Maternal Serum Thrombospondin-4 Levels in Gestational Hypertension and Risk of Preeclampsia
Abstract
1. Introduction
2. Materials and Methods
2.1. Participant Selection
2.2. Blood Sampling and Laboratory Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duley, L. The global impact of pre-eclampsia and eclampsia. Semin. Perinatol. 2009, 33, 130–137. [Google Scholar] [CrossRef]
- Umesawa, M.; Kobashi, G. Epidemiology of hypertensive disorders in pregnancy: Prevalence, risk factors, predictors and prognosis. Hypertens. Res. 2017, 40, 213–220. [Google Scholar] [CrossRef]
- Gestational Hypertension and Preeclampsia. Obstet. Gynecol. 2020, 135, e237–e260. [CrossRef]
- Polat, M.; Sapmaz, M.A.; Erbey, S.; Kindan, A.; Ruzgar, M.S.; Kahyaoglu, İ. Use of first trimester hemoglobin albumin lymphocyte platelet score and fibrinogen to albumin ratio in the prediction of pre-eclampsia. Medicine 2025, 104, e43423. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.A.; Magee, L.A.; Kenny, L.C.; Karumanchi, S.A.; McCarthy, F.P.; Saito, S.; Hall, D.R.; Warren, C.E.; Adoyi, G.; Ishaku, S.; et al. Hypertensive disorders of pregnancy: ISSHP classification, diagnosis, and management recommendations for international practice. Hypertension 2018, 72, 24–43. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, B.; Gauster, M.; Orendi, K.; König, J.; Moser, G. Oxygen as modulator of trophoblast invasion. J. Anat. 2009, 215, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Goulopoulou, S.; Davidge, S.T. Molecular mechanisms of maternal vascular dysfunction in preeclampsia. Trends Mol. Med. 2015, 21, 88–97. [Google Scholar] [CrossRef]
- Bornstein, P. Thrombospondins function as regulators of angiogenesis. J. Cell Commun. Signal. 2009, 3, 189–200. [Google Scholar] [CrossRef]
- Shi, H.; Mao, Y.; Cui, J.; Ma, R.; Yang, Z.; Zhao, Y. THBS4 downregulation alters trophoblast function in preeclampsia via the TGF-β1/Smad signaling cascade. Am. J. Physiol.-Cell Physiol. 2025, 328, C1–C12. [Google Scholar] [CrossRef]
- Huhn, E.A.; Hoffmann, I.; De Tejada, B.M.; Lange, S.; Sage, K.M.; Roberts, C.T.; Gravett, M.G.; Nagalla, S.R.; Lapaire, O. Maternal serum glycosylated fibronectin as a short-term predictor of preeclampsia: A prospective cohort study. BMC Pregnancy Childbirth 2020, 20, 128. [Google Scholar] [CrossRef]
- Rasanen, J.; Quinn, M.J.; Laurie, A.; Bean, E.; Roberts, C.T., Jr.; Nagalla, S.R.; Gravett, M.G. Maternal serum glycosylated fibronectin as a point-of-care biomarker for assessment of preeclampsia. Am. J. Obstet. Gynecol. 2015, 212, 82.e1–82.e9. [Google Scholar] [CrossRef]
- Lala, P.K.; Nandi, P. Mechanisms of trophoblast migration, endometrial angiogenesis in preeclampsia: The role of decorin. Cell Adhes. Migr. 2016, 10, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Ağaoğlu, R.T.; Tekeş, G.Ç.; Oğuz, Y.; Akın, F.; Bayrak, A.Ç.; Filiz, A.A.; Akbulut, Ö.V.; Pay, R.E.; Yücel, K.Y. Maternal serum syndecan-1 levels in preterm prelabor rupture of membranes and potential predictor of adverse perinatal outcomes: A case–control study. Int. J. Gynecol. Obstet. 2025, 171, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Marc, C.; Achille, A.; Frégeau, G.; Hannou, L.; Vachon, I.; Vaillancourt, C.; Lavoie, J.L.; Bertagnolli, M. Pro-angiogenic effects of the thrombospondin-1 inhibitor LSKL in preeclampsia models. Hypertension 2022, 79 (Suppl. S1), A004. [Google Scholar] [CrossRef]
- Adams, J.C.; Lawler, J. The thrombospondins. Cold Spring Harb. Perspect. Biol. 2011, 3, a009712. [Google Scholar] [CrossRef]
- Spinale, F.G. Cell-matrix signaling and thrombospondin: Another link to myocardial matrix remodeling. Circ. Res. 2004, 95, 446–448. [Google Scholar] [CrossRef]
- Muppala, S.; Xiao, R.; Krukovets, I.; Verbovetsky, D.; Yendamuri, R.; Habib, N.; Raman, P.; Plow, E.; Stenina-Adognravi, O. Thrombospondin-4 mediates TGF-β-induced angiogenesis. Oncogene 2017, 36, 5189. [Google Scholar] [CrossRef]
- Sava, R.I.; March, K.L.; Pepine, C.J. Hypertension in pregnancy: Taking cues from pathophysiology for clinical practice. Clin. Cardiol. 2018, 41, 220–227. [Google Scholar] [CrossRef]
- Phoswa, W.N.; Khaliq, O.P. The role of oxidative stress in hypertensive disorders of pregnancy (preeclampsia, gestational hypertension) and metabolic disorder of pregnancy (gestational diabetes mellitus). Oxidative Med. Cell. Longev. 2021, 2021, 5581570. [Google Scholar] [CrossRef]
- Bornstein, P.; Sage, E.H. Matricellular proteins: Extracellular modulators of cell function. Curr. Opin. Cell Biol. 2002, 14, 608–616. [Google Scholar] [CrossRef]
- Staff, A.C.; Benton, S.J.; von Dadelszen, P.; Roberts, J.M.; Taylor, R.N.; Powers, R.W.; Charnock-Jones, D.S.; Redman, C.W. Redefining preeclampsia using placenta-derived biomarkers. Hypertension 2013, 61, 932–942. [Google Scholar] [CrossRef]
- Gyselaers, W. Hemodynamic pathways of gestational hypertension and preeclampsia. Am. J. Obstet. Gynecol. 2022, 226, S988–S1005. [Google Scholar] [CrossRef]
- Verlohren, S.; Herraiz, I.; Lapaire, O.; Schlembach, D.; Moertl, M.; Zeisler, H.; Calda, P.; Holzgreve, W.; Galindo, A.; Engels, T.; et al. The sFlt-1/PlGF ratio in different types of hypertensive pregnancy disorders and its prognostic potential in preeclamptic patients. Am. J. Obstet. Gynecol. 2012, 206, 58.e1–58.e8. [Google Scholar] [CrossRef]
- Verlohren, S.; Stepan, H.; Dechend, R. Angiogenic growth factors in the diagnosis and prediction of pre-eclampsia. Clin. Sci. 2012, 122, 43–52. [Google Scholar] [CrossRef]
- Kleinrouweler, C.E.; van Uitert, M.; Moerland, P.D.; Ris-Stalpers, C.; van der Post, J.A.; Afink, G.B. Differentially expressed genes in the pre-eclamptic placenta: A systematic review and meta-analysis. PLoS ONE 2013, 8, e68991. [Google Scholar] [CrossRef]
Variables | GHT (n = 44) (50%) | Control (n = 44) (50%) | p-Value |
---|---|---|---|
Demographic and Laboratory Characteristics | |||
Maternal age | 27.8 ± 4.6 | 27.9 ± 5.1 | 0.862 a |
Gravida | 2 (2–3) | 2 (1–3) | 0.365 b |
Parity | 1 (0–2) | 1 (0–1) | 0.121 b |
Abortus | 0 (0–1) | 0 (0–1) | 0.898 b |
BMI | 29.20 ± 3.98 | 28.14 ± 5.07 | 0.275 a |
Gestational age at blood sampling | 24.3 ± 1.4 | 24.9 ± 1.9 | 0.083 a |
TSP-4 | 9.50 (8.28–10.00) | 7.92 (6.07–8.97) | <0.001 b |
Gestational age at birth | 34.9 (31.7–37.3) | 38.6 (37.5–39.2) | <0.001 b |
Perinatal Outcomes | |||
Birth Weight (gr) | 2215 ± 821 | 3179 ± 436 | <0.001 a |
5th minute APGAR score ≤7 | 11 (25.0%) | 4 (9.1%) | 0.002 c |
Preterm birth | 25 (56.8%) | 0 (0%) | <0.001 c |
Fetal distress | 7 (15.9%) | 0 (0%) | 0.012 c |
NICU admission | 18 (40.9%) | 5 (11.4%) | 0.002 d |
CAPO | 25 (56.8%) | 5 (11.4%) | <0.001 d |
Variables | PE (n = 9) | GHT (n = 35) | p-value |
TSP-4 | 13.45 (11.75–16.12) | 9.33 (7.96–9.89) | <0.001 b |
Variables | CAPO (n = 25) (56.8%) | Non-CAPO (n = 19) (43.2%) | p-Value |
---|---|---|---|
Maternal age | 27.8 ± 4.7 | 27.7 ± 4.7 | 0.935 a |
Gravida | 2 (2–3) | 2 (1–4) | 0.845 b |
Parity | 1 (0–2) | 1 (0–2) | 0.264 b |
Abortus | 0 (0–1) | 0 (0–1) | 0.459 b |
BMI | 29.16 ± 3.69 | 29.26 ± 4.43 | 0.933 a |
Gestational age at blood sampling | 23.7 ± 1.5 | 23.7 ± 1.4 | 0.951 a |
TSP-4 | 9.46 (8.56–11.75) | 9.53 (8.00–9.90) | 0.538 b |
Gestational age at birth | 33 (30–34) | 38 (37–38) | <0.001 b |
Birth weight (gr) | 1695 ± 604 | 2898 ± 507 | <0.001 a |
Variables | r | p-Value |
---|---|---|
GHT (for all patients) | 0.471 | <0.001 |
Development of Preeclampsia (among GHT patients) | 0.497 | <0.001 |
Age (years) (among control group) | 0.068 | 0.659 |
Gestational age at blood sampling (week) (among control group) | 0.030 | 0.847 |
BMI (kg/m2) (among control group) | 0.039 | 0.804 |
Gestational age at Birth (week) (among control group) | 0.264 | 0.083 |
Birth Weight (gr) (among control group) | 0.225 | 0.142 |
LR+ | LR− | Cut-Off * | Sensitivity | Specificity | AUC | %95 CI | p-Value | |
---|---|---|---|---|---|---|---|---|
TSP-4 | 2.36 | 0.37 | >8.45 | 75% | 68.2% | 0.772 | 0.670–0.855 | <0.001 |
Variables | aOR | 95% CI | p-Value |
---|---|---|---|
Gestational Hypertension | |||
TSP-4 | 1.526 | 1.171–1.987 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbulut, Ö.V.; Filiz, A.A.; Savran Üçok, B.; Bağcı, M.; Vural Yılmaz, Z. Maternal Serum Thrombospondin-4 Levels in Gestational Hypertension and Risk of Preeclampsia. J. Clin. Med. 2025, 14, 7414. https://doi.org/10.3390/jcm14207414
Akbulut ÖV, Filiz AA, Savran Üçok B, Bağcı M, Vural Yılmaz Z. Maternal Serum Thrombospondin-4 Levels in Gestational Hypertension and Risk of Preeclampsia. Journal of Clinical Medicine. 2025; 14(20):7414. https://doi.org/10.3390/jcm14207414
Chicago/Turabian StyleAkbulut, Özgür Volkan, Ahmet Arif Filiz, Belgin Savran Üçok, Mustafa Bağcı, and Zehra Vural Yılmaz. 2025. "Maternal Serum Thrombospondin-4 Levels in Gestational Hypertension and Risk of Preeclampsia" Journal of Clinical Medicine 14, no. 20: 7414. https://doi.org/10.3390/jcm14207414
APA StyleAkbulut, Ö. V., Filiz, A. A., Savran Üçok, B., Bağcı, M., & Vural Yılmaz, Z. (2025). Maternal Serum Thrombospondin-4 Levels in Gestational Hypertension and Risk of Preeclampsia. Journal of Clinical Medicine, 14(20), 7414. https://doi.org/10.3390/jcm14207414