T.; Morimoto, J.; Kimura, C.; et al. Osteopontin Deficiency Attenuates Atherosclerosis in Female Apolipoprotein E–Deficient Mice. Arter. Thromb. Vasc. Boil. 2003, 23, 1029–1034. [Google Scholar] [CrossRef] [Green Version]
- Ohmori, R.; Momiyama, Y.; Taniguchi, H.; Takahashi, R.; Kusuhara, M.; Nakamura, H.; Ohsuzu, F. Plasma osteopontin levels are associated with the presence and extent of coronary artery disease. Atherosclerosis 2003, 170, 333–337. [Google Scholar] [CrossRef]
- Momiyama, Y.; Ohmori, R.; Fayad, Z.A.; Kihara, T.; Tanaka, N.; Kato, R.; Taniguchi, H.; Nagata, M.; Nakamura, H.; Ohsuzu, F. Associations between plasma osteopontin levels and the severities of coronary and aortic atherosclerosis. Atherosclerosis 2010, 210, 668–670. [Google Scholar] [CrossRef] [Green Version]
- Kurata, M.; Okura, T.; Watanabe, S.; Fukuoka, T.; Higaki, J. Osteopontin and carotid atherosclerosis in patients with essential hypertension. Clin. Sci. 2006, 111, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Mazzone, A.; Parri, M.S.; Giannessi, D.; Ravani, M.; Vaghetti, M.; Altieri, P.; Casalino, L.; Maltinti, M.; Balbi, M.; et al. Osteopontin plasma levels and accelerated atherosclerosis in patients with CAD undergoing PCI: A prospective clinical study. Coron Artery Dis. 2011, 22, 179–187. [Google Scholar] [CrossRef]
- Liaw, L.; Lombardi, D.M.; Almeida, M.M.; Schwartz, S.M.; Deblois, D.; Giachelli, C.M. Neutralizing Antibodies Directed Against Osteopontin Inhibit Rat Carotid Neointimal Thickening After Endothelial Denudation. Arter. Thromb. Vasc. Boil. 1997, 17, 188–193. [Google Scholar] [CrossRef]
- Wolak, T. Osteopontin—A multi-modal marker and mediator in atherosclerotic vascular disease. Atherosclerosis 2014, 236, 327–337. [Google Scholar] [CrossRef]
- Lorenzen, J.; Krämer, R.; Kliem, V.; Bode-Boeger, S.M.; Veldink, H.; Haller, H.; Fliser, D.; Kielstein, J.T. Circulating levels of osteopontin are closely related to glomerular filtration rate and cardiovascular risk markers in patients with chronic kidney disease. Eur. J. Clin. Investig. 2010, 40, 294–300. [Google Scholar] [CrossRef] [Green Version]
- Schmidt-Petersen, K.; Brand, E.; Telgmann, R.; Nicaud, V.; Hagedorn, C.; Labreuche, J.; Dördelmann, C.; Elbaz, A.; Gautier-Bertrand, M.; Fischer, J.W.; et al. Osteopontin gene variation and cardio/cerebrovascular disease phenotypes. Atherosclerosis 2009, 206, 209–215. [Google Scholar] [CrossRef] [Green Version]
- De las Fuentes, L.; Gu, C.C.; Mathews, S.J.; Reagan, J.L.; Ruthmann, N.P.; Waggoner, A.D.; Lai, C.-F.; Towler, D.A.; Dávila-Román, V.G. Osteopontin promoter polymorphism is associated with increased carotid intima-media thickness. J. Am. Soc. Echocardiogr. 2008, 21, 954–960. [Google Scholar] [CrossRef]
- Brenner, D.; Labreuche, J.; Touboul, P.-J.; Schmidt-Petersen, K.; Poirier, O.; Perret, C.; Schönfelder, J.; Combadière, C.; Lathrop, M.; Cambien, M.; et al. Cytokine Polymorphisms Associated With Carotid Intima-Media Thickness in Stroke Patients. Stroke 2006, 37, 1691–1696. [Google Scholar] [CrossRef] [Green Version]
- Taylor, B.C.; Schreiner, P.J.; Doherty, T.M.; Fornage, M.; Carr, J.J.; Sidney, S.; Carr, J. Matrix Gla protein and osteopontin genetic associations with coronary artery calcification and bone density: The CARDIA study. Hum. Genet. 2005, 116, 525–528. [Google Scholar] [CrossRef] [PubMed]
- Pleskovič, A.; Šantl, M.L.; Cokan, A.V.; Makuc, J.; Nikolajević, J.S.; Petrovič, D. Phosphoprotein 1 (osteopontin) gene (rs4754) affects markers of subclinical atherosclerosis in patients with type 2 diabetes mellitus. Int. Angiol. J. Int. Union Angiol. 2018, 37, 64–70. [Google Scholar]
- Junyent, M.; Martínez, M.; Borrás, M.; Bertriu, A.; Coll, B.; Craver, L.; Marco, M.P.; Sarró, F.; Valdivielso, J.M.; Fernández, E. Usefulness of imaging techniques and novel biomarkers in the prediction of cardiovascular risk in patients with chronic kidney disease in Spain: The NEFRONA project. Nefrología 2010, 30, 119–126. [Google Scholar]
- Junyent, M.; Martínez, M.; Borràs, M.; Coll, B.; Valdivielso, J.M.; Vidal, T.; Sarro, F.; Roig, J.; Craver, L.; Fernández, E.; et al. Predicting cardiovascular disease morbidity and mortality in chronic kidney disease in Spain. The rationale and design of NEFRONA: A prospective, multicenter, observational cohort study. BMC Nephrol. 2010, 11, 14. [Google Scholar] [CrossRef]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Rogers, N.; Greene, T.; Roth, D. A More Accurate Method to Estimate Glomerular Filtration Rate from Serum Creatinine: A New Prediction Equation. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Stevens, L.A.; Coresh, J.; Greene, T.; Levey, A.S. Assessing Kidney Function—Measured and Estimated Glomerular Filtration Rate. New Engl. J. Med. 2006, 354, 2473–2483. [Google Scholar] [CrossRef]
- Coll, B.; Betriu, A.; Martinez-Alonso, M.; Borras, M.; Craver, L.; Amoedo, M.L.; Marco, M.A.P.; Sarro, F.; Junyent, M.; Valdivielso, J.M.; et al. Cardiovascular risk factors underestimate atherosclerotic burden in chronic kidney disease: Usefulness of non-invasive tests in cardiovascular assessment. Nephrol. Dial. Transplant. 2010, 25, 3017–3025. [Google Scholar] [CrossRef] [PubMed]
- Calleros-Basilio, L.; Cortés, M.A.; García-Jerez, A.; Luengo-Rodríguez, A.; Orozco-Agudo, A.; Valdivielso, J.M.; Rodríguez-Puyol, D.; Rodríguez-Puyol, M. Quality Assurance of Samples and Processes in the Spanish Renal Research Network (REDinREN) Biobank. Biopreserv. Biobank. 2016, 14, 499–510. [Google Scholar] [CrossRef]
- Solé, X.; Guinó, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef]
- Barrett, J.C.; Fry, B.; Maller, J.D.M.J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef]
- Cunningham, F.; Achuthan, P.; Akanni, W.; Allen, J.; Amode, M.R.; Armean, I.M.; Bennett, R.; Bhai, J.; Billis, K.; Boddu, S.; et al. Ensembl 2019. Nucleic Acids Res. 2019, 47, D745–D751. [Google Scholar] [CrossRef] [PubMed]
- Go, A.; Chertow, G.; Fan, D.; McCulloch, C.; Hsu, C. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. ACC J. 2004, 13, 13. [Google Scholar]
- Thompson, S.; James, M.; Wiebe, N.; Hemmelgarn, B.; Manns, B.; Klarenbach, S.; Tonelli, M.; Network, F.T.A.K.D. Cause of Death in Patients with Reduced Kidney Function. J. Am. Soc. Nephrol. 2015, 26, 2504–2511. [Google Scholar] [CrossRef] [Green Version]
- Gracia, M.; Betriu, À.; Martínez-Alonso, M.; Arroyo, D.; Abajo, M.; Fernández, E.; Valdivielso, J.M. Predictors of Subclinical Atheromatosis Progression over 2 Years in Patients with Different Stages of CKD. Clin. J. Am. Soc. Nephrol. 2016, 11, 287–296. [Google Scholar] [CrossRef]
- Abajo, M.; Betriu, À.; Arroyo, D.; Gracia, M.; Del Pino, M.D.; Martínez, I.; Valdivielso, J.M.; Fernández, E. Mineral metabolism factors predict accelerated progression of common carotid intima-media thickness in chronic kidney disease: The NEFRONA study. Nephrol. Dial. Transplant. 2017, 32, 1882–1891. [Google Scholar] [CrossRef]
- Martín, M.; Valls, J.; Betriu, A.; Fernández, E.; Valdivielso, J.M. Association of serum phosphorus with subclinical atherosclerosis in chronic kidney disease. Sex makes a difference. Atherosclerosis. 2015, 241, 264–270. [Google Scholar]
- Lee, S.J.; Baek, S.E.; Jang, M.A.; Kim, C.D. Osteopontin plays a key role in vascular smooth muscle cell proliferation via EGFR-mediated activation of AP-1 and C/EBPβ pathways. Pharmacol. Res. 2016, 108, 1–8. [Google Scholar] [CrossRef]
- Li, J.-J.; Han, M.; Wen, J.-K.; Li, A.-Y. Osteopontin stimulates vascular smooth muscle cell migration by inducing FAK phosphorylation and ILK dephosphorylation. Biochem. Biophys. Commun. 2007, 356, 13–19. [Google Scholar] [CrossRef]
- Scatena, M.; Liaw, L.; Giachelli, C.M. Osteopontin: A multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 2302–2309. [Google Scholar] [CrossRef]
- Singh, M. Osteopontin: A novel inflammatory mediator of cardiovascular disease. Front. Biosci. 2007, 12, 214. [Google Scholar] [CrossRef] [PubMed]
- Gordin, D.; Panduru, N.M.; Thomas, M.C.; Bjerre, M.; Soro-Paavonen, A.; Tolonen, N.; Sandholm, N.; Flyvbjerg, A.; Harjutsalo, V.; Forsblom, C.; et al. Osteopontin Is a Strong Predictor of Incipient Diabetic Nephropathy, Cardiovascular Disease, and All-Cause Mortality in Patients with Type 1 Diabetes. Diabetes Care 2014, 37, 2593–2600. [Google Scholar] [CrossRef]
- Abdalrhim, A.D.; Marroush, T.S.; Austin, E.E.; Gersh, B.J.; Solak, N.; Rizvi, S.A.; Bailey, K.R.; Kullo, I.J. Plasma Osteopontin Levels and Adverse Cardiovascular Outcomes in the PEACE Trial. PLoS ONE 2016, 11, e0156965. [Google Scholar] [CrossRef] [PubMed]
- Carbone, F.; Rigamonti, F.; Burger, F.; Roth, A.; Bertolotto, M.; Spinella, G.; Pane, B.; Palombo, D.; Pende, A.; Bonaventura, A.; et al. Serum levels of osteopontin predict major adverse cardiovascular events in patients with severe carotid artery stenosis. Int. J. Cardiol. 2018, 255, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Golledge, J.; Muller, J.; Shephard, N.; Clancy, P.; Smallwood, L.; Moran, C.; Dear, A.E.; Palmer, L.J.; Norman, P.E. Association Between Osteopontin and Human Abdominal Aortic Aneurysm. Arter. Thromb. Vasc. Boil. 2007, 27, 655–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Diao, J.; Yue, X.; Zhong, J. Effects of ADIPOQ polymorphisms on individual susceptibility to coronary artery disease: A meta-analysis. Adipocyte 2019. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, M.; Moazeni-Roodi, A.; Ghavami, S. Association between CASP3 polymorphisms and overall cancer risk: A meta-analysis of case-control studies. J. Cell. Biochem. 2018, 120, 7199–7210. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.F.; Sang, J. Five zinc finger protein 350 single nucleotide polymorphisms and the risks of breast cancer: A meta-analysis. Oncotarget 2017, 8, 107273–107282. [Google Scholar] [CrossRef]
- Alcaraz-Quiles, J.; Titos, E.; Casulleras, M.; Pavesi, M.; López-Vicario, C.; Rius, B.; Lopategi, A.; de Gottardi, A.; Graziadei, I.; Gronbaek, H.; et al. Polymorphisms in the IL-1 gene cluster influence systemic inflammation in patients at risk for acute-on-chronic liver failure. Hepatology 2017, 65, 202–216. [Google Scholar] [CrossRef]
- Valls, J.; Cambray, S.; Pérez-Guallar, C.; Bozic, M.; Bermúdez-López, M.; Fernández, E.; Betriu, À.; Rodríguez, I.; Valdivielso, J.M. Association of Candidate Gene Polymorphisms with Chronic Kidney Disease: Results of a Case-Control Analysis in the Nefrona Cohort. Front. Genet. 2019, 10, 118. [Google Scholar] [CrossRef]
- Li, X.; Liu, K.; Pan, Y.; Zhang, J.; Lv, Q.; Hua, L.; Wang, Z.; Li, J.; Yin, C. Roles of Osteopontin Gene Polymorphism (rs1126616), Osteopontin Levels in Urine and Serum, and the Risk of Urolithiasis: A Meta-Analysis. BioMed Int. 2015, 2015, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Salimi, S.; Noora, M.; Nabizadeh, S.; Rezaei, M.; Shahraki, H.; Milad, M.-K.; Naghavi, A.; Farajian-Mashhadi, F.; Zakeri, Z.; Sandoughi, M. Association of the osteopontin rs1126616 polymorphism and a higher serum osteopontin level with lupus nephritis. Biomed. Rep. 2016, 4, 355–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavi, H.; Assayag, M.; Schwartz, A.; Arish, N.; Fridlender, Z.G.; Berkman, N. The association between osteopontin gene polymorphisms, osteopontin expression and sarcoidosis. PLoS ONE 2017, 12, e0171945. [Google Scholar] [CrossRef] [PubMed]
- MacArthur, J.; Bowler, E.; Cerezo, M.; Gil, L.; Hall, P.; Hastings, E.; Junkins, H.; McMahon, A.; Milano, A.; Morales, J.; et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017, 45, D896–D901. [Google Scholar] [CrossRef]
Variable | No CVE | CVE | p Value | ||
---|---|---|---|---|---|
n = 2609 | n = 206 | ||||
Age (years) | 59 (48;67) | 64.5 (58;70) | <0.001 | ||
Sex (Female) | 1056 (40.4) | 60 (29) | 0.001 | ||
Body mass index (kg/m2) | 27.6 (24.6;31) | 28.9 (25.7;32.12) | 0.005 | ||
Smoking (Yes) | 1481 (56.7) | 137 (66.5) | 0.006 | ||
Diabetes (Yes) | 546 (20.9) | 88 (42.7) | <0.001 | ||
Hypertension (Yes) | 2068 (79.2) | 191 (92.7) | <0.001 | ||
Dyslipemia (Yes) | 1551 (59.4) | 149 (72.3) | <0.001 | ||
Systolic blood pressure (mmHg) | 140 (21.3) | 148 (24.7) | <0.001 | ||
Dyastolic blood pressure (mmHg) | 81 (11) | 81 (13) | 0.556 | ||
Chronic kidney disease Stage | Control | 536 (20.5) | 13 (6.3) | <0.001 | |
Stage 3 | 819 (31.4) | 66 (32) | |||
Stage 4–5 | 684 (26.2) | 62 (30.1) | |||
Dialysis | 570 (21.8) | 65 (31.6) | |||
Presence of plaque at baseline | 1684 (64.5) | 186 (90.3) | <0.001 | ||
Total Cholesterol (mg/dL) | 182 (156.5;208) | 171 (141.2;207) | 0.017 | ||
HDL Cholesterol (mg/dL) | 48 (39;59] | 44 (35;52) | <0.001 | ||
LDL Cholesterol (mg/dL) | 105 (83;128) | 98 (72;128) | 0.042 | ||
Triglycerides (mg/dL) | 118 (86.2;166) | 138 (100;181) | <0.001 | ||
Glucose (mg/dL) | 96 (87;110) | 105 (91.6;139.2) | <0.001 | ||
Calcium (mg/dL) | 9.3 (8.8;9.5) | 9.3 (8.9;9.7) | 0.095 | ||
Phosphate (mg/dL) | 3.8 (3.3;4.4) | 4 (3.4;5) | 0.003 | ||
Sodium (mEq/L) | 140.6 (139;142) | 140 (138;142) | 0.015 | ||
Potassium (mEq/L) | 4.7 (4.37;5.1) | 4.9 (4.4;5.3) | <0.001 | ||
C-reactive protein (mg/L) | 4.2 (8.2) | 6.2 (12) | 0.001 | ||
ACR (mgAlb/gCreat) | ACR < 30 | 398 (34.3) | 20 (22.2) | 0.02 | |
ACR = 30–300 | 416 (35.9) | 32 (35.6) | |||
ACR > 300 | 346 (29.8) | 38 (42.2) | |||
25(OH) vitamin D (ng/mL) | 17.1 (7.8) | 14.6 (6.9) | <0.001 | ||
OPN (ng/mL) | 16.7 (9.3;33) | 22.6 (11.9;53.3) | <0.001 |
SNP (n) | Model | Genotype | NO CVE n (%) | CVE n (%) | Odds Ratio (95% CI) | p Value |
---|---|---|---|---|---|---|
rs1126616(2815) | Over dominant | CC-TT | 1512 (58) | 102 (49.5) | 1.00 | 0.019 |
CT | 1097 (42) | 104 (50.5) | 1.41 (1.06–1.87) * | |||
rs1126772(1613) | Dominant | AA | 903 (59.9) | 49 (46.2) | 1.00 | 0.006 |
AG-GG | 604 (40.1) | 57 (53.8) | 1.74 (1.17–2.58) * | |||
rs9138(2815) | Over dominant | AA-CC | 1549 (59.3) | 106 (51.5) | 1.00 | 0.028 |
AC | 1062 (40.7) | 100 (48.5) | 1.38 (1.04–1.83) * |
Variables | GENOTYPES | GENOTYPE | p Value | ||
---|---|---|---|---|---|
CC + TT | CT | ||||
n = 1555 | n = 1168 | ||||
Age (years) | 56.36(12.48) | 57.96(12.48) | 0.219 | ||
Sex (Female) | 619(39.8) | 457(39.1) | 0.719 | ||
Body mass index (kg/m2) | 28.12(5) | 28.38(5.1) | 0.186 | ||
Smoking (Yes) | 886(57) | 689(59) | 0.293 | ||
Diabetes (Yes) | 357(23) | 253(21) | 0.442 | ||
Hypertension (Yes) | 1225(78.8) | 953(81.6) | 0.069 | ||
Dyslipemia | 946(60.8) | 703(60.2) | 0.732 | ||
Systolic blood pressure (mmHg) | 140.99(21.47) | 141.17(21.71) | 0.823 | ||
Dyastolic blood pressure (mmHg) | 81.14(11.39) | 80.93(11.34) | 0.627 | ||
Chronic kidney disease Stage | Control | 334(21.5) | 205(17.6) | 0.058 | |
Stage 3 | 485(31.2) | 382(32.7) | |||
Stage 4–5 | 413(26.6) | 310(26.5) | |||
Dialysis | 323(20.8) | 271(23.2) | |||
Cardiovascular Events | 100(6.4) | 101(8.6) | 0.029 | ||
Any basal plaque (yes) | 1048(67.4) | 785(67.2) | 0.918 | ||
Total Cholesterol (mg/dL) | 183.71(40,44) | 182.66(38.73) | 0.5 | ||
HDL Cholesterol (mg/dL) | 50.45(15.49) | 50.12(15.41) | 0.606 | ||
LDL Cholesterol (mg/dL) | 107.32(35.21) | 106.42(34.08) | 0.534 | ||
Triglycerides (mg/dL) | 136.58(76.54) | 140.85(81.53) | 0.17 | ||
C-reactive protein | 4.33(8.55) | 4.34(8.26) | 0.964 | ||
ACR (mgAlb/gCreat) | ACR < 30 | 239 (34.9) | 168 (31.2) | 0.390 | |
ACR = 30–300 | 242 (35.3) | 201 (37.3) | |||
ACR > 300 | 204 (29.8) | 170 (31.5) | |||
Glucose (mg/dL) | 106.76(39.22) | 105.91(34.23) | 0.55 | ||
Calcium (mg/dL) | 9.32(0.58) | 9.35(0.55) | 0.18 | ||
Phosphate (mg/dL) | 3.97(1.06) | 3.96(1.05) | 0.768 | ||
Sodium (mEq/L) | 140.36(2.97) | 140.51(2.98) | 0.176 | ||
Potassium (mEq/L) | 4.75(0.6) | 4.74(0.56) | 0.642 |
Variables | HR (95% CI) | p Value |
---|---|---|
Age (years) | 1.020 (1.003–1.038) | 0.024 |
Diabetes | 1.705(1.23–2.36) | 0.001 |
HDL Cholesterol (mg/dL) | 0.983(0.972–0.995) | 0.005 |
Phosphate (mg/dL) | 1.387(1.218–1.579) | <0.001 |
25(OH) vitamin D (ng/mL) | 0.95(0.924–0.976) | <0.001 |
C-reactive protein | 1.013(1.001–1.024) | 0.037 |
Plaque presence | 2.555(1.461–4.468) | 0.001 |
rs1126616 | 1.462(1.067–2.004) | 0.018 |
Variables | HR (95% CI) | p Value |
---|---|---|
Diabetes | 1.913(1.196–3.060) | 0.007 |
HDL Cholesterol (mg/dL) | 0.975(0.957–0.994) | 0.008 |
Plaque presence | 2.438(1.265–4.697) | 0.008 |
C-reactive protein | 1.019(1.005–1.034) | 0.01 |
rs1126616 | 1.626(1.026–2.576) | 0.039 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cambray, S.; Galimudi, R.K.; Bozic, M.; Bermúdez-López, M.; Rodríguez, I.; Valdivielso, J.M. The rs1126616 Single Nucleotide Polymorphism of the Osteopontin Gene Is Independently Associated with Cardiovascular Events in a Chronic Kidney Disease Cohort. J. Clin. Med. 2019, 8, 592. https://doi.org/10.3390/jcm8050592
Cambray S, Galimudi RK, Bozic M, Bermúdez-López M, Rodríguez I, Valdivielso JM. The rs1126616 Single Nucleotide Polymorphism of the Osteopontin Gene Is Independently Associated with Cardiovascular Events in a Chronic Kidney Disease Cohort. Journal of Clinical Medicine. 2019; 8(5):592. https://doi.org/10.3390/jcm8050592
Chicago/Turabian StyleCambray, Serafí, Rajesh Kumar Galimudi, Milica Bozic, Marcelino Bermúdez-López, Isabel Rodríguez, and José M. Valdivielso. 2019. "The rs1126616 Single Nucleotide Polymorphism of the Osteopontin Gene Is Independently Associated with Cardiovascular Events in a Chronic Kidney Disease Cohort" Journal of Clinical Medicine 8, no. 5: 592. https://doi.org/10.3390/jcm8050592
APA StyleCambray, S., Galimudi, R. K., Bozic, M., Bermúdez-López, M., Rodríguez, I., & Valdivielso, J. M. (2019). The rs1126616 Single Nucleotide Polymorphism of the Osteopontin Gene Is Independently Associated with Cardiovascular Events in a Chronic Kidney Disease Cohort. Journal of Clinical Medicine, 8(5), 592. https://doi.org/10.3390/jcm8050592