A Retrospective Cohort Study Comparing Robot-Assisted and Conventional Fluoroscopy-Guided Pedicle Screw Placement
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Surgical Methods
2.3. Data Collection and Outcomes
2.4. Risk of Bias
2.5. Statistical Methods
3. Results
3.1. Participants
3.2. Baseline Characteristics
3.3. Primary Outcome: Accuracy of Pedicle Screw Placement
3.4. Secondary Outcomes
3.5. Postoperative Complications
4. Discussion
4.1. Accuracy of Pedicle Screw Placement
4.2. Length of Hospital Stay (LOS), Estimated Blood Loss (EBL), and Radiation Time
4.3. Clinical Outcomes
4.4. Complications and Adverse Events
4.5. Effect on Operating Time
4.6. Future Prospects: Enhanced Preoperative Planning with AI and Personalized Treatment
4.7. Cost-Effectiveness
4.8. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASA | American Society of Anaesthesiologists Physical Status Classification System |
BMI | Body Mass Index |
CI | Confidence Interval |
CSF | Cerebrospinal Fluid |
CT | Computed Tomography |
EBL | Estimated Blood Loss |
IRB | Institutional Review Board |
IQR | Interquartile Range |
LOS | Length of Stay |
MWU | Mann–Whitney U Test |
NNT | Number Needed to Treat |
ODI | Oswestry Disability Index |
OR | Odds Ratio |
RR | Relative Risk |
SD | Standard Deviation |
STROBE | Strengthening the Reporting of Observational Studies in Epidemiology |
References
- Peul, W.C.; Moojen, W.A. Fusion for Lumbar Spinal Stenosis—Safeguard or Superfluous Surgical Implant? N. Engl. J. Med. 2016, 374, 1478–1479. [Google Scholar] [CrossRef]
- Reisener, M.J.; Pumberger, M.; Shue, J.; Girardi, F.P.; Hughes, A.P. Trends in lumbar spinal fusion-a literature review. J. Spine Surg. 2020, 6, 752–776. [Google Scholar] [CrossRef] [PubMed]
- Fatima, N.; Massaad, E.; Hadzipasic, M.; Shankar, G.M.; Shin, J.H. Safety and accuracy of robot-assisted placement of pedicle screws compared to conventional free-hand technique: A systematic review and meta-analysis. Spine J. 2021, 21, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Lv, Z.; Fang, H. Robot-assisted and conventional freehand pedicle screw placement: A systematic review and meta-analysis of randomized controlled trials. Eur. Spine J. 2018, 27, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Marcus, H.J.; Cundy, T.P.; Nandi, D.; Yang, G.Z.; Darzi, A. Robot-assisted and fluoroscopy-guided pedicle screw placement: A systematic review. Eur. Spine J. 2014, 23, 291–297. [Google Scholar] [CrossRef]
- Barzilay, Y.; Liebergall, M.; Fridlander, A.; Knoller, N. Miniature robotic guidance for spine surgery—introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres. Int. J. Med. Robot. 2006, 2, 146–153. [Google Scholar] [CrossRef]
- Su, X.J.; Lv, Z.D.; Chen, Z.; Wang, K.; Zhu, C.; Chen, H.; Han, Y.-C.; Song, Q.-X.; Lao, L.-F.; Zhang, Y.-H.; et al. Comparison of Accuracy and Clinical Outcomes of Robot-Assisted Versus Fluoroscopy-Guided Pedicle Screw Placement in Posterior Cervical Surgery. Glob. Spine J. 2022, 12, 620–626. [Google Scholar] [CrossRef]
- Lieberman, I.H.; Kisinde, S.; Hesselbacher, S. Robotic-Assisted Pedicle Screw Placement During Spine Surgery. JBJS Essent. Surg. Tech. 2020, 10, e0020. [Google Scholar] [CrossRef]
- Torii, Y.; Ueno, J.; Iinuma, M.; Yoshida, A.; Niki, H.; Akazawa, T. Accuracy of robotic-assisted pedicle screw placement comparing junior surgeons with expert surgeons: Can junior surgeons place pedicle screws as accurately as expert surgeons? J. Orthop. Sci. 2023, 28, 961–965. [Google Scholar] [CrossRef]
- Farber, S.H.; Pacult, M.A.; Godzik, J.; Walker, C.T.; Turner, J.D.; Porter, R.W.; Uribe, J.S. Robotics in Spine Surgery: A Technical Overview and Review of Key Concepts. Front. Surg. 2021, 8, 578674. [Google Scholar] [CrossRef]
- Chen, H.Y.; Xiao, X.Y.; Chen, C.W.; Chou, H.K.; Sung, C.Y.; Lin, F.H.; Chen, P.-Q.; Wong, T.-H. Results of using robotic-assisted navigational system in pedicle screw placement. PLoS ONE 2019, 14, e0220851. [Google Scholar] [CrossRef]
- Patel, N.A.; Kuo, C.C.; Pennington, Z.; Brown, N.J.; Gendreau, J.; Singh, R.; Shahrestani, S.; Boyett, C.; Diaz-Aguilar, L.D.; Pham, M.H. Robot-assisted percutaneous pedicle screw placement accuracy compared with alternative guidance in lateral single-position surgery: A systematic review and meta-analysis. J. Neurosurg. Spine 2023, 39, 443–451. [Google Scholar] [CrossRef]
- Lin, S.; Wang, F.; Hu, J.; Tang, L.-Y. Comparison of the Accuracy and Safety of TiRobot-Assisted and Fluoroscopy-Assisted Percutaneous Pedicle Screw Placement for the Treatment of Thoracolumbar Fractures. Orthop. Surg. 2022, 14, 2955–2963. [Google Scholar] [CrossRef]
- Gertzbein, S.; Robbins, S. Accuracy of pedicular screw placement in vivo. Spine 1990, 15, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Samdani, A.F.; Ranade, A.; Sciubba, D.M.; Cahill, P.J.; Antonacci, M.D.; Clements, D.H.; Betz, R.R. Accuracy of free-hand placement of thoracic pedicle screws in adolescent idiopathic scoliosis: How much of a difference does surgeon experience make? Eur. Spine J. 2010, 19, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Schulze, C.J.; Munzinger, E.; Weber, U. Clinical relevance of accuracy of pedicle screw placement. A computed tomographic-supported analysis. Spine 1998, 23, 2215–2220. [Google Scholar] [CrossRef] [PubMed]
- Macnab, I. Negative disc exploration. An analysis of the causes of nerve-root involvement in sixty-eight patients. J. Bone Jt. Surg. Am. 1971, 53, 891–903. [Google Scholar] [CrossRef]
- Asada, T.; Simon, C.Z.; Lu, A.Z.; Adida, S.; Dupont, M.; Parel, P.M.; Zhang, J.; Bhargava, S.; Morse, K.W.; Dowdell, J.E.; et al. Robot-navigated pedicle screw insertion can reduce intraoperative blood loss and length of hospital stay: Analysis of 1633 patients utilizing propensity score matching. Spine J. 2024, 24, 118–124. [Google Scholar] [CrossRef]
- Chumnanvej, S.; Pillai, B.M.; Suthakorn, J.; Chumnanvej, S. Revised in-depth meta-analysis on the efficacy of robot-assisted versus traditional free-hand pedicle screw insertion. Laparosc. Endosc. Robot. Surg. 2024, 7, 155–165. [Google Scholar] [CrossRef]
- MacLean, L.; Hersh, A.M.; Bhimreddy, M.; Jiang, K.; Davidar, A.D.; Weber-Levine, C.; Alomari, S.; Judy, B.F.; Lubelski, D.; Theodore, N. Comparison of accuracy, revision, and perioperative outcomes in robot-assisted spine surgeries: Systematic review and meta-analysis. J. Neurosurg. Spine 2024, 41, 519–531. [Google Scholar] [CrossRef]
- Peng, Y.-N.; Tsai, L.-C.; Hsu, H.-C.; Kao, C.-H. Accuracy of robot-assisted versus conventional freehand pedicle screw placement in spine surgery: A systematic review and meta-analysis of randomized controlled trials. Ann. Transl. Med. 2020, 8, 824. [Google Scholar] [CrossRef]
- Li, C.; Wang, Z.; Li, D.; Tian, Y.; Yuan, S.; Wang, L.; Liu, X. Safety and accuracy of cannulated pedicle screw placement in scoliosis surgery: A comparison of robotic-navigation, O-arm-based navigation, and freehand techniques. Eur. Spine J. 2023, 32, 3094–3104. [Google Scholar] [CrossRef]
- Al-Naseem, A.O.; Al-Muhannadi, A.; Ramadhan, M.; Alfadhli, A.; Marwan, Y.; Shafafy, R.; Abd-El-Barr, M.M. Robot-assisted pedicle screw insertion versus navigation-based and freehand techniques for posterior spinal fusion in scoliosis: A systematic review and meta-analysis. Spine Deform. 2024, 12, 1203–1215. [Google Scholar] [CrossRef]
- Han, X.; Tian, W.; Liu, Y.; Liu, B.; He, D.; Sun, Y.; Han, X.; Fan, M.; Zhao, J.; Xu, Y.; et al. Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: A prospective randomized controlled trial. J. Neurosurg. Spine 2019, 30, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Y.; Ma, X.; Ma, J.; Dong, B.; Yang, P.; Sun, Y.; Zhou, L.; Shen, J. Comparison of short-term clinical outcomes between robot-assisted and freehand pedicle screw placement in spine surgery: A meta-analysis and systematic review. J. Orthop. Surg. Res. 2023, 18, 359. [Google Scholar] [CrossRef] [PubMed]
- Mason, A.; Paulsen, R.; Babuska, J.M.; Rajpal, S.; Burneikiene, S.; Nelson, E.L.; Villavicencio, A.T. The accuracy of pedicle screw placement using intraoperative image guidance systems. J. Neurosurg. Spine 2014, 20, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Staartjes, V.E.; Seevinck, P.R.; Vandertop, W.P.; van Stralen, M.; Schröder, M.L. Magnetic resonance imaging-based synthetic computed tomography of the lumbar spine for surgical planning: A clinical proof-of-concept. Neurosurg. Focus 2021, 50, E13. [Google Scholar] [CrossRef]
- Altorfer, F.C.S.; Kelly, M.J.; Avrumova, F.; Burkhard, M.D.; Sneag, D.B.; Campbell, G. Robotic Pedicle Screw Placement with 3D MRI Registration: Moving Towards Radiation Free Robotic Spine Surgery. Spine J. 2024, 25, 1035–1041. [Google Scholar] [CrossRef]
- Coniglio, A.; Rava, A.; Fusini, F.; Colò, G.; Massè, A.; Girardo, M. Effectiveness and reliability of cannulated fenestrated screws augmented with polymethylmethacrylate cement in the surgical treatment of osteoporotic vertebral fractures. J. Craniovertebr. Junction Spine 2021, 12, 33–37. [Google Scholar] [CrossRef]
- Gazzeri, R.; Panagiotopoulos, K.; Galarza, M.; Bolognini, A.; Callovini, G. Minimally invasive spinal fixation in an aging population with osteoporosis: Clinical and radiological outcomes and safety of expandable screws versus fenestrated screws augmented with polymethylmethacrylate. Neurosurg. Focus 2020, 49, E14. [Google Scholar] [CrossRef]
- Zhang, J.N.; Fan, Y.; Hao, D.J. Risk factors for robot-assisted spinal pedicle screw malposition. Sci. Rep. 2019, 9, 3025. [Google Scholar] [CrossRef]
- Zhang, Q.; Fan, M.X.; Han, X.G.; Liu, Y.J.; He, D.; Liu, B.; Tian, W. Risk Factors of Unsatisfactory Robot-Assisted Pedicle Screw Placement: A Case-Control Study. Neurospine 2021, 18, 839–844. [Google Scholar] [CrossRef]
- Guo, C.J.; Wang, R.Y.; Ru, N.; Liu, Q.; Zhang, F.; Liang, J.; Wu, Y.; Chen, L. Analysis on the related factors of misplacement of freehand pedicle screws via posterior approach in degenerative scoliosis. BMC Musculoskelet. Disord. 2024, 25, 808. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.K.; Zygourakis, C.C.; Kalb, S.; Zhu, A.M.; Molina, C.A.; Jiang, B. First spine surgery utilizing real-time image-guided robotic assistance. Comput. Assist. Surg. 2019, 24, 13–17. [Google Scholar] [CrossRef]
- Ma, C.; Zou, D.; Qi, H.; Li, C.; Zhang, C.; Yang, K. A novel surgical planning system using an AI model to optimize planning of pedicle screw trajectories with highest bone mineral density and strongest pull-out force. Neurosurg. Focus 2022, 52, E10. [Google Scholar] [CrossRef]
- Menger, R.P.; Savardekar, A.R.; Farokhi, F.; Sin, A. A Cost-Effectiveness Analysis of the Integration of Robotic Spine Technology in Spine Surgery. Neurospine 2018, 15, 216–224. [Google Scholar] [CrossRef]
- D’Souza, M.; Gendreau, J.; Feng, A.; Kim, L.H.; Ho, A.L.; Veeravagu, A. Robotic-Assisted Spine Surgery: History, Efficacy, Cost, And Future Trends. Robot. Surg. 2019, 6, 9–23. [Google Scholar] [CrossRef]
Variable | Robot-Assisted (n = 105) | Control Group (n = 113) | p-Value (Statistical Test Used) |
---|---|---|---|
Sex | 0.212 (Fisher’s Exact) | ||
Female (n, %) | 61 (58.1%) | 75 (66.4%) | |
Male (n, %) | 44 (41.9%) | 38 (33.6%) | |
Age (Mean, SD) | 64.72 (±13.13) | 66 (±13.28) | 0.873 (two-tailed t-test) |
BMI (Mean, SD) | 28.69 (±5.017) | 26.75 (±4.096) | 0.002 (two-tailed t-test) |
Repeated surgery (n, %) | 36 (34.29%) | 43 (38.05%) | 0.576 (Fisher’s Exact) |
VAS pre-OP (Mean, SD) | 7.72 (±0.7) | 7.6 (±0.59) | 0.1647 (Two-tailed t-test) |
Indication for surgery | 0.628 (χ2-test) | ||
Degenerative Disk Disease (n, %) | 31 (29.52%) | 34 (30.08%) | |
Spinal canal stenosis (n, %) | 19 (18.09%) | 24 (21.23%) | |
Spondylolisthesis (n, %) | 23 (21.90%) | 29 (25.66%) | |
Fracture (n, %) | 32 (30.47%) | 26 (23.00%) | |
ASA Score | 0.404 (χ2-test) | ||
1 (n, %) | 9 (8.6%) | 20 (17.70%) | |
2 (n, %) | 53 (50.48%) | 20 (17.70%) | |
3 (n, %) | 32 (30.48%) | 34 (30.09%) | |
4 (n, %) | 1 (0.95%) | 1 (0.88%) |
Variable | Robot-Assisted (n = 105) | Control Group (n = 113) | p-Value (Statistical Test Used) |
---|---|---|---|
Estimated blood loss (ml, Mean, SD) | 156.43 (±102.22) | 563.72 (±280.48) | <0.001 (Two-tailed t-test) |
Radiation time (Sec, Mean, SD) | 109.27 (±45.01) | 239.88 (±103.17) | <0.001 (Two-tailed t-test) |
Surgery time (min, Mean, SD) | 221.51 (±86.73) | 236.93 (±94.69) | 0.212 (Two-tailed t-test) |
LOS (days, Mean, SD) | 6.12 (±0.7) | 7.6 (±2.59) | <0.001 (Two-tailed t-test) |
VAS post-OP | 2.73 (±0.72) | 2.94 (±0.67) | 0.013 (Two-tailed t-test) |
Number of screws implanted per patient (Sum) | 508 | 570 | 0.698 (χ2-test) |
Four (n, %) | 71 (67.62%) | 68 (60.18%) | |
Six (n, %) | 25 (23.81%) | 32 (28.32%) | |
Eight (n, %) | 8 (7.19%) | 12 (10.62%) | |
Ten (n, %) | 1 (0.95%) | 1 (0.88%) | |
Gertzbein–Robbins Classification per patient | 0.029 (χ2-test) | ||
0 (n, %) | 98 (93.33%) | 89 (78.76%) | |
1 (n, %) | 4 (3.81%) | 17 (15.04%) | |
2 (n, %) | 3 (2.85%) | 5 (4.42%) | |
3 (n, %) | 0 | 2 (1.77%) | |
Gertzbein–Robbins dichotomic per patient | 0.003 (Fisher’s Exact) OR = 3.78 (95% CI: 1.55–9.19) | ||
Optimal (0) (n, %) | 98 (93.33%) | 89 (78.76%) | |
Suboptimal (1–3) (n, %) | 7 (6.66%) | 24 (21.24%) | |
Gertzbein–Robbins dichotomic, per screw | 0.007 (Fisher’s exact) OR = 2.76 (95% CI: 1.28–5.92) | ||
Optimal (0) (n, %) | 499 (98.23%) | 543 (95.26%) | |
Suboptimal (1–3) (n, %) | 9 (1.77%) | 27 (4.74%) | |
Postoperative Macnab (points, Median, IQR) | 4 (3–4) | 3 (3–4) | <0.001 (MWU) |
5 (n, %) | 14 (13.33%) | 3 (2.65%) | |
4 (n, %) | 63 (59.05%) | 48 (42.48%) | |
3 (n, %) | 21 (20%) | 57 (50.44%) | |
2 (n, %) | 7 (6.67%) | 3 (2.65%) | |
1 (n, %) | 0 | 2 (1.77%) | |
Macnab 4–5 (n, %) | 77 (73.33%) | 51 (45.13%) | <0.001 (Fisher’s Exact) OR = 3.34 (95% CI: 1.89–5.91) |
Macnab 1–3 (n, %) | 28 (26.66%) | 62 (54.87%) | |
Revision Surgery (n, %) | 7 (6.67%) | 7 (6.19%) | >0.99 (Fisher’s Exact) |
Screw misplacement (n, %) | 2 (1.9%) | 4 (3.54%) | 0.684 (Fisher’s Exact) |
Surgical site infection (n, %) | 2 (1.9%) | 0 | >0.99 (Fisher’s Exact) |
CSF leak (n, %) | 2 (1.9%) | 2 (1.77%) | >0.99 (Fisher’s Exact) |
Hematoma (n, %) | 1 (0.95%) | 1 (0.88%) | >0.99 (Fisher’s Exact) |
Medical Adverse events (n, %) | 2 (1.9%) | 3 (2.6%) | >0.99 (Fisher’s Exact) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seif, H.; Maragno, E.; Gallus, M.; Szeöke, S.; Schwake, M. A Retrospective Cohort Study Comparing Robot-Assisted and Conventional Fluoroscopy-Guided Pedicle Screw Placement. J. Clin. Med. 2025, 14, 6831. https://doi.org/10.3390/jcm14196831
Seif H, Maragno E, Gallus M, Szeöke S, Schwake M. A Retrospective Cohort Study Comparing Robot-Assisted and Conventional Fluoroscopy-Guided Pedicle Screw Placement. Journal of Clinical Medicine. 2025; 14(19):6831. https://doi.org/10.3390/jcm14196831
Chicago/Turabian StyleSeif, Hassan, Emanuele Maragno, Marco Gallus, Szabolcs Szeöke, and Michael Schwake. 2025. "A Retrospective Cohort Study Comparing Robot-Assisted and Conventional Fluoroscopy-Guided Pedicle Screw Placement" Journal of Clinical Medicine 14, no. 19: 6831. https://doi.org/10.3390/jcm14196831
APA StyleSeif, H., Maragno, E., Gallus, M., Szeöke, S., & Schwake, M. (2025). A Retrospective Cohort Study Comparing Robot-Assisted and Conventional Fluoroscopy-Guided Pedicle Screw Placement. Journal of Clinical Medicine, 14(19), 6831. https://doi.org/10.3390/jcm14196831