Comparative Analysis of Standing Postural Control and Perturbation-Induced Muscle Activity in Transtibial and Transfemoral Amputees
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Postural Control Assessment
2.3. Surface Perturbation and Muscle Activation Assessments
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
3.1. General Physical Characteristics of Participants
3.2. Amputation-Related Data
3.3. Comparisons Among Three Groups
3.4. Comparisons Between Transtibial and Control Group
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| TTA | Transtibial amputation |
| TFA | Transfemoral amputation |
| CG | Control group |
| RF | Rectus femoris |
| BF | Biceps femoris |
| TA | Tibialis anterior |
| GM | Medial head of the gastrocnemius |
| CoM | Center of mass |
| BoS | Base of support |
| CoP | Center of pressure |
| LoS | Limits of Stability |
| NSEO | Normal surface eyes open |
| NSEC | Normal surface eyes closed |
| CSEO | Compliant surface eyes open |
| CSEC | Compliant surface eyes closed |
| IS | Intact side |
| AS | Amputated side |
| DS | Dominant side |
| NDS | Nondominant side |
| MVIC | Maximum voluntary isometric contraction |
| RMS | Root Mean Square |
| vs | Versus |
References
- Vaillancourt, D.E.; Newell, K.M. Changing complexity in human behavior and physiology through aging and disease. Neurobiol. Aging 2002, 23, 1–11. [Google Scholar] [CrossRef]
- Pollock, A.S.; Durward, B.R.; Rowe, P.J.; Paul, J.P. What is balance? Clin. Rehabil. 2000, 14, 402–406. [Google Scholar] [CrossRef]
- Maki, B.E.; McIlroy, W.E. The role of limb movements in maintaining upright stance: The “change-in-support” strategy. Phys. Ther. 1997, 77, 488–507. [Google Scholar] [CrossRef] [PubMed]
- Cech, D.J.; Martin, S.T. Functional Movement Development Across the Life Span, 3rd ed.; Saunders: St. Louis, MO, USA, 2012; p. 265. [Google Scholar]
- Massion, J.; Alexandrov, A.; Frolov, A. Why and how are posture and movement coordinated? Prog. Brain Res. 2004, 143, 13–27. [Google Scholar] [CrossRef]
- Horak, F.B. Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age Ageing 2006, 35, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Rogers, M.W.; Mille, M.-L. Chapter 5—Balance perturbations. Handb. Clin. Neurol. 2018, 159, 85–105. [Google Scholar] [CrossRef]
- Ku, P.X.; Abu Osman, N.A.; Abas, W.A.W. Balance control in lower extremity amputees during quiet standing: A systematic review. Gait Posture 2014, 39, 672–682. [Google Scholar] [CrossRef]
- Vrieling, A.H.; van Keeken, H.G.; Schoppen, T.; Otten, E.; Hof, A.L.; Halbertsma, J.P.K.; Postema, K. Balance control on a moving platform in unilateral lower limb amputees. Gait Posture 2008, 28, 222–228. [Google Scholar] [CrossRef]
- Molina Rueda, F.; Molero Sánchez, A.; Alguacil Diego, I.M.; Carratalá Tejada, M.; Cuesta Gómez, A.; Miangolarra Page, J.C. Weight Symmetry and Latency Scores for Unexpected Surface Perturbations in Subjects with Traumatic and Vascular Unilateral Transtibial Amputation. PM&R 2016, 8, 235–240. [Google Scholar] [CrossRef]
- Bolger, D.; Ting, L.H.; Sawers, A. Individuals with transtibial limb loss use interlimb force asymmetries to maintain multi-directional reactive balance control. Clin. Biomech. 2014, 29, 1039–1047. [Google Scholar] [CrossRef]
- Vanicek, N.; Strike, S.; McNaughton, L.; Polman, R. Postural Responses to Dynamic Perturbations in Amputee Fallers Versus Nonfallers: A Comparative Study with Able-Bodied Subjects. Arch. Phys. Med. Rehabil. 2009, 90, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Rusaw, D.; Hagberg, K.; Nolan, L.; Ramstrand, N. Bilateral electromyogram response latency following platform perturbation in unilateral transtibial prosthesis users: Influence of weight distribution and limb position. J. Rehabil. Res. Dev. 2013, 50, 531–544. [Google Scholar] [CrossRef]
- Local Coverage Determination (LCD): Lower Limb Prostheses (L33787). Available online: https://www.cms.gov/medicare-coverage-database/view/lcd.aspx?LCDId=33787 (accessed on 14 August 2025).
- Bertec Workbook Program Documentation, Version 1.2.0; MIE Medical Research Ltd.: Leeds, UK, 2014.
- Major, M.J.; Stine, R.L. Sensorimotor function and standing balance in older adults with transtibial limb loss. Clin. Biomech. 2023, 109, 106104. [Google Scholar] [CrossRef]
- Monteiro, A.S.; Major, M.J.; Fey, N.P. Transtibial limb loss influences muscle excitation, 3D dynamic balance and their cross-sectional correlation in older individuals during walking. Clin. Biomech. 2025, 125, 106535. [Google Scholar] [CrossRef]
- Rodrigues, F.B.; Souza, G.S.D.E.; Mesquita, E.D.; Gomide, R.D.; Baptista, R.R.; Pereira, A.A.; Andrade, A.O.; Vieira, M.F. Margins of stability of persons with transtibial or transfemoral amputations walking on sloped surfaces. J. Biomech. 2021, 123, 110453. [Google Scholar] [CrossRef]
- Bortec Biomedical Ltd. Important Factors in Surface EMG Measurement. Available online: http://www.bortec.ca/Images/pdf/EMG%20measurement%20and%20recording.pdf (accessed on 18 August 2025).
- SENIAM. Surface Electromyography for the Non-Invasive Assessment of Muscles. Available online: http://www.seniam.org (accessed on 18 August 2025).
- Chien, J.E.; Hsu, W.L. Effects of Dynamic Perturbation-Based Training on Balance Control of Community-Dwelling Older Adults. Sci. Rep. 2018, 8, 17231. [Google Scholar] [CrossRef]
- Available online: https://www.randomizer.org/ (accessed on 20 August 2025).
- Hislop, H.J.; Montgomery, J. Daniels and Worthingham’s Muscle Testing: Techniques of Manual Examination, 8th ed.; Saunders Elsevier: St. Louis, MO, USA, 2007. [Google Scholar]
- Molero Sánchez, A.; Molina Rueda, F.; Alguacil Diego, I.M.; Cano de la Cuerda, R.; Miangolarra Page, J.C. Comparison of Stability Limits in Men with Traumatic Transtibial Amputation and a Nonamputee Control Group. PM&R 2015, 7, 123–129. [Google Scholar] [CrossRef]
- Fernie, G.R.; Eng, P.; Holliday, P.J. Postural Sway in Amputees and Normal Subjects. J. Bone Jt. Surg. Am. 1978, 60, 895–898. [Google Scholar] [CrossRef]
- Nadollek, H.; Brauer, S.; Isles, R. Outcomes after trans-tibial amputation: The relationship between quiet stance ability, strength of hip abductor muscles and gait. Physiother. Res. Int. 2002, 7, 203–214. [Google Scholar] [CrossRef]
- Toumi, A.; Simoneau-Buessinger, É.; Bassement, J.; Barbier, F.; Gillet, C.; Allard, P.; Leteneur, S. Standing posture and balance modalities in unilateral transfemoral and transtibial amputees. J. Bodyw. Mov. Ther. 2021, 27, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Duclos, C.; Roll, R.; Kavounoudias, A.; Mongeau, J.P.; Roll, J.P.; Forget, R. Postural changes after sustained neck muscle contraction in persons with a lower leg amputation. J. Electromyogr. Kinesiol. 2009, 19, e214–e222. [Google Scholar] [CrossRef]
- Duclos, C.; Roll, R.; Kavounoudias, A.; Roll, J.P.; Forget, R. Vibration-induced post-effects: A means to improve postural asymmetry in lower leg amputees? Gait Posture 2007, 26, 595–602. [Google Scholar] [CrossRef]
- Hlavackova, P.; Franco, C.; Diot, B.; Vuillerme, N. Contribution of Each Leg to the Control of Unperturbed Bipedal Stance in Lower Limb Amputees: New Insights Using Entropy. PLoS ONE 2011, 6, e19661. [Google Scholar] [CrossRef]
- Curtze, C.; Hof, A.L.; Postema, K.; Otten, B. The relative contributions of the prosthetic and sound limb to balance control in unilateral transtibial amputees. Gait Posture 2012, 36, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Buckley, J.G.; O’Driscoll, D.; Bennett, S.J. Postural sway and active balance performance in highly active lower-limb amputees. Am. J. Phys. Med. Rehabil. 2002, 81, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, K.R.; Iverson, B.K.; Padgett, D.J.; Levine, J.A.; Brey, R.H.; Joyner, M.J. Re: Gait and balance of transfemoral amputees using passive mechanical and microprocessor controlled prosthetic knees by Kaufman et al. [Gait and Posture 20 (2007) 489-493] Reply. Gait Posture 2009, 29, 163–164. [Google Scholar] [CrossRef]
- Yigiter, K.; Sener, G.; Bayar, K. Comparison of the effects of patellar tendon bearing and total surface bearing sockets on prosthetic fitting and rehabilitation. Prosthet. Orthot. Int. 2002, 26, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Geurts, A.C.H.; Mulder, T.W. Reorganisation of Postural Control Following Lower Limb Amputation: Theoretical Considerations and Implications for Rehabilitation. Physiother. Theory Pract. 1992, 8, 145–157. [Google Scholar] [CrossRef]
- Claret, C.R.; Herget, G.W.; Kouba, L.; Wiest, D.; Adler, J.; von Tscharner, V.; Stieglitz, T.; Pasluosta, C. Neuromuscular adaptations and sensorimotor integration following a unilateral transfemoral amputation. J. Neuroeng. Rehabil. 2019, 16, 115. [Google Scholar] [CrossRef]
- Horak, F.B.; Nashner, L.M. Central Programming of Postural Movements—Adaptation to Altered Support-Surface Configurations. J. Neurophysiol. 1986, 55, 1369–1381. [Google Scholar] [CrossRef]
- Rusaw, D.F. Adaptations from the prosthetic and intact limb during standing on a sway-referenced support surface for transtibial prosthesis users. Disabil. Rehabil. Assist. Technol. 2019, 14, 682–691. [Google Scholar] [CrossRef] [PubMed]
- Sepp, L.A.; Nelson-Wong, E.; Baum, B.S.; Silverman, A.K. Running-specific prostheses reduce lower-limb muscle activity compared to daily-use prostheses in people with unilateral transtibial amputations. J. Electromyogr. Kinesiol. 2020, 55, 102462. [Google Scholar] [CrossRef]
- Fontes, C.H.D.; Laett, C.T.; Gavilao, U.F.; de Campos, J.C.; Alexandre, D.J.D.; Cossich, V.R.A.; de Sousa, E.B. Bodyweight distribution between limbs, muscle strength, and proprioception in traumatic transtibial amputees: A cross-sectional study. Clinics 2021, 76, e2486. [Google Scholar] [CrossRef]
- Nanbancha, A.; Limroongreungrat, W.; Samala, M.; Rattanakoch, J.; Guerra, G.; Niamsang, W.; Tharawadeepimuk, K. Neural modifications of transtibial prosthesis (TTP) users: An event-related potentials study. J. Neuroeng. Rehabil. 2025, 22, 68. [Google Scholar] [CrossRef]
- Santos, L.C.; Gushken, F.; Gadotti, G.M.; Dias, B.D.; Pedrini, S.M.; Barreto, M.E.S.F.; Zippo, E.; Pinto, C.B.; Piza, P.V.D.; Fregni, F. Intracortical Inhibition in the Affected Hemisphere in Limb Amputation. Front. Neurol. 2020, 11, 720. [Google Scholar] [CrossRef] [PubMed]
- Atalay, K.G.; Coskun, Ö.K.; Giray, E.; Gündüz, O.H.; Yagci, I. Assessment of the relationship between rectus femoris cross-sectional area and knee extension strength in the prosthesis users with transtibial amputation: A case-control study. Turk. J. Phys. Med. Rehabil. 2022, 68, 222–230. [Google Scholar] [CrossRef] [PubMed]





| Characteristics | Transtibial (n = 10) | Transfemoral (n = 9) | Control (n = 10) | ||
|---|---|---|---|---|---|
| n (%) | n (%) | n (%) | pα | ||
| Sex | Male | 7 (70.0) | 9 (100.0) | 8 (80.0) | 0.322 |
| Female | 3 (30.0) | - | 2 (20.0) | ||
| X ± SD | X ± SD | X ± SD | pβ | ||
| Age [years] | 32.50 ± 9.26 | 33.11 ± 6.41 | 32.00 ± 7.60 | 0.954 | |
| Body height [m] | 1.74 ± 0.08 | 1.74 ± 0.05 | 1.74 ± 0.06 | 0.988 | |
| Body mass [kg] | 78.20 ± 11.44 | 74.70 ± 13.18 | 72.09 ± 11.80 | 0.536 | |
| Body mass index [kg/m2] | 25.87 ± 3.95 | 24.70 ± 4.01 | 23.79 ± 3.22 | 0.469 | |
| Intact/Dominant limb length [cm] | 89.55 ± 6.08 | 88.67 ± 4.36 | 88.90 ± 4.12 | 0.921 | |
| Residual/Nondominant limb length [cm] | 66.00 ± 6.35 | 35.44 ± 8.53 | 89.00 ± 4.06 | <0.001 * | |
| Transtibial (n = 10) | Transfemoral (n = 9) | |||
|---|---|---|---|---|
| X ± SD | X ± SD | pδ | ||
| Stump length [cm] | 17.00 ± 5.16 | 35.44 ± 8.53 | 0.001 | |
| Percentage of residual limb (%) | 73.66 ± 4.28 | 39.97 ± 9.60 | <0.001 | |
| Amputation age [years] | 18.70 ± 8.11 | 22.56 ± 6.27 | 0.388 | |
| Duration of prosthesis use [years] | 13.50 ± 7.81 | 9.78 ± 4.15 | 0.220 | |
| Number of prostheses used to date | 5.10 ± 3.45 | 2.33 ± 1.41 | 0.032 | |
| Duration of use of the current prosthesis [years] | 1.95 ± 1.42 | 4.61 ± 1.76 | 0.003 | |
| Duration of daily prosthesis use [hours] | 13.95 ± 2.23 | 13.33 ± 2.51 | 0.769 | |
| n (%) | n (%) | pη | ||
| Amputation side | Right | 8 (80.0) | 5 (55.6) | 0.350 |
| Left | 2 (20.0) | 4 (44.4) | ||
| Suspension systems | Pin system | 1 (10.0) | 3 (33.3) | 0.003 * |
| Passive vacuum | 2 (20.0) | 6 (66.7) | ||
| Active vacuum | 7 (70.0) | - | ||
| Prosthetic foot | Double axis foot | 1 (10.0) | - | 1.000 |
| Carbon foot | 8 (80.0) | 9 (100.0) | ||
| Hydraulic carbon foot | 1 (10.0) | - | ||
| Types of Microprocessor Knee | Rheo Knee | - | 2 (22.2) | - |
| Genium | - | 4 (44.4) | ||
| C-leg | - | 3 (33.3) | ||
| Transtibial (n = 10) | Transfemoral (n = 9) | Control (n = 10) | pβ | η2 | ||
|---|---|---|---|---|---|---|
| Postural Control | X ± SD | X ± SD | X ± SD | |||
| LoS distance (cm) | Anterior | 7.72 ± 1.04 | 7.43 ± 1.37 | 8.72 ± 2.03 | 0.173 | 0.126 |
| Posterior | 5.82 ± 1.54 | 5.14 ± 1.52 | 5.42 ± 1.68 | 0.645 | 0.033 | |
| IS/DS | 10.75 ± 2.24 | 9.17 ± 1.41 | 9.27 ± 2.06 | 0.154 | 0.134 | |
| AS/NDS | 12.37 ± 2.71 | 11.61 ± 1.88 | 10.17 ± 1.93 | 0.100 | 0.163 | |
| Anteroposterior postural sway range (cm) | NSEO | 0.50 ± 0.14 | 0.44 ± 0.15 | 0.50 ± 0.17 | 0.629 | 0.034 |
| NSEC | 0.73 ± 0.21 | 0.90 ± 0.25 | 0.68 ± 0.16 | 0.068 | 0.187 | |
| CSEO | 0.71 ± 0.27 | 0.55 ± 0.15 | 0.65 ± 0.29 | 0.378 | 0.072 | |
| CSEC | 1.15 ± 0.29 | 1.31 ± 0.37 | 0.96 ± 0.21 | 0.047 * | 0.210 | |
| Lateral postural sway range (cm) | NSEO | 0.25 ± 0.08 | 0.26 ± 0.09 | 0.22 ± 0.10 | 0.594 | 0.041 |
| NSEC | 0.32 ± 0.07 | 0.39 ± 0.11 | 0.25 ± 0.08 | 0.007 * | 0.321 | |
| CSEO | 0.60 ± 0.21 | 0.46 ± 0.24 | 0.48 ± 0.27 | 0.415 | 0.065 | |
| CSEC | 0.70 ± 0.14 | 0.74 ± 0.28 | 0.51 ± 0.18 | 0.049 | 0.207 | |
| Muscle activation (IS/DS) | M IQR (25–75) | M IQR (25–75) | M IQR (25–75) | p¶ | η2(H) | |
| Forward perturbation | RF | 55.69 (46.04–99.33) | 48.68 (39.37–110.03) | 39.87 (32.24–58.67) | 0.173 | 0.058 |
| BF | 19.02 (9.14–39.95) | 8.36 (7.16–31.14) | 8.03 (5.42–15.63) | 0.113 | 0.091 | |
| TA | 83.03 (60.57–99.40) | 77.55 (68.77–119.91) | 69.27 (57.59–100.02) | 0.459 | <0.01 | |
| GM | 11.98 (8.05–17.49) | 10.57 (5.52–15.29) | 15.79 (11.25–21.96) | 0.135 | 0.077 | |
| Backward perturbation | RF | 22.28 (13.64–36.27) | 19.10 (7.67–24.32) | 14.99 (9.35–24.87) | 0.404 | <0.01 |
| BF | 38.08 (13.08–81.83) | 13.46 (9.58–24.91) | 15.18 (5.56–24.50) | 0.201 | 0.047 | |
| TA | 12.90 (6.25–26.18) | 15.28 (11.47–23.56) | 14.03 (4.68–38.73) | 0.843 | <0.01 | |
| GM | 77.64 (49.74–152.42) | 83.97 (67.95–167.76) | 51.17 (33.12–75.94) | 0.105 | 0.096 | |
| Transtibial (n = 10) | Control (n = 10) | Transtibial vs. Control | Group Effect | Side Effect | Interactions | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Perturbation Direction | Muscle Activation | IS | AS | p | DS | NDS | p | IS vs. DS | AS vs. NDS | |||
| X ± SD | X ± SD | X ± SD | X ± SD | p | p | |||||||
| Forward | RF | 75.43 ± 54.09 | 82.46 ± 36.85 | 0.636 | 46.10 ± 19.72 | 47.74 ± 36.12 | 0.912 | 0.125 | 0.047 | 0.033 | 0.680 | 0.797 |
| BF | 22.71 ± 15.66 | 46.88 ± 39.27 | 0.030 | 12.13 ± 10.72 | 20.97 ± 21.96 | 0.400 | 0.095 | 0.085 | 0.038 | 0.035 | 0.304 | |
| Backward | RF | 24.04 ± 13.84 | 41.94 ± 42.82 | 0.114 | 16.38 ± 8.96 | 32.45 ± 24.34 | 0.154 | 0.159 | 0.550 | 0.341 | 0.039 | 0.906 |
| BF | 43.46 ± 36.09 | 33.77 ± 20.87 | 0.115 | 20.95 ± 22.10 | 20.84 ± 16.90 | 0.985 | 0.110 | 0.145 | 0.106 | 0.251 | 0.262 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Türkmen, M.C.; Çelik, H.; Yalçın, A.İ.; Topuz, S. Comparative Analysis of Standing Postural Control and Perturbation-Induced Muscle Activity in Transtibial and Transfemoral Amputees. J. Clin. Med. 2025, 14, 8737. https://doi.org/10.3390/jcm14248737
Türkmen MC, Çelik H, Yalçın Aİ, Topuz S. Comparative Analysis of Standing Postural Control and Perturbation-Induced Muscle Activity in Transtibial and Transfemoral Amputees. Journal of Clinical Medicine. 2025; 14(24):8737. https://doi.org/10.3390/jcm14248737
Chicago/Turabian StyleTürkmen, Mustafa Cem, Hüseyin Çelik, Ali İmran Yalçın, and Semra Topuz. 2025. "Comparative Analysis of Standing Postural Control and Perturbation-Induced Muscle Activity in Transtibial and Transfemoral Amputees" Journal of Clinical Medicine 14, no. 24: 8737. https://doi.org/10.3390/jcm14248737
APA StyleTürkmen, M. C., Çelik, H., Yalçın, A. İ., & Topuz, S. (2025). Comparative Analysis of Standing Postural Control and Perturbation-Induced Muscle Activity in Transtibial and Transfemoral Amputees. Journal of Clinical Medicine, 14(24), 8737. https://doi.org/10.3390/jcm14248737

