Complications after Chest Tube Removal and Reinterventions in Patients with Digital Drainage Systems
Abstract
1. Introduction
2. Patients and Methods
Statistical Analysis
3. Results
4. Discussion
Author Contributions
Conflicts of Interest
References
- Dernevik, L.; Belboul, A.; Rådberg, G. Initial experience with the world’s first digital drainage system. The benefits of recording air leaks with graphic representation. Eur. J. Cardiothorac. Surg. 2007, 31, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Varela, G.; Jiménez, M.F.; Novoa, N.M.; Aranda, J.L. Postoperative chest tube management: Measuring air leak using an electronic device decreases variability in the clinical practice. Eur. J. Cardiothorac. Surg. 2009, 35, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Cerfolio, R.J.; Varela, G.; Brunelli, A. Digital and smart chest drainage systems to monitor air leaks: The birth of a new era? Thorac. Surg. Clin. 2010, 20, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Mier, J.M.; Fibla, J.J.; Molins, L. The benefits of digital thoracic drainage system for outpatients undergoing pulmonary resection surgery. Rev. Port. Pneumol. 2011, 17, 225–227. [Google Scholar] [CrossRef] [PubMed]
- Brunelli, A.; Cassivi, S.D.; Salati, M.; Fibla, J.; Pompili, C.; Halgren, L.A.; Wigle, D.A.; Di Nunzio, L. Digital measurements of air leak flow and intrapleural pressures in the immediate postoperative period predict risk of prolonged air leak after pulmonary lobectomy. Eur. J. Cardiothorac. Surg. 2011, 39, 584–588. [Google Scholar] [CrossRef]
- Pompili, C.; Brunelli, A.; Salati, M.; Refai, M.; Sabbatini, A. Impact of the learning curve in the use of a novel electronic chest drainage system after pulmonary lobectomy: A case-matched analysis on the duration of chest tube usage. Interact. Cardiovasc. Thorac. Surg. 2011, 13, 490–493. [Google Scholar] [CrossRef][Green Version]
- Brunelli, A.; Salati, M.; Refai, M.; Di Nunzio, L.; Xiumé, F.; Sabbatini, A. Evaluation of a new chest tube removal protocol using digital air leak monitoring after lobectomy: A prospective randomised trial. Eur. J. Cardiothorac. Surg. 2010, 37, 56–60. [Google Scholar] [CrossRef]
- Pompili, C.; Detterbeck, F.; Papagiannopoulos, K.; Sihoe, A.; Vachlas, K.; Maxfield, M.W.; Lim, H.C.; Brunelli, A. Multicenter international randomized comparison of objective and subjective outcomes between electronic and traditional chest drainage systems. Ann. Thorac. Surg. 2014, 98, 490–496. [Google Scholar] [CrossRef]
- Zhou, J.; Lyu, M.; Chen, N.; Wang, Z.; Hai, Y.; Hao, J.; Liu, L. Digital chest drainage is better than traditional chest drainage following pulmonary surgery: A meta-analysis. Eur. J. Cardiothorac. Surg. 2018, 54, 635–643. [Google Scholar] [CrossRef]
- Pompili, C.; Xiumè, F.; Hristova, R.; Salati, M.; Refai, M.; Milton, R.; Brunelli, A. Regulated drainage reduces the incidence of recurrence after uniportal video-assisted thoracoscopic bullectomy for primary spontaneous pneumothorax: A propensity case-matched comparison of regulated and unregulated drainage. Eur. J. Cardiothorac. Surg. 2016, 49, 1127–1131. [Google Scholar] [CrossRef]
- Baringer, K.; Talbert, S. Chest drainage systems and management of air leaks after a pulmonary resection. J. Thorac. Dis. 2017, 9, 5399–5403. [Google Scholar] [CrossRef] [PubMed]
- Plourde, M.; Jad, A.; Dorn, P.; Harris, K.; Mujoomdar, A.; Henteleff, H.; French, D.; Bethune, D. Digital Air Leak Monitoring for Lung Resection Patients: A Randomized Controlled Clinical Trial. Ann. Thorac. Surg. 2018, 106, 1628–1632. [Google Scholar] [CrossRef] [PubMed]
- Cerfolio, R.J.; Bryant, A.S. The benefits of continuous and digital air leak assessment after elective pulmonary resection: A prospective study. Ann. Thorac. Surg. 2008, 86, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Lijkendijk, M.; Licht, P.B.; Neckelmann, K. Electronic versus traditional chest tube drainage following lobectomy: A randomized trial. Eur. J. Cardiothorac. Surg. 2015, 48, 893–898. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, S.; McGuire, A.L.; Maghera, S.; Sundaresan, S.R.; Seely, A.J.; Maziak, D.E.; Shamji, F.M.; Villeneuve, P.J. Randomized trial of digital versus analog pleural drainage in patients with or without a pulmonary air leak after lung resection. J. Thorac. Cardiovasc. Surg. 2015, 150, 1243–1249. [Google Scholar] [CrossRef]
- Lijkendijk, M.; Licht, P.B.; Neckelmann, K. The Influence of Suction on Chest Drain Duration After Lobectomy Using Electronic Chest Drainage. Ann. Thorac. Surg. 2019, 107, 1621–1625. [Google Scholar] [CrossRef]
- Holbek, B.L.; Christensen, M.; Hansen, H.J.; Kehlet, H.; Petersen, R.H. The effects of low suction on digital drainage devices after lobectomy using video-assisted thoracoscopic surgery: A randomized controlled trial. Eur. J. Cardiothorac. Surg. 2019, 55, 673–681. [Google Scholar] [CrossRef]
- Cerfolio, R.J.; Bryant, A.S.; Maniscalco, L.M. Management of subcutaneous emphysema after pulmonary resection. Ann. Thorac. Surg. 2008, 85, 1759–1763. [Google Scholar] [CrossRef]
- Aghajanzadeh, M.; Dehnadi, A.; Ebrahimi, H.; Karkan, M.F.; Jahromi, S.K.; Maafi, A.A.; Aghajanzadeh, G. Classification and management of subcutaneous emphysema: A 10-Year experience. Indian J. Surg. 2015, 77, 673–677. [Google Scholar] [CrossRef]
- Cerfolio, R.J.; Bass, C.S.; Pask, A.H.; Katholi, C.R. Predictors and treatment of persistant air leaks. Ann. Thorac. Surg. 2002, 73, 1727–1730. [Google Scholar] [CrossRef]
- Gaunt, A.; Martin-Ucar, A.E.; Beggs, L.; Beggs, D.; Black, E.A.; Duffy, J.P. Residual apical space following surgery for pneumothorax increases the risk of recurrence. Eur. J. Cardiothorac. Surg. 2008, 34, 169–173. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Brunelli, A.; Salati, M.; Pompili, C.; Gentili, P.; Sabbatini, A. Intraoperative air leak measured after lobectomy is associated with postoperative duration of air leak. Eur. J. Cardiothorac. Surg. 2017, 52, 963–968. [Google Scholar] [CrossRef] [PubMed]
Number (%) | Total (n = 497) | Air Leak-Related Complications (n = 175) | No Air Leak-Related Complications (n = 322) | p Value |
---|---|---|---|---|
Age (years, mean ± SD) | 59.07 ± 15.13 | 60.81 ± 13.96 | 58.12 ± 15.67 | 0.050 |
Gender | 0.012 | |||
Male | 232 (46.7) | 95 (54.3) | 137 (42.4) | |
Female | 265 (53.3) | 80 (45.7) | 185 (57.5) | |
BMI (Kg/m2, mean ± SD) | 23.71 ± 3.29 | 23.74 ± 3.50 | 23.70 ± 3.18 | 0.831 |
Positive smoking history | 127 (25.6) | 65 (37.1) | 62 (19.3) | <0.001 |
Previous chest surgery history | 74 (14.9) | 34 (19.4) | 40 (12.4) | 0.036 |
FEV1 (%, mean ± SD) | 94.36 ± 18.12 | 91.63 ± 19.83 | 95.84 ± 16.97 | 0.008 |
Normal FEV1 (≥80%) | 401 (80.7) | 132 (75.4) | 269 (83.5) | 0.029 |
DLCO (%, mean ± SD) | 68.03 ± 15.71 | 67.36 ± 15.11 | 68.39 ± 16.04 | 0.559 |
Normal DLCO (≥80%) | 115 (23.1) | 37 (21.1) | 78 (24.2) | 0.437 |
Surgical approach | <0.001 | |||
Single port VATS | 286 (57.5) | 79 (45.1) | 207 (64.3) | |
Multi-port VATS | 197 (39.6) | 90 (51.4) | 107 (33.2) | |
Open thoracotomy | 14 (2.8) | 6 (3.4) | 8 (2.5) | |
Lesion location * | ||||
RUL | 184 (37.0) | 71 (40.6) | 113 (35.1) | 0.227 |
RML | 85 (17.1) | 27 (15.4) | 58 (18.0) | 0.465 |
RLL | 140 (28.2) | 56 (32.0) | 84 (26.1) | 0.162 |
LUL | 141 (28.4) | 49 (28.0) | 92 (28.6) | 0.893 |
LLL | 103 (20.7) | 33 (18.9) | 70 (21.7) | 0.449 |
Extent of resection | <0.001 | |||
Wedge resection | 233 (46.9) | 68 (38.9) | 165 (51.2) | |
Segmentectomy | 63 (12.7) | 15 (8.6) | 48 (14.9) | |
Lobectomy | 200 (40.2) | 92 (52.6) | 108 (33.5) | |
Bilobectomy | 1 (0.2) | 0 | 1 (0.3) | |
Presence of pleural adhesion | 51 (10.3) | 20 (11.4) | 31 (9.6) | 0.527 |
Size of drainage tube (Fr.) | <0.001 | |||
16 | 211 (42.5) | 42 (24) | 169 (52.5) | |
20 | 99 (19.9) | 39 (22.3) | 60 (18.6) | |
24 | 86 (17.3) | 39 (22.3) | 47 (14.6) | |
28 | 101 (20.3) | 55 (31.4) | 46 (14.3) | |
Suction pressure (cmH2O) | 0.001 | |||
≤−10 | 68 (13.7) | 36 (20.6) | 32 (9.9) | |
>−10 | 429 (86.3) | 139 (79.4) | 290 (90.1) | |
Presence of initial air leak | 151 (30.4) | 77 (44) | 74 (23) | <0.001 |
Duration of chest drainage (d, mean ± SD) | 4.9 ± 4.4 | 6.55 ± 5.6 | 4.05 ± 3.2 | <0.001 |
Fluid amount on removal day (mL, mean ± SD) | 101.6 ± 91.6 | 109.5 ± 93.3 | 97.3 ± 90.5 | 0.075 |
Diagnosis | 0.020 | |||
Primary lung cancer | 334 (67.2) | 131 (74.9) | 203 (63) | |
Metastatic tumor | 98 (19.7) | 24 (13.7) | 74 (23) | |
Benign lesion | 65 (13.1) | 20 (11.4) | 45 (14) |
Number (%) | Reintervention (n = 25) | No Reintervention (n = 472) | p Value |
---|---|---|---|
Age (years, mean ± SD) | 64.2 ± 11.26 | 58.80 ± 15.27 | 0.057 |
Gender | 0.075 | ||
Male | 16 (64.0) | 216 (45.8) | |
Female | 9 (36.0) | 256 (54.2) | |
BMI (Kg/m2, mean ± SD) | 22.57 ± 2.92 | 23.77 ± 3.30 | 0.118 |
Positive smoking history | 12 (48) | 115 (24.4) | 0.008 |
Previous chest surgery history | 3 (12) | 71 (15) | 1.000 |
FEV1 (%, mean ± SD) | 88.04 ± 22.54 | 94.69 ± 17.82 | 0.146 |
Normal FEV1 (≥80%) | 17 (68.0) | 384 (81.4) | 0.117 |
DLCO (%, mean ± SD) | 65.44 ± 17.27 | 68.17 ± 15.63 | 0.398 |
Normal DLCO (≥80%) | 6 (24) | 109 (23.1) | 0.566 |
Surgical approach | 0.510 | ||
Single port VATS | 13 (52) | 273 (57.8) | |
Multi-port VATS | 12 (48) | 185 (39.2) | |
Open thoracotomy | 0 | 14 (3) | |
Lesion location * | |||
RUL | 11 (44.0) | 173 (36.7) | 0.458 |
RML | 7 (28.0) | 78 (16.5) | 0.168 |
RLL | 10 (40.0) | 130 (27.5) | 0.177 |
LUL | 5 (20.0) | 136 (29) | 0.341 |
LLL | 4 (16.0) | 99 (21.0) | 0.550 |
Extent of resection | 0.027 | ||
Wedge resection | 5 (20.0) | 228 (48.3) | |
Segmentectomy | 3 (12.0) | 60 (12.7) | |
Lobectomy | 17 (68.0) | 183 (38.8) | |
Bilobectomy | 0 | 1 (0.2) | |
Presence of pleural adhesion | 2 (8.0) | 49 (10.4) | 1.000 |
Suction pressure (cmH2O) | 0.013 | ||
≤−10 | 8 (32) | 60 (12.7) | |
>−10 | 17 (68) | 412 (87.3) | |
Size of drainage tube (Fr.) | 0.220 | ||
16 | 6 (24.0) | 205 (43.4) | |
20 | 6 (24.0) | 93 (19.7) | |
24 | 6 (24.0) | 80 (16.9) | |
28 | 7 (28.0) | 94 (19.9) | |
Presence of initial air leak | 18 (72.0) | 133 (28.2) | <0.001 |
Duration of chest drainage (d, mean ± SD) | 12.16 ± 9.52 | 4.54 ± 3.58 | <0.001 |
Fluid amount on removal day (mL, mean ± SD) | 115.84 ± 91.34 | 100.82 ± 91.65 | 0.439 |
Diagnosis | 0.098 | ||
Primary lung cancer | 21 (84.0) | 313 (66.3) | |
Metastatic tumor | 1 (4.0) | 97 (20.6) | |
Benign lesion | 3 (12.0) | 62 (13.1) |
Variables | Odds Ratio (95% Confidence Interval) | p Value |
---|---|---|
Air leak-related complications after pleural drainage tube removal | ||
Previous chest surgery history | 2.031 (1.144–3.605) | 0.016 |
Size of drainage tube (16 Fr.) | 0.483 (0.270–0.865) | 0.014 |
Presence of initial air leaks | 1.695 (1.088–2.641) | 0.020 |
Chest drainage more than five days | 2.178 (1.319–3.596) | 0.002 |
Reinterventions after pleural drainage tube removal | ||
Presence of initial air leaks | 4.342 (1.714–11.001) | 0.002 |
Chest drainage more than five days | 2.991 (1.005–8.905) | 0.049 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-Y.; Hsu, P.-K.; Huang, C.-S.; Wu, Y.-C.; Hsu, H.-S. Complications after Chest Tube Removal and Reinterventions in Patients with Digital Drainage Systems. J. Clin. Med. 2019, 8, 2092. https://doi.org/10.3390/jcm8122092
Lee Y-Y, Hsu P-K, Huang C-S, Wu Y-C, Hsu H-S. Complications after Chest Tube Removal and Reinterventions in Patients with Digital Drainage Systems. Journal of Clinical Medicine. 2019; 8(12):2092. https://doi.org/10.3390/jcm8122092
Chicago/Turabian StyleLee, Yi-Ying, Po-Kuei Hsu, Chien-Sheng Huang, Yu-Chung Wu, and Han-Shui Hsu. 2019. "Complications after Chest Tube Removal and Reinterventions in Patients with Digital Drainage Systems" Journal of Clinical Medicine 8, no. 12: 2092. https://doi.org/10.3390/jcm8122092
APA StyleLee, Y.-Y., Hsu, P.-K., Huang, C.-S., Wu, Y.-C., & Hsu, H.-S. (2019). Complications after Chest Tube Removal and Reinterventions in Patients with Digital Drainage Systems. Journal of Clinical Medicine, 8(12), 2092. https://doi.org/10.3390/jcm8122092