Systematic Review of Capnography with Mask Ventilation during Cardiopulmonary Resuscitation Maneuvers
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
6. Recommendations for Practice
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Monsieurs, K.G.; Nolan, J.P.; Bossaert, L.L.; Greif, R.; Maconochie, I.K.; Nikolaou, N.I.; Perkins, G.D.; Soar, J.; Truhlář, A.; Wyllie, J.; et al. European Resuscitation Council Guidelines for Resuscitation 2015. Section 1. Executive summary. Resuscitation 2015, 95, 1–80. [Google Scholar] [CrossRef] [PubMed]
- Baskett, P.J.F.; Bossaert, L.; Carli, P.; Chamberlain, D.; Dick, W.; Nolan, J.P.; Parr, M.J.A. Guidelines for the advanced management of the airway and ventilation during resuscitation. A statement by the Airway and Ventilation Management of the Working Group of the European Resuscitation Council. Resuscitation 1996, 31, 201–230. [Google Scholar] [CrossRef]
- Deakin, C.D.; Nolan, J.P.; Soar, J.; Sunde, K.; Koster, R.W.; Smith, G.B.; Perkins, G.D. European Resuscitation Council Guidelines for Resuscitation 2010 Section 4. Adult advanced life support. Resuscitation 2010, 81, 1305–1352. [Google Scholar] [CrossRef] [PubMed]
- Callaway, C.W.; Soar, J.; Aibiki, M.; Bottiger, B.W.; Brooks, S.C.; Deakin, C.D.; Donnino, M.W.; Drajer, S.; Kloeck, W.; Morley, P.T.; et al. Part 4: Advanced Life Support: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 2015, 132, S84–S145. [Google Scholar] [CrossRef] [PubMed]
- Baskett, P.J.F.; Bossaert, L.; Carli, P.; Chamberlain, D.; Dick, W.; Nolan, P.; Parr, M.J.A. Guidelines for the basic management of the airway and ventilation during resuscitation. Resuscitation 1996, 31, 187–200. [Google Scholar] [CrossRef]
- ILCOR, I.L.C. on R. Part 4: Advanced life support. Resuscitation 2005, 67, 213–247. [Google Scholar]
- Nicolás Arriaza, H.; María Mercedes Aguirre, C. Monitorización de la calidad de la reanimación cardiopulmonar. Rev. Chil. Anest. 2012, 41, 42–45. [Google Scholar]
- Davis, D.P. Quantitative capnometry as a critical resuscitation tool. J. Trauma Nurs. Off. J. Soc. Trauma Nurses 2005, 12, 40–42. [Google Scholar] [CrossRef]
- Díez-Picazo, L.D.; Barrado-Muñoz, L.; Blanco-Hermo, P.; Barroso-Matilla, S.; Espinosa Ramírez, S. La capnografía en los servicios de emergencia médica. Semer. Med. Fam. 2009, 35, 138–143. [Google Scholar] [CrossRef]
- Soleimanpour, H.; Gholipouri, C.; Golzari, S.E.; Rahmani, F.; Sabahi, M. Capnography in the Emergency Department. Available online: http://www.omicsgroup.org/journals/capnography-in-the-emergency-department -2165-7548.1000e123.pdf (accessed on 14 February 2016).
- Hawkes, G.A.; Kelleher, J.; Ryan, C.A.; Dempsey, E.M. A review of carbon dioxide monitoring in preterm newborns in the delivery room. Resuscitation 2014, 85, 1315–1319. [Google Scholar] [CrossRef]
- Bhende, M.S.; LaCovey, D.C. End-tidal carbon dioxide monitoring in the prehospital setting. Prehospital Emerg. Care Off. J. Natl. Assoc. EMS Physicians Natl. Assoc. State EMS Dir. 2001, 5, 208–213. [Google Scholar]
- Kodali, B.S.; Urman, R.D. Capnography during cardiopulmonary resuscitation: Current evidence and future directions. J. Emerg. Trauma. Shock 2014, 7, 332–340. [Google Scholar]
- Pearce, A.K.; Davis, D.P.; Minokadeh, A.; Sell, R.E. Initial end-tidal carbon dioxide as a prognostic indicator for inpatient PEA arrest. Resuscitation 2015, 92, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Soar, J.; Nolan, J.P.; Böttiger, B.W.; Perkins, G.D.; Lott, C.; Carli, P.; Pellis, T.; Sandroni, C.; Skrifvars, M.B.; Smith, G.B.; et al. European Resuscitation Council Guidelines for Resuscitation 2015: Section 3. Adult advanced life support. Resuscitation 2015, 95, 100–147. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group, P.-P. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- López de Argumedo, M.; Reviriego, E.; Andrío, E.; Rico, R.; Sobradillo, N.; Hurtado de Saracho, I. Revisión externa y validación de instrumentos metodológicos para la Lectura Crítica y la síntesis de la evidencia científica. Madrid: Plan Nacional para el SNS del MSC. Servicio de Evaluación de Tecnologías Sanitarias del País Vasco (Osteba); 2006. Inform. Available online: http://www.lecturacritica.com/es/acerca.php (accessed on 9 April 2017).
- Nakatani, K.; Yukioka, H.; Fujimori, M.; Maeda, C.; Noguchi, H.; Ishihara, S.; Yamanaka, I.; Tase, C. Utility of colorimetric end-tidal carbon dioxide detector for monitoring during prehospital cardiopulmonary resuscitation. Am. J. Emerg. Med. 1999, 17, 203–206. [Google Scholar] [CrossRef]
- Pahuja, A.; Hunt, K.; Murthy, V.; Bhat, P.; Bhat, R.; Milner, A.D.; Greenough, A. Relationship of resuscitation, respiratory function monitoring data and outcomes in preterm infants. Eur. J. Pediatr. 2018, 177, 1617–1624. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, G.A.; Finn, D.; Kenosi, M.; Livingstone, V.; O’Toole, J.M.; Boylan, G.B.; O’Halloran, K.D.; Ryan, A.C.; Dempsey, E.M. A Randomized Controlled Trial of End-Tidal Carbon Dioxide Detection of Preterm Infants in the Delivery Room. J. Pediatr. 2017, 182, 74–78. [Google Scholar] [CrossRef]
- Hawkes, G.A.; Kenosi, M.; Finn, D.; O’Toole, J.M.; O’Halloran, K.D.; Boylan, G.B.; Ryan, A.C.; Dempsey, E.M. Delivery room end tidal CO2 monitoring in preterm infants <32 weeks. Arch. Dis. Child. Fetal Neonatal Ed. 2016, 101, F62–F65. [Google Scholar]
- Ngan, A.Y.; Cheung, P.-Y.; Hudson-Mason, A.; O’Reilly, M.; van Os, S.; Kumar, M.; Aziz, K.; Schmolzer, G.M. Using exhaled CO2 to guide initial respiratory support at birth: A randomised controlled trial. Arch. Dis. Child. 2017, 102, F525–F531. [Google Scholar] [CrossRef]
- Thallinger, M.; Ersdal, H.L.; Francis, F.; Yeconia, A.; Mduma, E.; Kidanto, H.; Linde, J.E.; Eilevstjønn, J.; Gunnes, N.; Størdal, K. Born not breathing: A randomised trial comparing two self-inflating bag-masks during newborn resuscitation in Tanzania. Resuscitation 2017, 116, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Murthy, V.; D’Costa, W.; Shah, R.; Fox, G.F.; Campbell, M.E.; Milner, A.D.; Greenough, A. Prematurely born infants’ response to resuscitation via an endotracheal tube or a face mask. Early Hum. Dev. 2015, 91, 235–238. [Google Scholar] [CrossRef]
- Mizumoto, H.; Iki, Y.; Yamashita, S.; Hata, D. Expiratory CO2 as the first sign of successful ventilation during neonatal resuscitation. Pediatr. Int. 2015, 57, 186–188. [Google Scholar] [CrossRef]
- Blank, D.; Rich, W.; Leone, T.; Garey, D.; Finer, N. Pedi-cap color change precedes a significant increase in heart rate during neonatal resuscitation. Resuscitation 2014, 85, 1568–1572. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.Y.; Rich, W.; Finer, N.N.; Leone, T.A. Quantitative end-tidal carbon dioxide monitoring in the delivery room: A randomized controlled trial. J. Pediatr. 2013, 163, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Hooper, S.B.; Fouras, A.; Siew, M.L.; Wallace, M.J.; Kitchen, M.J.; Pas, A.B. t.; Klingenberg, C.; Lewis, R.A.; Davis, P.G.; Morley, C.J.; et al. Expired CO2 Levels Indicate Degree of Lung Aeration at Birth. PLoS ONE 2013, 8, e70895. [Google Scholar] [CrossRef]
- Murthy, V.; O’Rourke-Potocki, A.; Dattani, N.; Fox, G.F.; Campbell, M.E.; Milner, A.D.; Greenough, A. End tidal carbon dioxide levels during the resuscitation of prematurely born infants. Early Hum. Dev. 2012, 88, 783–787. [Google Scholar] [CrossRef] [PubMed]
- Finer, N.N.; Rich, W.; Wang, C.; Leone, T. Airway Obstruction During Mask Ventilation of Very Low Birth Weight Infants During Neonatal Resuscitation. Pediatrics 2009, 123, 865–869. [Google Scholar] [CrossRef] [PubMed]
- Palme-Kilander, C.; Tunell, R. Pulmonary gas exchange during facemask ventilation immediately after birth. Arch. Dis. Child. 1993, 68, 11–16. [Google Scholar] [CrossRef]
- Leturiondo, M.; Ruiz de Gauna, S.; Ruiz, J.M.; Julio Gutiérrez, J.; Leturiondo, L.A.; González-Otero, D.M.; Russell, J.K.; Zive, D.; Daya, M. Influence of chest compression artefact on capnogram-based ventilation detection during out-of-hospital cardiopulmonary resuscitation. Resuscitation 2018, 124, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Davis, D.P.; Sell, R.E.; Wilkes, N.; Sarno, R.; Husa, R.D.; Castillo, E.M.; Lawrence, B.; Fisher, R.; Brainard, C.; Dunford, J.V. Electrical and mechanical recovery of cardiac function following out-of-hospital cardiac arrest. Resuscitation 2013, 84, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Hess, D.; Eitel, D. Monitoring during resuscitation. Respir. Care 1992, 37, 739–768. [Google Scholar] [PubMed]
Author/year | Study Design | Total N/BVM Ventilated N | Location/Cause of Cardiac Arrest | Professional Assisting | Type of Capnography | Outcome | Time of End-tidal CO2 Measurement | Evidence Level USPSTF |
---|---|---|---|---|---|---|---|---|
Leturiondo et al. 2017 | Observational retrospective | 232/7 | Out-of-hospital cardiac arrest | Paramedics | Microstream | Distortion of capnogram by chest compression | 20 min | III |
Pearce et al. 2015 | Observational retrospective | 50/NK | Intra-hospital cardiac arrest by PEA/asystole | A multidisciplinary intra-hospital cardiac arrest team | Mainstream | ROSC and survival at discharge from hospital | Continuous during the first 10 min of cardiac arrest | Not classifiable * |
Davis et al. 2013 | Observational prospective | 145/NK | Out-of-hospital cardiac arrest | Paramedics | Did not specify | ROSC and correlation with heart rate values | Before, during, and after pauses to check pulse: every 2 min | Not classifiable * |
Nakatani et al. 1999 | Observational prospective multicentric | 121/48 | Non-traumatic out-of-hospital cardiac arrest | Emergency technicians | Colorimetric | ROSC, survival at admission | 7 to 15 min | II-3 |
Author/year | Study Design | Total N/Mask Ventilated | Gestational Age | Professional Assisting | Type of Capnography | Outcome | Time of End-tidal CO2 Measurement | Evidence Level USPSTF |
---|---|---|---|---|---|---|---|---|
Pahuja et al. 2018 | Observational retrospective | 70 | Preterm | Clinicians | Mainstream | Incidence of intraventricular hemorrhage and bronchopulmonary dysplasia | Continuous during resuscitation | III |
Hawkes et al. 2017 | Observational prospective | 59 | Preterm | Physicians | Colorimetric and Microstream | Normocarbia within the first hour of life. | Continuous during delivery room ventilation | I |
Ngan et al. 2017 | Randomized Clinical Trial | 162 | Preterm | Multidisciplinary delivery team | Mainstream | During sustained inflation or positive pressure ventilation | Continuous, during first 60 s | I |
Thallinger et al. 2017 | Randomized Clinical Trial | 328 | Term | Midwives and nurse anesthetists | Microstream | Tidal volumes and mask leak. Airway pressures and tidal volume comparing 2 devices | 10 min | I |
Hawkeset al. 2016 | Observational prospective | 35/29 | Preterm | Unspecified | Microstream | Feasibility of EtCO2 monitoring, normocapnia on admission neonatal intensive care unit | Continuous, during first 10 min | III |
Murthy et al. 2015 | Observational prospective | 35/15 | Preterm | Unspecified | Mainstream | Effectiveness active inflation, tidal volume and pressures. | During 5 first inflations | III |
Mizumoto et al. 2015 | Observational prospective | 15/7 | Preterm | Pediatricians and nurses | Mainstream | Increase of heart rate and quality of ventilation | Up to 3 min from delivery. | III |
Blank et al. 2014 | Observational retrospective | 41 | 78% preterm | Multidisciplinary delivery team | Colorimetric | Increase of heart rate | When detector turns to yellow (EtCO2 > 15 mmHg) | III |
Kong et al. 2013 | Randomized Clinical Trial | 48 | Preterm | Multidisciplinary delivery team | Mainstream and colorimetric | Correlation PCO2 levels in blood gas | Average from last 5 ventilations | I |
Hooperet al. 2013 | Observational prospective | 10 | Preterm | Multidisciplinary delivery team | Mainstream | Increase of heart rate and quality of ventilation, relationship with tidal volume | Continuous, not specified duration | III |
Murthy et al. 2012 | Observational prospective | 40 | Preterm | Unspecified | Mainstream | First respiratory effort and tidal volume | Since first inspiratory effort | III |
Fineret al. 2009 | Observational retrospective | 24 | Preterm | Multidisciplinary delivery team | Colorimetric | Determining if airway was patent | Continuous, not specified duration | III |
Palme-Kilander and Turner. 1993 | Observational prospective | 30/28 | Term | Unspecified | Beckman Liston Becker II (volumetric) | Increase of heart rate and quality of ventilation | Every 15 s. Up to 5 min | III |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cereceda-Sánchez, F.J.; Molina-Mula, J. Systematic Review of Capnography with Mask Ventilation during Cardiopulmonary Resuscitation Maneuvers. J. Clin. Med. 2019, 8, 358. https://doi.org/10.3390/jcm8030358
Cereceda-Sánchez FJ, Molina-Mula J. Systematic Review of Capnography with Mask Ventilation during Cardiopulmonary Resuscitation Maneuvers. Journal of Clinical Medicine. 2019; 8(3):358. https://doi.org/10.3390/jcm8030358
Chicago/Turabian StyleCereceda-Sánchez, Francisco José, and Jesús Molina-Mula. 2019. "Systematic Review of Capnography with Mask Ventilation during Cardiopulmonary Resuscitation Maneuvers" Journal of Clinical Medicine 8, no. 3: 358. https://doi.org/10.3390/jcm8030358
APA StyleCereceda-Sánchez, F. J., & Molina-Mula, J. (2019). Systematic Review of Capnography with Mask Ventilation during Cardiopulmonary Resuscitation Maneuvers. Journal of Clinical Medicine, 8(3), 358. https://doi.org/10.3390/jcm8030358