Nutrition and Uterine Fibroids: Clinical Impact and Emerging Therapeutic Perspectives
Abstract
1. Introduction
2. Materials and Methods
3. Epidemiology
4. Pathogenesis
4.1. MED12
4.2. HMGA2
4.3. FH
4.4. COL4A5/COL4A6
5. Types of Patients
6. Diagnosis
7. Treatment
7.1. Symptomatic Therapy
7.2. Pharmacological Therapies Targeting Fibroid Volume
7.2.1. GnRH Agonists
7.2.2. GnRH Antagonists
7.2.3. Danazol and Gestrinone
7.2.4. SPRMs
7.2.5. Statins
7.3. Complementary Therapy
8. Nutritional Factor
8.1. Nutritional Factor and Pathogenesis
8.1.1. Vegetables and Fruits
8.1.2. Dairy Products
8.1.3. Soy
8.1.4. Green Tea Extracts
8.1.5. Selenium
8.1.6. Curcumin
8.1.7. Vitamin D
8.2. Nutritional Factor and Symptoms
8.3. Nutritional Factor and Therapy
8.3.1. Omega-3 Polyunsaturated Fatty Acids (PUFAS)
8.3.2. Polyphenols, Such as Resveratrol and Curcumin
8.3.3. Vitamin D
8.3.4. Obesity and Insulin Resistance
8.3.5. Iron Intake and Anemia Management
8.4. Nutritional Factor and Surgery
9. Comparison with the Literature and Study Limitations
10. Future Perspective
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Krzyżanowski, J.; Paszkowski, T.; Woźniak, S. The Role of Nutrition in Pathogenesis of Uterine Fibroids. Nutrients 2023, 15, 4984. [Google Scholar] [CrossRef] [PubMed]
- Afrin, S.; AlAshqar, A.; El Sabeh, M.; Miyashita-Ishiwata, M.; Reschke, L.; Brennan, J.T.; Fader, A.; Borahay, M.A. Diet and Nutrition in Gynecological Disorders: A Focus on Clinical Studies. Nutrients 2021, 13, 1747. [Google Scholar] [CrossRef]
- Yang, Q.; Ciebiera, M.; Bariani, M.V.; Ali, M.; Elkafas, H.; Boyer, T.G.; Al-Hendy, A. Comprehensive Review of Uterine Fibroids: Developmental Origin, Pathogenesis, and Treatment. Endocr. Rev. 2022, 43, 678–719. [Google Scholar] [CrossRef]
- Bedggood, E.; Jie, S.; Ghosh, S.; Pathiraja, V.; Mudalige, T.; Rathnayake, N.; Cavalini, H.; Kurmi, O.; Eleje, G.U.; Phiri, P.; et al. Evaluating treatment options for symptomatic uterine fibroids: A systematic review and meta-analysis of effectiveness, recovery, and long-term outcomes (MARIE WP1). Front. Glob. Womens Health 2025, 6, 1601341. [Google Scholar] [CrossRef]
- Lazzeri, L.; Andersson, K.L.; Angioni, S.; Arena, A.; Arena, S.; Bartiromo, L.; Berlanda, N.; Bonin, C.; Candiani, M.; Centini, G.; et al. How to Manage Endometriosis in Adolescence: The Endometriosis Treatment Italian Club Approach. J. Minim. Invasive Gynecol. 2023, 30, 616–626. [Google Scholar] [CrossRef]
- Martire, F.G.; d’Abate, C.; Schettini, G.; Cimino, G.; Ginetti, A.; Colombi, I.; Cannoni, A.; Centini, G.; Zupi, E.; Lazzeri, L. Adenomyosis and Adolescence: A Challenging Diagnosis and Complex Management. Diagnostics 2024, 14, 2344. [Google Scholar] [CrossRef]
- Tinelli, A.; Vinciguerra, M.; Malvasi, A.; Andjić, M.; Babović, I.; Sparić, R. Uterine Fibroids and Diet. Int. J. Environ. Res. Public Health 2021, 18, 1066. [Google Scholar] [CrossRef] [PubMed]
- Neri, B.; Russo, C.; Mossa, M.; Martire, F.G.; Selntigia, A.; Mancone, R.; Calabrese, E.; Rizzo, G.; Exacoustos, C.; Biancone, L. High Frequency of Deep Infiltrating Endometriosis in Patients with Inflammatory Bowel Disease: A Nested Case-Control Study. Dig. Dis. 2023, 41, 719–728. [Google Scholar] [CrossRef]
- Selntigia, A.; Exacoustos, C.; Ortoleva, C.; Russo, C.; Monaco, G.; Martire, F.G.; Rizzo, G.; Della-Morte, D.; Mercuri, N.B.; Albanese, M. Correlation between endometriosis and migraine features: Results from a prospective case-control study. Cephalalgia 2024, 44, 3331024241235210. [Google Scholar] [CrossRef]
- Mohammadi, R.; Tabrizi, R.; Hessami, K.; Ashari, H.; Nowrouzi-Sohrabi, P.; Hosseini-Bensenjan, M.; Asadi, N. Correlation of low serum vitamin-D with uterine leiomyoma: A systematic review and meta-analysis. Reprod. Biol. Endocrinol. 2020, 18, 85. [Google Scholar] [CrossRef] [PubMed]
- Ciebiera, M.; Włodarczyk, M.; Ciebiera, M.; Zaręba, K.; Łukaszuk, K.; Jakiel, G. Vitamin D and Uterine Fibroids-Review of the Literature and Novel Concepts. Int. J. Mol. Sci. 2018, 19, 2051. [Google Scholar] [CrossRef]
- Baker, J.M.; Chase, D.M.; Herbst-Kralovetz, M.M. Uterine Microbiota: Residents, Tourists, or Invaders? Front. Immunol. 2018, 9, 208. [Google Scholar] [CrossRef]
- Bariani, M.V.; Rangaswamy, R.; Siblini, H.; Yang, Q.; Al-Hendy, A.; Zota, A.R. The role of endocrine-disrupting chemicals in uterine fibroid pathogenesis. Curr. Opin. Endocrinol. Diabetes Obes. 2020, 27, 380–387. [Google Scholar] [CrossRef]
- Wong, J.Y.; Chang, P.Y.; Gold, E.B.; Johnson, W.O.; Lee, J.S. Environmental tobacco smoke and risk of late-diagnosis incident fibroids in the Study of Women’s Health across the Nation (SWAN). Fertil. Steril. 2016, 106, 1157–1164. [Google Scholar] [CrossRef]
- Takala, H.; Yang, Q.; El Razek, A.M.A.; Ali, M.; Al-Hendy, A. Alcohol Consumption and Risk of Uterine Fibroids. Curr. Mol. Med. 2020, 20, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Bellon, M.; Salamanca, E.; Friedman, S.; Chan, M.; Shirazian, T. Can a Diet, Nutrition and Supplement Program Prevent Uterine Fibroid Recurrence? Pilot Results of the LIFE Program. Reprod. Sci. 2025, 32, 2216–2222. [Google Scholar] [CrossRef]
- Martire, F.G.; Costantini, E.; d’Abate, C.; Capria, G.; Piccione, E.; Andreoli, A. Endometriosis and Nutrition: Therapeutic Perspectives. J. Clin. Med. 2025, 14, 3987. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Segars, J.H.; Castellucci, M.; Ciarmela, P. Dietary phytochemicals for possible preventive and therapeutic option of uterine fibroids: Signaling pathways as target. Pharmacol. Rep. 2017, 69, 57–70. [Google Scholar] [CrossRef]
- Giampieri, F.; Islam, M.S.; Greco, S.; Gasparrini, M.; Forbes Hernandez, T.Y.; Delli Carpini, G.; Giannubilo, S.R.; Ciavattini, A.; Mezzetti, B.; Mazzoni, L.; et al. Romina: A powerful strawberry with in vitro efficacy against uterine leiomyoma cells. J. Cell Physiol. 2019, 234, 7622–7633. [Google Scholar] [CrossRef] [PubMed]
- Orta, O.R.; Terry, K.L.; Missmer, S.A.; Harris, H.R. Dairy and related nutrient intake and risk of uterine leiomyoma: A prospective cohort study. Hum. Reprod. 2020, 35, 453–463. [Google Scholar] [CrossRef]
- Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef] [PubMed]
- Belobrajdic, D.P.; James-Martin, G.; Jones, D.; Tran, C.D. Soy and Gastrointestinal Health: A Review. Nutrients 2023, 15, 1959. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Lin, Z.; Vásquez, E.; Luan, X.; Guo, F.; Xu, L. Association between obesity and the risk of uterine fibroids: A systematic review and meta-analysis. J. Epidemiol. Community Health 2021, 75, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Hazimeh, D.; Massoud, G.; Parish, M.; Singh, B.; Segars, J.; Islam, M.S. Green Tea and Benign Gynecologic Disorders: A New Trick for An Old Beverage? Nutrients 2023, 15, 1439. [Google Scholar] [CrossRef]
- Roshdy, E.; Rajaratnam, V.; Maitra, S.; Sabry, M.; Allah, A.S.; Al-Hendy, A. Treatment of symptomatic uterine fibroids with green tea extract: A pilot randomized controlled clinical study. Int. J. Womens Health 2013, 5, 477–486. [Google Scholar] [CrossRef]
- Biro, R.; Richter, R.; Ortiz, M.; Sehouli, J.; David, M. Effects of epigallocatechin gallate-enriched green tea extract capsules in uterine myomas: Results of an observational study. Arch. Gynecol. Obstet. 2021, 303, 1235–1243. [Google Scholar] [CrossRef]
- Tuzcu, M.; Sahin, N.; Ozercan, I.; Seren, S.; Sahin, K.; Kucuk, O. The effects of selenium supplementation on the spontaneously occurring fibroid tumors of oviduct, 8-hydroxy-2′-deoxyguanosine levels, and heat shock protein 70 response in Japanese quail. Nutr. Cancer 2010, 62, 495–500. [Google Scholar] [CrossRef]
- Tsuiji, K.; Takeda, T.; Li, B.; Wakabayashi, A.; Kondo, A.; Kimura, T.; Yaegashi, N. Inhibitory effect of curcumin on uterine leiomyoma cell proliferation. Gynecol. Endocrinol. 2011, 27, 512–517. [Google Scholar] [CrossRef]
- Markowska, A.; Kurzawa, P.; Bednarek, W.; Gryboś, A.; Mardas, M.; Krzyżaniak, M.; Majewski, J.; Markowska, J.; Gryboś, M.; Żurawski, J. Immunohistochemical Expression of Vitamin D Receptor in Uterine Fibroids. Nutrients 2022, 14, 3371. [Google Scholar] [CrossRef]
- Othman, E.R.; Ahmed, E.; Sayed, A.A.; Hussein, M.; Abdelaal, I.I.; Fetih, A.N.; Abou-Taleb, H.A.; Yousef, A.A. Human uterine leiomyoma contains low levels of 1, 25 dihdroxyvitamin D3, and shows dysregulated expression of vitamin D metabolizing enzymes. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 229, 117–122. [Google Scholar] [CrossRef]
- Harmon, Q.E.; Patchel, S.A.; Denslow, S.; LaPorte, F.; Cooper, T.; Wise, L.A.; Wegienka, G.; Baird, D.D. Vitamin D and uterine fibroid growth, incidence, and loss: A prospective ultrasound study. Fertil. Steril. 2022, 118, 1127–1136. [Google Scholar] [CrossRef]
- Ciavattini, A.; Delli Carpini, G.; Serri, M.; Vignini, A.; Sabbatinelli, J.; Tozzi, A.; Aggiusti, A.; Clemente, N. Hypovitaminosis D and “small burden” uterine fibroids: Opportunity for a vitamin D supplementation. Medicine 2016, 95, e5698. [Google Scholar] [CrossRef] [PubMed]
- Grandi, G.; Del Savio, M.C.; Melotti, C.; Feliciello, L.; Facchinetti, F. Vitamin D and green tea extracts for the treatment of uterine fibroids in late reproductive life: A pilot, prospective, daily-diary based study. Gynecol. Endocrinol. 2022, 38, 63–67. [Google Scholar] [CrossRef]
- Lips, P.; de Jongh, R.T.; van Schoor, N.M. Trends in Vitamin D Status Around the World. JBMR Plus 2021, 5, e10585. [Google Scholar] [CrossRef] [PubMed]
- Szydłowska, I.; Nawrocka-Rutkowska, J.; Brodowska, A.; Marciniak, A.; Starczewski, A.; Szczuko, M. Dietary Natural Compounds and Vitamins as Potential Cofactors in Uterine Fibroids Growth and Development. Nutrients 2022, 14, 734. [Google Scholar] [CrossRef]
- Wiggs, A.G.; Chandler, J.K.; Aktas, A.; Sumner, S.J.; Stewart, D.A. The Effects of Diet and Exercise on Endogenous Estrogens and Subsequent Breast Cancer Risk in Postmenopausal Women. Front. Endocrinol. 2021, 12, 732255. [Google Scholar] [CrossRef]
- Vafaei, S.; Alkhrait, S.; Yang, Q.; Ali, M.; Al-Hendy, A. Empowering Strategies for Lifestyle Interventions, Diet Modifications, and Environmental Practices for Uterine Fibroid Prevention; Unveiling the LIFE UP Awareness. Nutrients 2024, 16, 807. [Google Scholar] [CrossRef]
- Hess, J.M.; Stephensen, C.B.; Kratz, M.; Bolling, B.W. Exploring the Links between Diet and Inflammation: Dairy Foods as Case Studies. Adv. Nutr. 2021, 12 (Suppl. S1), 1S–13S. [Google Scholar] [CrossRef]
- Sun, K.; Xie, Y.; Zhao, N.; Li, Z. A case-control study of the relationship between visceral fat and development of uterine fibroids. Exp. Ther. Med. 2019, 18, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Sefah, N.; Ndebele, S.; Prince, L.; Korasare, E.; Agbleke, M.; Nkansah, A.; Thompson, H.; Al-Hendy, A.; Agbleke, A.A. Uterine fibroids—Causes, impact, treatment, and lens to the African perspective. Front. Pharmacol. 2023, 13, 1045783. [Google Scholar] [CrossRef]
- Rahbar, N.; Asgharzadeh, N.; Ghorbani, R. Effect of omega-3 fatty acids on intensity of primary dysmenorrhea. Int. J. Gynaecol. Obstet. 2012, 117, 45–47. [Google Scholar] [CrossRef]
- Mohammadi, M.M.; Mirjalili, R.; Faraji, A. The impact of omega-3 polyunsaturated fatty acids on primary dysmenorrhea: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Clin. Pharmacol. 2022, 78, 721–731. [Google Scholar] [CrossRef]
- Ciołek, A.; Kostecka, M.; Kostecka, J.; Kawecka, P.; Popik-Samborska, M. An Assessment of Women’s Knowledge of the Menstrual Cycle and the Influence of Diet and Adherence to Dietary Patterns on the Alleviation or Exacerbation of Menstrual Distress. Nutrients 2023, 16, 69. [Google Scholar] [CrossRef]
- Gill, S.K.; Rossi, M.; Bajka, B.; Whelan, K. Dietary fibre in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 101–116. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef] [PubMed]
- Bäck, M.; Hansson, G.K. Omega-3 fatty acids, cardiovascular risk, and the resolution of inflammation. FASEB J. 2019, 33, 1536–1539. [Google Scholar] [CrossRef]
- Raad, T.; Griffin, A.; George, E.S.; Larkin, L.; Fraser, A.; Kennedy, N.; Tierney, A.C. Dietary Interventions with or without Omega-3 Supplementation for the Management of Rheumatoid Arthritis: A Systematic Review. Nutrients 2021, 13, 3506. [Google Scholar] [CrossRef] [PubMed]
- Harris, H.R.; Eliassen, A.H.; Doody, D.R.; Terry, K.L.; Missmer, S.A. Dietary fat intake, erythrocyte fatty acids, and risk of uterine fibroids. Fertil. Steril. 2020, 114, 837–847. [Google Scholar] [CrossRef]
- Novakovic, R.; Rajkovic, J.; Gostimirovic, M.; Gojkovic-Bukarica, L.; Radunovic, N. Resveratrol and Reproductive Health. Life 2022, 12, 294. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Laudisio, D.; Frias-Toral, E.; Barrea, L.; Muscogiuri, G.; Savastano, S.; Colao, A. Anti-Inflammatory Nutrients and Obesity-Associated Metabolic-Inflammation: State of the Art and Future Direction. Nutrients 2022, 14, 1137. [Google Scholar] [CrossRef]
- Alasalvar, C.; Chang, S.K.; Kris-Etherton, P.M.; Sullivan, V.K.; Petersen, K.S.; Guasch-Ferré, M.; Jenkins, D.J.A. Dried Fruits: Bioactives, Effects on Gut Microbiota, and Possible Health Benefits-An Update. Nutrients 2023, 15, 1611. [Google Scholar] [CrossRef]
- Laganà, A.S.; Vitale, S.G.; Ban Frangež, H.; Vrtačnik-Bokal, E.; D’Anna, R. Vitamin D in human reproduction: The more, the better? An evidence-based critical appraisal. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 4243–4251. [Google Scholar]
- Ali, M.; Shahin, S.M.; Sabri, N.A.; Al-Hendy, A.; Yang, Q. Hypovitaminosis D exacerbates the DNA damage load in human uterine fibroids, which is ameliorated by vitamin D3 treatment. Acta Pharmacol. Sin. 2019, 40, 957–970. [Google Scholar] [CrossRef]
- Kn, S.; Shetty, S.S.; Shetty, P. Lipid-laden uterus: Investigating uterine fibroids and lipid association. Pathol. Res. Pract. 2025, 266, 155772. [Google Scholar] [CrossRef]
- Sun, Y.; Han, X.; Hou, Z.; Deng, H.; Cheng, N.; Zhang, N.; Zhang, J.; Li, Y.; Wang, Q.; Yin, J.; et al. Association between leisure sedentary behaviour and uterine fibroids in non-menopausal women: A population-based study. BMJ Open 2023, 13, e073592. [Google Scholar] [CrossRef] [PubMed]
- Mitro, S.D.; Waetjen, L.E.; Lee, C.; Wise, L.A.; Zaritsky, E.; Harlow, S.D.; El Khoudary, S.R.; Santoro, N.; Solomon, D.H.; Thurston, R.C.; et al. Diabetes and Uterine Fibroid Diagnosis in Midlife: Study of Women’s Health Across the Nation (SWAN). J. Clin. Endocrinol. Metab. 2025, 110, e1934–e1942. [Google Scholar] [CrossRef] [PubMed]
- Petraglia, F.; Dolmans, M.M. Iron deficiency anemia: Impact on women’s reproductive health. Fertil. Steril. 2022, 118, 605–606. [Google Scholar] [CrossRef] [PubMed]
- Skolmowska, D.; Głąbska, D.; Kołota, A.; Guzek, D. Effectiveness of Dietary Interventions to Treat Iron-Deficiency Anemia in Women: A Systematic Review of Randomized Controlled Trials. Nutrients 2022, 14, 2724. [Google Scholar] [CrossRef]
- Pourmatroud, E.; Hormozi, L.; Hemadi, M.; Golshahi, R. Intravenous ascorbic acid (vitamin C) administration in myomectomy: A prospective, randomized, clinical trial. Arch. Gynecol. Obstet. 2012, 285, 111–115. [Google Scholar] [CrossRef]
- Abu-Zaid, A.; Alrashidi, H.; Almouh, A.; Abualsaud, Z.M.; Saleh, A.M.; Aldawsari, S.B.; Alajmi, M.M.; Alomar, O. Ascorbic Acid for Prevention of Intraoperative Blood Loss and Related Complications During Myomectomy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Cureus 2022, 14, e31571. [Google Scholar] [CrossRef]
- Lee, B.; Kim, K.; Cho, H.Y.; Yang, E.J.; Suh, D.H.; No, J.H.; Lee, J.R.; Hwang, J.W.; Do, S.H.; Kim, Y.B. Effect of intravenous ascorbic acid infusion on blood loss during laparoscopic myomectomy: A randomized, double-blind, placebo-controlled trial. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 199, 187–191. [Google Scholar] [CrossRef]
- Monleón, J.; Cañete, M.L.; Caballero, V.; Del Campo, M.; Doménech, A.; Losada, M.Á.; Calaf, J. EME Study Group Epidemiology of uterine myomas and clinical practice in Spain: An observational study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 226, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, E.; As-Sanie, S.; Marsh, E.E. Epidemiology and management of uterine fibroids. Int. J. Gynaecol. Obstet. 2020, 149, 3–9. [Google Scholar] [CrossRef]
- Stewart, E.A.; Cookson, C.L.; Gandolfo, R.A.; Schulze-Rath, R. Epidemiology of uterine fibroids: A systematic review. BJOG 2017, 124, 1501–1512. [Google Scholar] [CrossRef] [PubMed]
- Baird, D.D.; Dunson, D.B.; Hill, M.C.; Cousins, D.; Schectman, J.M. High cumulative incidence of uterine leiomyoma in black and white women: Ultrasound evidence. Am. J. Obstet. Gynecol. 2003, 188, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Cardozo, E.R.; Clark, A.D.; Banks, N.K.; Henne, M.B.; Stegmann, B.J.; Segars, J.H. The estimated annual cost of uterine leiomyomata in the United States. Am. J. Obstet. Gynecol. 2012, 206, 211.e1–211.e9. [Google Scholar] [CrossRef]
- Bulun, S.E. Uterine fibroids. N. Engl. J. Med. 2013, 369, 1344–1355. [Google Scholar] [CrossRef]
- Lee, G.; Kim, S.; Bastiaensen, M.; Malarvannan, G.; Poma, G.; Caballero Casero, N.; Gys, C.; Covaci, A.; Lee, S.; Lim, J.E.; et al. Exposure to organophosphate esters, phthalates, and alternative plasticizers in association with uterine fibroids. Environ. Res. 2020, 189, 109874. [Google Scholar] [CrossRef]
- Chwalisz, K.; Taylor, H. Current and Emerging Medical Treatments for Uterine Fibroids. Semin. Reprod. Med. 2017, 35, 510–522. [Google Scholar] [CrossRef]
- McGuire, M.M.; Yatsenko, A.; Hoffner, L.; Jones, M.; Surti, U.; Rajkovic, A. Whole exome sequencing in a random sample of North American women with leiomyomas identifies MED12 mutations in majority of uterine leiomyomas. PLoS ONE 2012, 7, e33251. [Google Scholar] [CrossRef]
- Park, M.J.; Shen, H.; Kim, N.H.; Gao, F.; Failor, C.; Knudtson, J.F.; McLaughlin, J.; Halder, S.K.; Heikkinen, T.A.; Vahteristo, P.; et al. Mediator Kinase Disruption in MED12-Mutant Uterine Fibroids from Hispanic Women of South Texas. J. Clin. Endocrinol. Metab. 2018, 103, 4283–4292. [Google Scholar] [CrossRef]
- Mehine, M.; Mäkinen, N.; Heinonen, H.R.; Aaltonen, L.A.; Vahteristo, P. Genomics of uterine leiomyomas: Insights from high-throughput sequencing. Fertil. Steril. 2014, 102, 621–629. [Google Scholar] [CrossRef]
- Markowski, D.N.; Bartnitzke, S.; Löning, T.; Drieschner, N.; Helmke, B.M.; Bullerdiek, J. MED12 mutations in uterine fibroids--their relationship to cytogenetic subgroups. Int. J. Cancer 2012, 131, 1528–1536. [Google Scholar] [CrossRef] [PubMed]
- Hodge, J.C.; Pearce, K.E.; Clayton, A.C.; Taran, F.A.; Stewart, E.A. Uterine cellular leiomyomata with chromosome 1p deletions represent a distinct entity. Am. J. Obstet. Gynecol. 2014, 210, 572.e1–572.e7. [Google Scholar] [CrossRef]
- Vanharanta, S.; Wortham, N.C.; Laiho, P.; Sjöberg, J.; Aittomäki, K.; Arola, J.; Tomlinson, I.P.; Karhu, A.; Arango, D.; Aaltonen, L.A. 7q deletion mapping and expression profiling in uterine fibroids. Oncogene 2005, 24, 6545–6554. [Google Scholar] [CrossRef] [PubMed]
- Bowden, W.; Skorupski, J.; Kovanci, E.; Rajkovic, A. Detection of novel copy number variants in uterine leiomyomas using high-resolution SNP arrays. Mol. Hum. Reprod. 2009, 15, 563–568. [Google Scholar] [CrossRef]
- Mehine, M.; Kaasinen, E.; Mäkinen, N.; Katainen, R.; Kämpjärvi, K.; Pitkänen, E.; Heinonen, H.R.; Bützow, R.; Kilpivaara, O.; Kuosmanen, A.; et al. Characterization of uterine leiomyomas by whole-genome sequencing. N. Engl. J. Med. 2013, 369, 43–53. [Google Scholar] [CrossRef]
- Yatsenko, S.A.; Mittal, P.; Wood-Trageser, M.A.; Jones, M.W.; Surti, U.; Edwards, R.P.; Sood, A.K.; Rajkovic, A. Highly heterogeneous genomic landscape of uterine leiomyomas by whole exome sequencing and genome-wide arrays. Fertil. Steril. 2017, 107, 457–466.e9. [Google Scholar] [CrossRef]
- Wang, J.; Xu, P.; Zou, G.; Che, X.; Jiang, X.; Liu, Y.; Mao, X.; Zhang, X. Integrating Spatial Transcriptomics and Single-nucleus RNA Sequencing Reveals the Potential Therapeutic Strategies for Uterine Leiomyoma. Int. J. Biol. Sci. 2023, 19, 2515–2530. [Google Scholar] [CrossRef]
- Goad, J.; Rudolph, J.; Zandigohar, M.; Tae, M.; Dai, Y.; Wei, J.J.; Bulun, S.E.; Chakravarti, D.; Rajkovic, A. Single-cell sequencing reveals novel cellular heterogeneity in uterine leiomyomas. Hum. Reprod. 2022, 37, 2334–2349. [Google Scholar] [CrossRef] [PubMed]
- Kämpjärvi, K.; Park, M.J.; Mehine, M.; Kim, N.H.; Clark, A.D.; Bützow, R.; Böhling, T.; Böhm, J.; Mecklin, J.P.; Järvinen, H.; et al. Mutations in Exon 1 highlight the role of MED12 in uterine leiomyomas. Hum. Mutat. 2014, 35, 1136–1141. [Google Scholar] [CrossRef]
- Mehine, M.; Kaasinen, E.; Heinonen, H.R.; Mäkinen, N.; Kämpjärvi, K.; Sarvilinna, N.; Aavikko, M.; Vähärautio, A.; Pasanen, A.; Bützow, R.; et al. Integrated data analysis reveals uterine leiomyoma subtypes with distinct driver pathways and biomarkers. Proc. Natl. Acad. Sci. USA 2016, 113, 1315–1320. [Google Scholar] [CrossRef]
- George, J.W.; Fan, H.; Johnson, B.; Carpenter, T.J.; Foy, K.K.; Chatterjee, A.; Patterson, A.L.; Koeman, J.; Adams, M.; Madaj, Z.B.; et al. Integrated Epigenome, Exome, and Transcriptome Analyses Reveal Molecular Subtypes and Homeotic Transformation in Uterine Fibroids. Cell Rep. 2019, 29, 4069–4085.e6. [Google Scholar] [CrossRef]
- Mäkinen, N.; Heinonen, H.R.; Moore, S.; Tomlinson, I.P.; van der Spuy, Z.M.; Aaltonen, L.A. MED12 exon 2 mutations are common in uterine leiomyomas from South African patients. Oncotarget 2011, 2, 966–969. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.K.; Ong, C.K.; Tan, J.; Thike, A.A.; Ng, C.C.; Rajasegaran, V.; Myint, S.S.; Nagarajan, S.; Nasir, N.D.; McPherson, J.R.; et al. Exome sequencing identifies highly recurrent MED12 somatic mutations in breast fibroadenoma. Nat. Genet. 2014, 46, 877–880. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Nelson, W.; Li, H.; Xu, Y.D.; Dai, X.J.; Wang, Y.X.; Ding, Y.B.; Li, Y.P.; Li, T. Frequency of MED12 Mutation in Relation to Tumor and Patient’s Clinical Characteristics: A Meta-analysis. Reprod. Sci. 2022, 29, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.D.; Oldenbroek, M.; Boyer, T.G. Mediator kinase module and human tumorigenesis. Crit. Rev. Biochem. Mol. Biol. 2015, 50, 393–426. [Google Scholar] [CrossRef]
- Mittal, P.; Shin, Y.H.; Yatsenko, S.A.; Castro, C.A.; Surti, U.; Rajkovic, A. Med12 gain-of-function mutation causes leiomyomas and genomic instability. J. Clin. Investig. 2015, 125, 3280–3284. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mäkinen, N.; Vahteristo, P.; Kämpjärvi, K.; Arola, J.; Bützow, R.; Aaltonen, L.A. MED12 exon 2 mutations in histopathological uterine leiomyoma variants. Eur. J. Hum. Genet. 2013, 21, 1300–1303. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sadeghi, S.; Khorrami, M.; Amin-Beidokhti, M.; Abbasi, M.; Kamalian, Z.; Irani, S.; Omrani, M.; Azmoodeh, O.; Mirfakhraie, R. The study of MED12 gene mutations in uterine leiomyomas from Iranian patients. Tumour Biol. 2016, 37, 1567–1571. [Google Scholar] [CrossRef]
- Zhang, Q.; Ubago, J.; Li, L.; Guo, H.; Liu, Y.; Qiang, W.; Kim, J.J.; Kong, B.; Wei, J.J. Molecular analyses of 6 different types of uterine smooth muscle tumors: Emphasis in atypical leiomyoma. Cancer 2014, 120, 3165–3177. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C.; Chao, T.C.; Kim, H.J.; Cholko, T.; Chen, S.F.; Li, G.; Snyder, L.; Nakanishi, K.; Chang, C.E.; Murakami, K.; et al. Structure and noncanonical Cdk8 activation mechanism within an Argonaute-containing Mediator kinase module. Sci. Adv. 2021, 7, eabd4484. [Google Scholar] [CrossRef] [PubMed]
- Turunen, M.; Spaeth, J.M.; Keskitalo, S.; Park, M.J.; Kivioja, T.; Clark, A.D.; Mäkinen, N.; Gao, F.; Palin, K.; Nurkkala, H.; et al. Uterine leiomyoma–linked MED12 mutations disrupt mediator-associated CDK activity. Cell Rep. 2014, 7, 654–660. [Google Scholar] [CrossRef]
- Spaeth, J.M.; Kim, N.H.; Boyer, T.G. Mediator and human disease. Semin. Cell Dev. Biol. 2011, 22, 776–787. [Google Scholar] [CrossRef]
- Fant, C.B.; Taatjes, D.J. Regulatory functions of the Mediator kinases CDK8 and CDK19. Transcription 2019, 10, 76–90. [Google Scholar] [CrossRef] [PubMed]
- El Andaloussi, A.; Al-Hendy, A.; Ismail, N.; Boyer, T.G.; Halder, S.K. Introduction of Somatic Mutation in MED12 Induces Wnt4/β-Catenin and Disrupts Autophagy in Human Uterine Myometrial Cell. Reprod. Sci. 2020, 27, 823–832. [Google Scholar] [CrossRef]
- Liu, S.; Yin, P.; Kujawa, S.A.; Coon JS5th Okeigwe, I.; Bulun, S.E. Progesterone receptor integrates the effects of mutated MED12 and altered DNA methylation to stimulate RANKL expression and stem cell proliferation in uterine leiomyoma. Oncogene 2019, 38, 2722–2735. [Google Scholar] [CrossRef]
- Asano, R.; Asai-Sato, M.; Matsukuma, S.; Mizushima, T.; Taguri, M.; Yoshihara, M.; Inada, M.; Fukui, A.; Suzuki, Y.; Miyagi, Y.; et al. Expression of erythropoietin messenger ribonucleic acid in wild-type MED12 uterine leiomyomas under estrogenic influence: New insights into related growth disparities. Fertil. Steril. 2019, 111, 178–185. [Google Scholar] [CrossRef]
- Moyo, M.B.; Parker, J.B.; Chakravarti, D. Altered chromatin landscape and enhancer engagement underlie transcriptional dysregulation in MED12 mutant uterine leiomyomas. Nat. Commun. 2020, 11, 1019. [Google Scholar] [CrossRef]
- Paul, E.N.; Grey, J.A.; Carpenter, T.J.; Madaj, Z.B.; Lau, K.H.; Givan, S.A.; Burns, G.W.; Chandler, R.L.; Wegienka, G.R.; Shen, H.; et al. Transcriptome and DNA methylome analyses reveal underlying mechanisms for the racial disparity in uterine fibroids. JCI Insight 2022, 7, e160274. [Google Scholar] [CrossRef]
- Maekawa, R.; Sato, S.; Tamehisa, T.; Sakai, T.; Kajimura, T.; Sueoka, K.; Sugino, N. Different DNA methylome, transcriptome and histological features in uterine fibroids with and without MED12 mutations. Sci. Rep. 2022, 12, 8912. [Google Scholar] [CrossRef]
- Chuang, T.D.; Gao, J.; Quintanilla, D.; McSwiggin, H.; Boos, D.; Yan, W.; Khorram, O. Differential Expression of MED12-Associated Coding RNA Transcripts in Uterine Leiomyomas. Int. J. Mol. Sci. 2023, 24, 3742. [Google Scholar] [CrossRef]
- Gallagher, C.S.; Morton, C.C. Genetic Association Studies in Uterine Fibroids: Risk Alleles Presage the Path to Personalized Therapies. Semin. Reprod. Med. 2016, 34, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Quade, B.J.; Weremowicz, S.; Neskey, D.M.; Vanni, R.; Ladd, C.; Dal Cin, P.; Morton, C.C. Fusion transcripts involving HMGA2 are not a common molecular mechanism in uterine leiomyomata with rearrangements in 12q15. Cancer Res. 2003, 63, 1351–1358. [Google Scholar] [PubMed]
- Gross, K.L.; Neskey, D.M.; Manchanda, N.; Weremowicz, S.; Kleinman, M.S.; Nowak, R.A.; Ligon, A.H.; Rogalla, P.; Drechsler, K.; Bullerdiek, J.; et al. HMGA2 expression in uterine leiomyomata and myometrium: Quantitative analysis and tissue culture studies. Genes Chromosomes Cancer 2003, 38, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Stewart, L.; Glenn, G.M.; Stratton, P.; Goldstein, A.M.; Merino, M.J.; Tucker, M.A.; Linehan, W.M.; Toro, J.R. Association of germline mutations in the fumarate hydratase gene and uterine fibroids in women with hereditary leiomyomatosis and renal cell cancer. Arch. Dermatol. 2008, 144, 1584–1592. [Google Scholar] [CrossRef]
- Badeloe, S.; Bladergroen, R.S.; Jonkman, M.F.; Burrows, N.P.; Steijlen, P.M.; Poblete-Gutiérrez, P.; van Steensel, M.A.; van Geel, M.; Frank, J. Hereditary multiple cutaneous leiomyoma resulting from novel mutations in the fumarate hydratase gene. J. Dermatol. Sci. 2008, 51, 139–143. [Google Scholar] [CrossRef]
- Wheeler, K.C.; Warr, D.J.; Warsetsky, S.I.; Barmat, L.I. Novel fumarate hydratase mutation in a family with atypical uterine leiomyomas and hereditary leiomyomatosis and renal cell cancer. Fertil. Steril. 2016, 5, 144–148. [Google Scholar] [CrossRef]
- Vanharanta, S.; Pollard, P.J.; Lehtonen, H.J.; Laiho, P.; Sjöberg, J.; Leminen, A.; Aittomäki, K.; Arola, J.; Kruhoffer, M.; Orntoft, T.F.; et al. Distinct expression profile in fumarate-hydratase-deficient uterine fibroids. Hum. Mol. Genet. 2006, 15, 97–103. [Google Scholar] [CrossRef]
- Berta, D.G.; Kuisma, H.; Välimäki, N.; Räisänen, M.; Jäntti, M.; Pasanen, A.; Karhu, A.; Kaukomaa, J.; Taira, A.; Cajuso, T.; et al. Deficient H2A.Z deposition is associated with genesis of uterine leiomyoma. Nature 2021, 596, 398–403. [Google Scholar] [CrossRef]
- Yang, Q.; Laknaur, A.; Elam, L.; Ismail, N.; Gavrilova-Jordan, L.; Lue, J.; Diamond, M.P.; Al-Hendy, A. Identification of Polycomb Group Protein EZH2-Mediated DNA Mismatch Repair Gene MSH2 in Human Uterine Fibroids. Reprod. Sci. 2016, 23, 1314–1325. [Google Scholar] [CrossRef]
- Yang, Q.; Nair, S.; Laknaur, A.; Ismail, N.; Diamond, M.P.; Al-Hendy, A. The Polycomb Group Protein EZH2 Impairs DNA Damage Repair Gene Expression in Human Uterine Fibroids. Biol. Reprod. 2016, 94, 69. [Google Scholar] [CrossRef]
- Prusinski Fernung, L.E.; Al-Hendy, A.; Yang, Q. A Preliminary Study: Human Fibroid Stro-1+/CD44+ Stem Cells Isolated from Uterine Fibroids Demonstrate Decreased DNA Repair and Genomic Integrity Compared to Adjacent Myometrial Stro-1+/CD44+ Cells. Reprod. Sci. 2019, 26, 619–638. [Google Scholar] [CrossRef]
- Prusinski Fernung, L.E.; Yang, Q.; Sakamuro, D.; Kumari, A.; Mas, A.; Al-Hendy, A. Endocrine disruptor exposure during development increases incidence of uterine fibroids by altering DNA repair in myometrial stem cells. Biol. Reprod. 2018, 99, 735–748. [Google Scholar] [CrossRef]
- Chatterjee, N.; Walker, G.C. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 2017, 58, 235–263. [Google Scholar] [CrossRef]
- Navarro, A.; Yin, P.; Ono, M.; Monsivais, D.; Moravek, M.B.; Coon, J.S.; Dyson, M.T.; Wei, J.J.; Bulun, S.E. 5-Hydroxymethylcytosine promotes proliferation of human uterine leiomyoma: A biological link to a new epigenetic modification in benign tumors. J. Clin. Endocrinol. Metab. 2014, 99, E2437–E2445. [Google Scholar] [CrossRef]
- Ciebiera, M.; Włodarczyk, M.; Zgliczyński, S.; Łoziński, T.; Walczak, K.; Czekierdowski, A. The Role of miRNA and Related Pathways in Pathophysiology of Uterine Fibroids-From Bench to Bedside. Int. J. Mol. Sci. 2020, 21, 3016. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, X.; Obijuru, L.; Laser, J.; Aris, V.; Lee, P.; Mittal, K.; Soteropoulos, P.; Wei, J.J. A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas. Genes Chromosomes Cancer 2007, 46, 336–347. [Google Scholar] [CrossRef] [PubMed]
- Borahay, M.A.; Al-Hendy, A.; Kilic, G.S.; Boehning, D. Signaling Pathways in Leiomyoma: Understanding Pathobiology and Implications for Therapy. Mol. Med. 2015, 21, 242–256. [Google Scholar] [CrossRef] [PubMed]
- Nierth-Simpson, E.N.; Martin, M.M.; Chiang, T.C.; Melnik, L.I.; Rhodes, L.V.; Muir, S.E.; Burow, M.E.; McLachlan, J.A. Human uterine smooth muscle and leiomyoma cells differ in their rapid 17beta-estradiol signaling: Implications for proliferation. Endocrinology 2009, 150, 2436–2445. [Google Scholar] [CrossRef] [PubMed]
- Borahay, M.A.; Asoglu, M.R.; Mas, A.; Adam, S.; Kilic, G.S.; Al-Hendy, A. Estrogen Receptors and Signaling in Fibroids: Role in Pathobiology and Therapeutic Implications. Reprod. Sci. 2017, 24, 1235–1244. [Google Scholar] [CrossRef]
- Martire, F.G.; Costantini, E.; D’Abate, C.; Schettini, G.; Sorrenti, G.; Centini, G.; Zupi, E.; Lazzeri, L. Endometriosis and Adenomyosis: From Pathogenesis to Follow-Up. Curr. Issues Mol. Biol. 2025, 47, 298. [Google Scholar] [CrossRef]
- Bulun, S.E.; Moravek, M.B.; Yin, P.; Ono, M.; Coon, J.S.; Dyson, M.T.; Navarro, A.; Marsh, E.E.; Zhao, H.; Maruyama, T.; et al. Uterine Leiomyoma Stem Cells: Linking Progesterone to Growth. Semin. Reprod. Med. 2015, 33, 357–365. [Google Scholar] [CrossRef]
- Hodges, L.C.; Houston, K.D.; Hunter, D.S.; Fuchs-Young, R.; Zhang, Z.; Wineker, R.C.; Walker, C.L. Transdominant suppression of estrogen receptor signaling by progesterone receptor ligands in uterine leiomyoma cells. Mol. Cell Endocrinol. 2002, 196, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, H.; Kurachi, O.; Shimomura, Y.; Samoto, T.; Maruo, T. Molecular bases for the actions of ovarian sex steroids in the regulation of proliferation and apoptosis of human uterine leiomyoma. Oncology 1999, 57 (Suppl. S2), 49–58. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, H.; Ishi, K.; Serna, V.A.; Kakazu, R.; Bulun, S.E.; Kurita, T. Progesterone is essential for maintenance and growth of uterine leiomyoma. Endocrinology 2010, 151, 2433–2442. [Google Scholar] [CrossRef]
- Kumar, V.; Abbas, A.K.; Aster, J.C. Robbins and Cotran—Pathologic Basis of Disease, 10th ed.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Pakiz, M.; Potocnik, U.; But, I. Solitary and multiple uterine leiomyomas among Caucasian women: Two different disorders? Fertil. Steril. 2010, 94, 2291–2295. [Google Scholar] [CrossRef]
- Centini, G.; Cannoni, A.; Ginetti, A.; Colombi, I.; Giorgi, M.; Schettini, G.; Martire, F.G.; Lazzeri, L.; Zupi, E. Tailoring the Diagnostic Pathway for Medical and Surgical Treatment of Uterine Fibroids: A Narrative Review. Diagnostics 2024, 14, 2046. [Google Scholar] [CrossRef]
- Barjon, K.; Kahn, J.; Singh, M. Uterine Leiomyomata. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Robbins, J.B.; Sadowski, E.A.; Maturen, K.E.; Akin, E.A.; Ascher, S.M.; Brook, O.R.; Cassella, C.R.; Dassel, M.; Henrichsen, T.L.; Learman, L.A.; et al. ACR Appropriateness Criteria® Abnormal Uterine Bleeding. J. Am. Coll. Radiol. 2020, 17, S336–S345. [Google Scholar] [CrossRef]
- Woźniak, A.; Woźniak, S. Ultrasonography of uterine leiomyomas. Prz. Menopauzalny 2017, 16, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Stewart, E.A.; Laughlin-Tommaso, S.K.; Catherino, W.H.; Lalitkumar, S.; Gupta, D.; Vollenhoven, B. Uterine fibroids. Nat. Rev. Dis. Primers 2016, 2, 16043. [Google Scholar] [CrossRef]
- Tanos, V.; Berry, K.E. Benign and malignant pathology of the uterus. Best. Pract. Res. Clin. Obstet. Gynaecol. 2018, 46, 12–30. [Google Scholar] [CrossRef]
- Bajaj, S.; Gopal, N.; Clingan, M.J.; Bhatt, S. A pictorial review of ultrasonography of the FIGO classification for uterine leiomyomas. Abdom. Radiol. 2022, 47, 341–351. [Google Scholar] [CrossRef]
- Sharma, K.; Bora, M.K.; Venkatesh, B.P.; Barman, P.; Roy, S.K.; Jayagurunathan, U.; Sellamuthu, E.; Moidu, F. Role of 3D Ultrasound and Doppler in Differentiating Clinically Suspected Cases of Leiomyoma and Adenomyosis of Uterus. J. Clin. Diagn. Res. 2015, 9, QC08–QC12. [Google Scholar] [CrossRef]
- Bittencourt, C.A.; Dos Santos Simões, R.; Bernardo, W.M.; Fuchs, L.F.P.; Soares Júnior, J.M.; Pastore, A.R.; Baracat, E.C. Accuracy of saline contrast sonohysterography in detection of endometrial polyps and submucosal leiomyomas in women of reproductive age with abnormal uterine bleeding: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2017, 50, 32–39. [Google Scholar] [CrossRef]
- Russo, C.; Camilli, S.; Martire, F.G.; Di Giovanni, A.; Lazzeri, L.; Malzoni, M.; Zupi, E.; Exacoustos, C. Ultrasound features of highly vascularized uterine myomas (uterine smooth muscle tumors) and correlation with histopathology. Ultrasound Obstet. Gynecol. 2022, 60, 269–276. [Google Scholar] [CrossRef]
- Raffone, A.; Raimondo, D.; Neola, D.; Travaglino, A.; Raspollini, A.; Giorgi, M.; Santoro, A.; De Meis, L.; Zannoni, G.F.; Seracchioli, R.; et al. Diagnostic Accuracy of Ultrasound in the Diagnosis of Uterine Leiomyomas and Sarcomas. J. Minim. Invasive Gynecol. 2024, 31, 28–36.e1. [Google Scholar] [CrossRef] [PubMed]
- Munro, M.G.; Critchley, H.O.; Broder, M.S.; Fraser, I.S.; FIGO Working Group on Menstrual Disorders. FIGO classification system (PALM-COEIN) for causes of abnormal uterine bleeding in nongravid women of reproductive age. Int. J. Gynaecol. Obstet. 2011, 113, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Vannuccini, S.; Petraglia, F.; Carmona, F.; Calaf, J.; Chapron, C. The modern management of uterine fibroids-related abnormal uterine bleeding. Fertil. Steril. 2024, 122, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Micić, J.; Macura, M.; Andjić, M.; Ivanović, K.; Dotlić, J.; Micić, D.D.; Arsenijević, V.; Stojnić, J.; Bila, J.; Babić, S.; et al. Currently Available Treatment Modalities for Uterine Fibroids. Medicina 2024, 60, 868. [Google Scholar] [CrossRef]
- Bitton, R.R.; Fast, A.; Vu, K.N.; Lum, D.A.; Chen, B.; Hesley, G.K.; Raman, S.S.; Matsumoto, A.H.; Price, T.M.; Tempany, C.; et al. What predicts durable symptom relief of uterine fibroids treated with MRI-guided focused ultrasound? A multicenter trial in 8 academic centers. Eur. Radiol. 2023, 33, 7360–7370. [Google Scholar] [CrossRef] [PubMed]
- Fasciani, A.; Turtulici, G.; Pedullà, A.; Sirito, R. Uterine Myoma Position-based Radiofrequency Ablation (UMP-b RFA): 36 months follow-up clinical outcomes. Eur. J. Obstet. Gynecol. Reprod. Biol. 2023, 281, 23–28. [Google Scholar] [CrossRef]
- Makary, M.S.; Zane, K.; Hwang, G.L.; Kim, C.Y.; Ahmed, O.; Knavel Koepsel, E.M.; Monroe, E.J.; Scheidt, M.J.; Smolock, A.R.; Stewart, E.A.; et al. ACR Appropriateness Criteria® Management of Uterine Fibroids: 2023 Update. J. Am. Coll. Radiol. 2024, 21, S203–S218. [Google Scholar] [CrossRef]
- Krishnan, M.; Narice, B.; Cheong, Y.C.; Lumsden, M.A.; Daniels, J.P.; Hickey, M.; Gupta, J.K.; Metwally, M. Surgery and minimally invasive treatments for uterine fibroids. Cochrane Database Syst. Rev. 2024, 6, CD015650. [Google Scholar] [CrossRef]
- Daniels, J.; Middleton, L.J.; Cheed, V.; McKinnon, W.; Sirkeci, F.; Manyonda, I.; Belli, A.M.; Lumsden, M.A.; Moss, J.; Wu, O.; et al. Uterine artery embolization or myomectomy for women with uterine fibroids: Four-year follow-up of a randomised controlled trial. Eur. J. Obstet. Gynecol. Reprod. Biol. X 2021, 13, 100139. [Google Scholar] [CrossRef]
- Sirkeci, F.; Moss, J.; Belli, A.M.; McPherson, K.; Daniels, J.; Manyonda, I.; Middleton, L.; Cheed, V.; Wu, O.; Lumsden, M.A.; et al. Effects on heavy menstrual bleeding and pregnancy of uterine artery embolization (UAE) or myomectomy for women with uterine fibroids wishing to avoid hysterectomy: The FEMME randomized controlled trial. Int. J. Gynaecol. Obstet. 2023, 160, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Gulisano, M.; Gulino, F.A.; Incognito, G.G.; Cimino, M.; Dilisi, V.; Di Stefano, A.; D’Urso, V.; Cannone, F.; Martire, F.G.; Palumbo, M. Role of Hysteroscopy on Infertility: The Eternal Dilemma. Clin. Exp. Obstet. Gynecol. 2023, 50, 99. [Google Scholar] [CrossRef]
- Management of Symptomatic Uterine Leiomyomas: ACOG Practice Bulletin, Number 228. Obstet. Gynecol. 2021, 137, e100–e115. [CrossRef] [PubMed]
- Azadi, A.; Masoud, A.T.; Ulibarri, H.; Arroyo, A.; Coriell, C.; Goetz, S.; Moir, C.; Moberly, A.; Gonzalez, D.; Blanco, M.; et al. Vaginal Hysterectomy Compared with Laparoscopic Hysterectomy in Benign Gynecologic Conditions: A Systematic Review and Meta-analysis. Obstet. Gynecol. 2023, 142, 1373–1394. [Google Scholar] [CrossRef]
- Anchan, R.M.; Spies, J.B.; Zhang, S.; Wojdyla, D.; Bortoletto, P.; Terry, K.; Disler, E.; Milne, A.; Gargiulo, A.; Petrozza, J.; et al. Long-term health-related quality of life and symptom severity following hysterectomy, myomectomy, or uterine artery embolization for the treatment of symptomatic uterine fibroids. Am. J. Obstet. Gynecol. 2023, 229, 275.e1–275.e17. [Google Scholar] [CrossRef]
- Sohn, G.S.; Cho, S.; Kim, Y.M.; Cho, C.H.; Kim, M.R.; Lee, S.R.; Working Group of Society of Uterine Leiomyoma. Current medical treatment of uterine fibroids. Obstet. Gynecol. Sci. 2018, 61, 192–201. [Google Scholar] [CrossRef]
- Sangkomkamhang, U.S.; Lumbiganon, P.; Pattanittum, P. Progestogens or progestogen-releasing intrauterine systems for uterine fibroids (other than preoperative medical therapy). Cochrane Database Syst. Rev. 2020, 11, CD008994. [Google Scholar] [CrossRef]
- Bryant-Smith, A.C.; Lethaby, A.; Farquhar, C.; Hickey, M. Antifibrinolytics for heavy menstrual bleeding. Cochrane Database Syst. Rev. 2018, 4, CD000249. [Google Scholar] [CrossRef]
- Lee, W.J.; Kim, M.D.; Han, K.; Won, Y.R.; Alqahtani, A.; Moon, S.; An, H. Potential benefit of GnRH-agonist treatment before uterine artery embolization for large fibroids: MRI prediction of fibroid volume reduction. Acta Radiol. 2022, 63, 1425–1432. [Google Scholar] [CrossRef] [PubMed]
- Sánchez Martín, M.J.; Huerga López, C.; Cristóbal García, I.; Cristóbal Quevedo, I. Efficacy of GnRH antagonists in the treatment of uterine fibroids: A meta-analysis. Arch. Gynecol. Obstet. 2025, 311, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, J.; Liu, Y.; Zheng, Y.; Wang, X.; Liu, G. A systematic review and meta-analysis comparing the use of elagolix therapy alone or in combination with add-back therapy to treat women with uterine fibroid associated heavy menstrual bleeding. Gland. Surg. 2025, 14, 60–73. [Google Scholar] [CrossRef]
- Carr, B.R.; Stewart, E.A.; Archer, D.F.; Al-Hendy, A.; Bradley, L.; Watts, N.B.; Diamond, M.P.; Gao, J.; Owens, C.D.; Chwalisz, K.; et al. Elagolix Alone or with Add-Back Therapy in Women with Heavy Menstrual Bleeding and Uterine Leiomyomas: A Randomized Controlled Trial. Obstet. Gynecol. 2018, 132, 1252–1264. [Google Scholar] [CrossRef]
- Hoshiai, H.; Seki, Y.; Kusumoto, T.; Kudou, K.; Tanimoto, M. Relugolix for oral treatment of uterine leiomyomas: A dose-finding, randomized, controlled trial. BMC Womens Health 2021, 21, 375. [Google Scholar] [CrossRef] [PubMed]
- Muzii, L.; Galati, G.; Mercurio, A.; Olivieri, C.; Scarcella, L.; Azenkoud, I.; Tripodi, R.; Vignali, M.; Angioni, S.; Maiorana, A. Presurgical treatment of uterine myomas with the GnRH-antagonist relugolix in combination therapy: An observational study. Sci. Rep. 2024, 14, 22481. [Google Scholar] [CrossRef]
- Al-Hendy, A.; Venturella, R.; Arjona Ferreira, J.C.; Li, Y.; Soulban, G.; Wagman, R.B.; Lukes, A.S. LIBERTY randomized withdrawal study: Relugolix combination therapy for heavy menstrual bleeding associated with uterine fibroids. Am. J. Obstet. Gynecol. 2023, 229, 662.e1–662.e2. [Google Scholar] [CrossRef]
- Al-Hendy, A.; Lukes, A.S.; Poindexter AN3rd et, a.l. Long-term Relugolix Combination Therapy for Symptomatic Uterine Leiomyomas. Obstet. Gynecol. 2022, 140, 920–930. [Google Scholar] [CrossRef] [PubMed]
- Krzyżanowski, J.; Paszkowski, T.; Szkodziak, P.; Woźniak, S. Advancements and Emerging Therapies in the Medical Management of Uterine Fibroids: A Comprehensive Scoping Review. Med. Sci. Monit. 2024, 30, e943614. [Google Scholar] [CrossRef]
- Conway, F.; Morosetti, G.; Camilli, S.; Martire, F.G.; Sorrenti, G.; Piccione, E.; Zupi, E.; Exacoustos, C. Ulipristal acetate therapy increases ultrasound features of adenomyosis: A good treatment given in an erroneous diagnosis of uterine fibroids. Gynecol. Endocrinol. 2019, 35, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Barlow, D.H.; Lumsden, M.A.; Fauser, B.C.; Terrill, P.; Bestel, E. Individualized vaginal bleeding experience of women with uterine fibroids in the PEARL I randomized controlled trial comparing the effects of ulipristal acetate or placebo. Hum. Reprod. 2014, 29, 480–489. [Google Scholar] [CrossRef]
- Meunier, L.; Meszaros, M.; Pageaux, G.P.; Delay, J.M.; Herrero, A.; Pinzani, V.; Dominique, H.B. Acute liver failure requiring transplantation caused by ulipristal acetate. Clin. Res. Hepatol. Gastroenterol. 2020, 44, e45–e49. [Google Scholar] [CrossRef]
- Ulipristal Acetate Restriction of Use by European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/referrals/ulipristal-acetate-5mg-medicinal-products (accessed on 1 August 2023).
- Malik, M.; Britten, J.; Borahay, M.; Segars, J.; Catherino, W.H. Simvastatin, at clinically relevant concentrations, affects human uterine leiomyoma growth and extracellular matrix production. Fertil. Steril. 2018, 110, 1398–1407.e1. [Google Scholar] [CrossRef]
- Rubio, E.M.; Hilton, J.F.; Bent, S.; Parvataneni, R.; Oberman, E.; Saberi, N.S.; Varon, S.; Schembri, M.; Waetjen, L.E.; Jacoby, V.L. Complementary and Alternative Medicine Use Among Women with Symptomatic Uterine Fibroids. J. Womens Health 2023, 32, 546–552. [Google Scholar] [CrossRef]
- Dalton-Brewer, N. The Role of Complementary and Alternative Medicine for the Management of Fibroids and Associated Symptomatology. Curr. Obstet. Gynecol. Rep. 2016, 5, 110–118. [Google Scholar] [CrossRef]
- Jacoby, V.L.; Jacoby, A.; Learman, L.A.; Schembri, M.; Gregorich, S.E.; Jackson, R.; Kuppermann, M. Use of medical, surgical and complementary treatments among women with fibroids. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 182, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Zhang, J.; Wu, W.; Yuan, Y.; Wang, J.; Tang, Y.; Liao, Y.; Liu, X. Should acupuncture become a complementary therapy in the treatment of uterine fibroid: A systematic review and meta-analysis of randomized controlled trials. Front. Med. 2023, 10, 1268220. [Google Scholar] [CrossRef]




| Author/Title | Study Type | Nutritional Therapy | Mechanism | Improvement in Symptoms/Disease | Level of Recommendation |
|---|---|---|---|---|---|
| Krzyżanowski J et al., Nutrients 2023 [1] | Review | Diet quality, vit D, dairy | Hormonal; anti-inflammatory | Yes | B |
| Afrin S et al., Nutrients 2021 [2] | Review of clinical studies | Various (vit D, omega-3) | Endocrine; inflammation | Yes | B |
| Tinelli A et al., IJERPH 2021 [7] | Narrative review | General diet | Estrogen metabolism; oxidative stress | Yes | C |
| Mohammadi R et al., RB&E 2020 [10] | SR/MA | Vitamin D | Anti-proliferative | Yes | A |
| Ciebiera M et al., IJMS 2018 [11] | Review | Vitamin D | VDR signaling | Yes | B |
| Baker JM et al., Front Immunol 2018 [12] | Review | Microbiome (indirect) | Immune modulation | Not | C |
| Bariani MV et al., Curr Opin Endocrinol 2020 [13] | Review | Contaminant reduction | Endocrine disruption | Not | C |
| Wong JY et al., Fertil Steril 2016 [14] | Prospective | Dietary factors | Hormonal/metabolic | Yes | C |
| Takala H et al., Curr Mol Med 2020 [15] | Review | Alcohol reduction | Estrogen; oxidative stress | Yes | C |
| Bellon M et al., Reprod Sci 2025 [16] | Pilot interventional | Diet + supplements | Weight; anti-inflammatory | Yes | B |
| Martire FG et al., J Clin Med 2025 [17] | Review | Anti-inflammatory diet; omega-3 | Inflammation; immune | Yes | B |
| Islam MS et al., Pharmacol Rep 2017 [18] | Review | Phytochemicals | Anti-proliferative | Yes | B |
| Giampieri F et al., (in vitro) [19] | In vitro | Strawberry phytochemicals | Anti-proliferative | Not | C |
| Orta OR et al., Hum Reprod 2020 [20] | Prospective cohort | Dairy | Calcium/vit D; IGF | Yes | B |
| Křížová L et al., Molecules 2019 [21] | Review | Isoflavones | SERM; antioxidant | Not | C |
| Belobrajdic DP et al., Nutrients 2023 [22] | Review | Soy foods | Microbiota; anti-inflammatory | Not | C |
| Qin H et al., JECH 2021 [23] | SR/MA | Weight management | Adiposity-estrogen | Yes | A |
| Hazimeh D et al., Nutrients 2023 [24] | Review | Green tea/EGCG | Anti-proliferative | Yes | B |
| Roshdy E et al., IJWH 2013 [25] | Pilot RCT | EGCG | Anti-proliferative | Yes | B |
| Biro R et al., Arch Gynecol Obstet 2021 [26] | Observational | EGCG | Anti-proliferative | Yes | C |
| Tuzcu M et al., Nutr Cancer [27] | Animal study | Selenium | Antioxidant | Not | C |
| Tsuiji K et al., Gynecol Endocrinol 2011 [28] | In vitro | Curcumin | Anti-proliferative | Not | C |
| Markowska A et al., Nutrients 2022 [29] | Observational (IHC) | Vitamin D | VDR involvement | Not | C |
| Othman ER et al., EJOGRB [30] | Observational (tissue) | Vitamin D | Dysregulated enzymes | Not | C |
| Harmon QE et al., Fertil Steril 2022 [31] | Prospective cohort | Vitamin D status | Endocrine modulation | Yes | B |
| Ciavattini A et al., Medicine 2016 [32] | Observational | Vitamin D | Anti-proliferative | Yes | C |
| Grandi G et al., Gynecol Endocrinol 2022 [33] | Pilot interventional | Vit D + EGCG | Synergy anti-prolif | Yes | B |
| Lips P et al., JBMR Plus 2021 [34] | Review/epidemiology | Vitamin D status | Endocrine/immune | Not | C |
| Szydłowska I et al., Nutrients 2022 [35] | Review | Vitamins & natural compounds | Anti-fibrotic; hormonal | Yes | C |
| Wiggs AG et al., Front Endocrinol 2021 [36] | Review | Diet + exercise | ↓ Estrogens; inflammation | Yes | C |
| Vafaei S et al., Nutrients 2024 [37] | Perspective/Review | Lifestyle & diet | Weight; environment | Not | C |
| Hess JM et al., Adv Nutr 2021 [38] | Review | Dairy | Anti-inflammatory | Not | C |
| Sun K et al., Exp Ther Med 2019 [39] | Case–control | Weight control (indirect) | Adiposity; estrogen | Not | C |
| Sefah N et al., Front Pharmacol 2023 [40] | Review | Diet/lifestyle | Socio-environmental | Not | C |
| Rahbar N et al., IJGO 2012 [41] | RCT | Omega-3 | Prostaglandins/resolvins | Yes | B |
| Mohammadi MM et al., EJCP 2022 [42] | SR/MA | Omega-3 | Anti-inflammatory | Yes | A |
| Ciołek A et al., Nutrients 2023 [43] | Survey | Dietary patterns | Behavioral | Not | C |
| Gill SK et al., Nat Rev Gastro Hepatol 2021 [44] | Review | Dietary fibre | Microbiota; SCFA | Yes | C |
| Shahidi F & Ambigaipalan P, ARFST 2018 [45] | Review | Omega-3 | Anti-inflammatory | Yes | C |
| Bäck M & Hansson GK, FASEB J 2019 [46] | Review | Omega-3 | Pro-resolving mediators | Yes | C |
| Raad T et al., Nutrients 2021 [47] | Systematic review | Anti-inflammatory diet/omega-3 | ↓ Inflammation | Yes | B |
| Harris HR et al., Fertil Steril 2020 [48] | Prospective cohort + biomarkers | Dietary fat profile | Lipid-hormone interplay | Yes | B |
| Novakovic R et al., Life 2022 [49] | Review | Resveratrol | SIRT1; antioxidant | Not | C |
| Grosso G et al., Nutrients 2022 [50] | Review | Anti-inflammatory nutrients | Cytokines/adipokines | Yes | C |
| Alasalvar C et al., Nutrients 2023 [51] | Review | Dried fruits | Microbiota; antioxidant | Not | C |
| Laganà AS et al., 2017 [52] | Review | Vitamin D | Reproductive endocrine | Yes | C |
| Ali M et al., Acta Pharmacol Sin 2019 [53] | In vitro/ex vivo | Vitamin D3 | ↓ DNA damage | Not | C |
| Kn S et al., Pathol Res Pract 2025 [54] | Observational (pathology) | Lipid management (indirect) | Lipid accumulation | Not | C |
| Sun Y et al., BMJ Open 2023 [55] | Cross-sectional | Sedentary reduction (lifestyle) | Adiposity; hormones | Not | C |
| Mitro SD et al., JCEM [56] | Cohort analysis | Glycemic/dietary control | Insulin/IGF; inflammation | Not | C |
| Petraglia F & Dolmans MM, Fertil Steril 2022 [57] | Editorial | Iron repletion | Hematologic restoration | Yes | C |
| Skolmowska D et al., Nutrients 2022 [58] | SR of RCTs | Dietary iron strategies | ↑ Iron status | Yes | A |
| Pourmatroud E et al., Arch Gynecol Obstet 2012 [59] | RCT | IV Vitamin C | ↓ blood loss | Yes | B |
| Abu-Zaid A et al., (SR & MA of RCTs) [60] | SR/MA | IV Vitamin C | ↓ perioperative blood loss | Yes | A |
| Lee B et al., EJOGRB [61] | RCT (double-blind) | IV Vitamin C | Antioxidant; hemostatic | Yes | B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martire, F.G.; Costantini, E.; Ianes, I.; d’Abate, C.; De Bonis, M.; Capria, G.; Piccione, E.; Andreoli, A. Nutrition and Uterine Fibroids: Clinical Impact and Emerging Therapeutic Perspectives. J. Clin. Med. 2025, 14, 7140. https://doi.org/10.3390/jcm14207140
Martire FG, Costantini E, Ianes I, d’Abate C, De Bonis M, Capria G, Piccione E, Andreoli A. Nutrition and Uterine Fibroids: Clinical Impact and Emerging Therapeutic Perspectives. Journal of Clinical Medicine. 2025; 14(20):7140. https://doi.org/10.3390/jcm14207140
Chicago/Turabian StyleMartire, Francesco G., Eugenia Costantini, Ilaria Ianes, Claudia d’Abate, Maria De Bonis, Giovanni Capria, Emilio Piccione, and Angela Andreoli. 2025. "Nutrition and Uterine Fibroids: Clinical Impact and Emerging Therapeutic Perspectives" Journal of Clinical Medicine 14, no. 20: 7140. https://doi.org/10.3390/jcm14207140
APA StyleMartire, F. G., Costantini, E., Ianes, I., d’Abate, C., De Bonis, M., Capria, G., Piccione, E., & Andreoli, A. (2025). Nutrition and Uterine Fibroids: Clinical Impact and Emerging Therapeutic Perspectives. Journal of Clinical Medicine, 14(20), 7140. https://doi.org/10.3390/jcm14207140

