The Hidden Regulators: MicroRNAs in Pediatric Heart Development and Disease
Abstract
1. Introduction
2. Biology of MicroRNA: Mechanisms and Functions
2.1. miRNA Biogenesis
2.2. Regulation of miRNA Expression and Decay
2.3. Mechanism of Action
3. Role of miRNA in Cardiac Development and Physiology
3.1. miRNA as a Regulator of Cardiomyocyte Maturation
3.2. miRNA as a Regulator of Proliferation and Cell Cycle
3.3. miRNA as a Regulator of Angiogenesis
3.4. miRNA as a Regulator of the Cardiac Conduction System
microRNA | Primary Function | Targeted Genes/Pathways | Effect of Dysregulation | References |
---|---|---|---|---|
miR-1 | Inhibition of the cell cycle | Myocardin, WNT, FGF | Knockout: dilated cardiomyopathy due to sarcomere disruptions and postnatal lethality (murine) | [78,79] |
miR-133 | Anti-apoptotic protection and synergistic effects with miR-499 | GATA4, Nkx2.5, Cx43, cTnT | Knockout: dilated cardiomyopathy, VSD, fibrosis (murine) | [55] |
miR-499 | Muscle fiber remodeling (type II→type I) and cardiomyocyte differentiation | Sox6, Purβ, Sp3, GATA4, Nkx2.5, Cx43, cTnT | Overexpression: conversion of muscle fibers to slow type (murine) | [55,56] |
miR-208b | Muscle fiber remodeling and myosin heavy chain expression | Sox6, Purβ, Sp3, myosin heavy chain gene | Knockout: inhibition of the formation of slow muscle fibers (murine) | [56,80] |
miR-20b-5p | Inhibition of cardiac cell differentiation | TET2, GATA4, Nkx2.5 | Knockout: more cTnT-positive cells Overexpression: fewer cTnT-positive cells (hESCs-CMs) | [57] |
miR-128a | Regulation of differentiation, guidance toward a cardiomyocyte or conduction system phenotype | Cardiac precursor cell differentiation pathways | Knockout: slower heart rate, diminished ventricular size (zebrafish) | [58] |
miR-15a | Inhibition of proliferation | Chek1, Cdc25A, Ccnd1, Ccne1 | Knockout: increased number of cells entering mitosis, with cell cycle arrest (murine) | [59] |
miR-16-1 | ||||
miR-17-92 | Progression of the cell cycle | Cdkn1a, Rb1, E2F1 | [61] | |
miR-106b~25 | Regulation of the hyperplasia–hypertrophy balance | E2f5, Cdkn1c, Ccne1, Wee1, Hand2, Mef2d | Knockout: mild eccentric hypertrophy and reduced ejection fraction (murine) Overexpression: hyperplasia, increased proliferation (murine) | [63] |
4. Clinical Applications of MicroRNA in Pediatric Cardiology
4.1. miRNA as Potential Biomarkers for Congenital Heart Disease
4.2. miRNAs in Congenital Heart Diseases
4.2.1. Hypoplastic Left Heart Syndrome
4.2.2. Tetralogy of Fallot
4.2.3. Septation Defects
Ventricular Septal Defect
Atrial Septal Defect
Atrioventricular Defects
4.2.4. Pulmonary Hypertension Secondary to Congenital Heart Disease
4.2.5. Bicuspid Aortic Valve
4.3. Heart Failure
4.4. Arrythmias in Children
4.4.1. Supraventricular and Ventricular Arrhythmias
4.4.2. Long QT Syndrome
4.4.3. miRNA as a Prognostic Tool of Arrhythmia Recurrence After Ablation
4.5. Cardiomyopathies
4.6. Carditis
5. Challenges and Future Perspectives
5.1. Challenges in Therapeutic Applications
5.2. Future Directions and Emerging Opportunities
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASD | atrial septal defect |
Ago | Argonaute proteins |
BAV | bicuspid aortic valve |
BMP | bone morphogenic proteins |
CPCs | cardiac progenitor cells |
cTNT | cardiac Troponin T |
CoA | coarctation of the aorta |
CHD | congenital heart disease |
Cx43 | connexin 43 |
FGF | fibroblast growth factor |
hESCs-CMs | human embryonic Stem Cells–derived Cardiomyocytes |
HLHS | hypoplastic left heart syndrome |
miRNA | microRNA |
mRNA | messenger RNA |
PDA | patent ductus arteriosus |
PABPC | poly(A)-binding protein, cytoplasmic |
PEG | polyethylene glycol |
PEIs | polyethyleneimines |
PLL | poly L-Lysine |
Pol II | RNA polymerase II |
RV | right ventricle |
RVOT | right ventricular outflow tract |
RISC | RNA-induced silencing complex |
sc-miRNA-seq | single-cell microRNA sequencing |
TDMD | target-directed microRNA degradation |
TA | tricuspid atresia |
TGA | transposition of the great arteries |
TOF | tetralogy of fallot |
TET2 | Tet meyhylcytosine dioxygense 2 |
VSD | ventricular septal defect |
References
- Cordes, K.R.; Srivastava, D.; Ivey, K.N. MicroRNAs in Cardiac Development. Pediatr. Cardiol. 2010, 31, 349–356. [Google Scholar] [CrossRef]
- Zhao, Y.; Ransom, J.F.; Li, A.; Vedantham, V.; von Drehle, M.; Muth, A.N.; Tsuchihashi, T.; McManus, M.T.; Schwartz, R.J.; Srivastava, D. Dysregulation of Cardiogenesis, Cardiac Conduction, and Cell Cycle in Mice Lacking MiRNA-1-2. Cell 2007, 129, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Blue, G.M.; Kirk, E.P.; Sholler, G.F.; Harvey, R.P.; Winlaw, D.S. Congenital Heart Disease: Current Knowledge about Causes and Inheritance. Med. J. Aust. 2012, 197, 155–159. [Google Scholar] [CrossRef]
- Lipshultz, S.E.; Law, Y.M.; Asante-Korang, A.; Austin, E.D.; Dipchand, A.I.; Everitt, M.D.; Hsu, D.T.; Lin, K.Y.; Price, J.F.; Wilkinson, J.D.; et al. Cardiomyopathy in Children: Classification and Diagnosis: A Scientific Statement from the American Heart Association. Circulation 2019, 140, E9–E68. [Google Scholar] [CrossRef]
- Law, Y.M.; Lal, A.K.; Chen, S.; Čiháková, D.; Cooper, L.T.; Deshpande, S.; Godown, J.; Grosse-Wortmann, L.; Robinson, J.D.; Towbin, J.A. Diagnosis and Management of Myocarditis in Children. Circulation 2021, 144, E123–E135. [Google Scholar] [CrossRef] [PubMed]
- Abu-Halima, M.; Meese, E.; Keller, A.; Abdul-Khaliq, H.; Rädle-Hurst, T. Analysis of Circulating MicroRNAs in Patients with Repaired Tetralogy of Fallot with and without Heart Failure. J. Transl. Med. 2017, 15, 156. [Google Scholar] [CrossRef]
- Abu-Halima, M.; Meese, E.; Saleh, M.A.; Keller, A.; Abdul-Khaliq, H.; Raedle-Hurst, T. Micro-RNA 150-5p Predicts Overt Heart Failure in Patients with Univentricular Hearts. PLoS ONE 2019, 14, e0223606. [Google Scholar] [CrossRef]
- Ramachandran, S.; Lowenthal, A.; Ritner, C.; Lowenthal, S.; Bernstein, H.S. Plasma Microvesicle Analysis Identifies MicroRNA 129-5p as a Biomarker of Heart Failure in Univentricular Heart Disease. PLoS ONE 2017, 12, e0183624. [Google Scholar] [CrossRef]
- Sucharov, C.C.; Sucharov, J.; Karimpour-Fard, A.; Nunley, K.; Stauffer, B.L.; Miyamoto, S.D. Micro-RNA Expression in Hypoplastic Left Heart Syndrome. J. Card. Fail. 2015, 21, 83–88. [Google Scholar] [CrossRef]
- Li, J.; Cao, Y.; Ma, X.; Wang, H.; Zhang, J.; Luo, X.; Chen, W.; Wu, Y.; Meng, Y.; Zhang, J.; et al. Roles of MiR-1-1 and MiR-181c in Ventricular Septal Defects. Int. J. Cardiol. 2013, 168, 1441–1446. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Higgins, H.; Guo, J.; Harrison, K.; Schultz, E.N.; Hales, B.J.; Moses, E.K.; Goldblatt, J.; Pachter, N.; Zhang, G. Clinical Significance of Circulating MicroRNAs as Markers in Detecting and Predicting Congenital Heart Defects in Children. J. Transl. Med. 2018, 16, 42. [Google Scholar] [CrossRef]
- Latronico, M.V.G.; Catalucci, D.; Condorelli, G. MicroRNA and Cardiac Pathologies. Physiol. Genom. 2008, 34, 239–242. [Google Scholar] [CrossRef]
- Goldberg, L.; Tirosh-Wagner, T.; Vardi, A.; Abbas, H.; Pillar, N.; Shomron, N.; Nevo-Caspi, Y.; Paret, G. Circulating MicroRNAs: A Potential Biomarker for Cardiac Damage, Inflammatory Response, and Left Ventricular Function Recovery in Pediatric Viral Myocarditis. J. Cardiovasc. Transl. Res. 2018, 11, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, L.; Sun, H.; Yu, Z.; Liu, X.; Luo, X.; Li, C.; Sun, D.; Li, T. MicroRNA-381 Protects Myocardial Cell Function in Children and Mice with Viral Myocarditis via Targeting Cyclooxygenase-2 Expression. Exp. Ther. Med. 2018, 15, 5510–5516. [Google Scholar] [CrossRef] [PubMed]
- Xia, K.; Zhang, Y.; Sun, D. MiR-217 and MiR-543 Downregulation Mitigates Inflammatory Response and Myocardial Injury in Children with Viral Myocarditis by Regulating the SIRT1/AMPK/NF-κB Signaling Pathway. Int. J. Mol. Med. 2019, 45, 634–646. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Liu, Z.; Feng, M.; Xiao, Z.; Yi, X.; Wu, J.; Liu, Z.; Wang, G.; Li, L.; Yao, H. The LncRNA MEG3/MiRNA-21/P38MAPK Axis Inhibits Coxsackievirus 3 Replication in Acute Viral Myocarditis. Virus Res. 2024, 339, 199250. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, R.; Ma, M.; Chen, S.; Guo, K.; Zhang, L.; You, Y.; Jia, H.; Han, B. Altered Plasma Exosome MiRNAs and Novel Potential Biomarkers in Pediatric Fulminant Myocarditis. Genomics 2023, 115, 110622. [Google Scholar] [CrossRef]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef]
- Reinhart, B.J.; Slack, F.J.; Basson, M.; Pasquienelll, A.E.; Bettlnger, J.C.; Rougvle, A.E.; Horvitz, H.R.; Ruvkun, G. The 21-Nucleotide Let-7 RNA Regulates Developmental Timing in Caenorhabditis Elegans. Nature 2000, 403, 901–906. [Google Scholar] [CrossRef]
- Loganathan, T.; Doss C, G.P. Non-Coding RNAs in Human Health and Disease: Potential Function as Biomarkers and Therapeutic Targets. Funct. Integr. Genom. 2023, 23, 33. [Google Scholar] [CrossRef]
- Bartel, D.P. Metazoan MicroRNAs. Cell 2018, 173, 20–51. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, M.; Han, J.; Yeom, K.H.; Lee, S.; Baek, S.H.; Kim, V.N. MicroRNA Genes Are Transcribed by RNA Polymerase II. EMBO J. 2004, 23, 4051–4060. [Google Scholar] [CrossRef]
- Lee, Y.; Ahn, C.; Han, J.; Choi, H.; Kim, J.; Yim, J.; Lee, J.; Provost, P.; Rådmark, O.; Kim, S.; et al. The Nuclear RNase III Drosha Initiates MicroRNA Processing. Nature 2003, 425, 415–419. [Google Scholar] [CrossRef]
- Lund, E.; Güttinger, S.; Calado, A.; Dahlberg, J.E.; Kutay, U. Nuclear Export of MicroRNA Precursors. Science 2004, 303, 95–98. [Google Scholar] [CrossRef]
- Zhang, H.; Kolb, F.A.; Jaskiewicz, L.; Westhof, E.; Filipowicz, W. Single Processing Center Models for Human Dicer and Bacterial RNase III. Cell 2004, 118, 57–68. [Google Scholar] [CrossRef]
- Iwasaki, S.; Kobayashi, M.; Yoda, M.; Sakaguchi, Y.; Katsuma, S.; Suzuki, T.; Tomari, Y. Hsc70/Hsp90 Chaperone Machinery Mediates ATP-Dependent RISC Loading of Small RNA Duplexes. Mol. Cell 2010, 39, 292–299. [Google Scholar] [CrossRef]
- Frank, F.; Sonenberg, N.; Nagar, B. Structural Basis for 5′-Nucleotide Base-Specific Recognition of Guide RNA by Human AGO2. Nature 2010, 465, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Iwakawa, H.; Tomari, Y. Life of RISC: Formation, Action, and Degradation of RNA-Induced Silencing Complex. Mol. Cell 2022, 82, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Ruby, J.G.; Jan, C.H.; Bartel, D.P. Intronic MicroRNA Precursors That Bypass Drosha Processing. Nature 2007, 448, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Cheloufi, S.; Dos Santos, C.O.; Chong, M.M.W.; Hannon, G.J. A Dicer-Independent MiRNA Biogenesis Pathway That Requires Ago Catalysis. Nature 2010, 465, 584–589. [Google Scholar] [CrossRef]
- Ozsolak, F.; Poling, L.L.; Wang, Z.; Liu, H.; Liu, X.S.; Roeder, R.G.; Zhang, X.; Song, J.S.; Fisher, D.E. Chromatin Structure Analyses Identify MiRNA Promoters. Genes Dev. 2008, 22, 3172–3183. [Google Scholar] [CrossRef]
- Ha, M.; Kim, V.N. Regulation of MicroRNA Biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Heo, I.; Joo, C.; Cho, J.; Ha, M.; Han, J.; Kim, V.N. Lin28 Mediates the Terminal Uridylation of Let-7 Precursor MicroRNA. Mol. Cell 2008, 32, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Heo, I.; Ha, M.; Lim, J.; Yoon, M.-J.; Park, J.-E.; Kwon, S.C.; Chang, H.; Kim, V.N. Mono-Uridylation of Pre-MicroRNA as a Key Step in the Biogenesis of Group II Let-7 MicroRNAs. Cell 2012, 151, 521–532. [Google Scholar] [CrossRef]
- Yang, W.; Chendrimada, T.P.; Wang, Q.; Higuchi, M.; Seeburg, P.H.; Shiekhattar, R.; Nishikura, K. Modulation of MicroRNA Processing and Expression through RNA Editing by ADAR Deaminases. Nat. Struct. Mol. Biol. 2006, 13, 13–21. [Google Scholar] [CrossRef]
- Michlewski, G.; Cáceres, J.F. Post-Transcriptional Control of MiRNA Biogenesis. RNA 2019, 25, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Vieux, K.-F.; Prothro, K.P.; Kelley, L.H.; Palmer, C.; Maine, E.M.; Veksler-Lublinsky, I.; McJunkin, K. Screening by Deep Sequencing Reveals Mediators of MicroRNA Tailing in C. elegans. Nucleic Acids Res. 2021, 49, 11167–11180. [Google Scholar] [CrossRef]
- Bail, S.; Swerdel, M.; Liu, H.; Jiao, X.; Goff, L.A.; Hart, R.P.; Kiledjian, M. Differential Regulation of MicroRNA Stability. RNA 2010, 16, 1032–1039. [Google Scholar] [CrossRef]
- Krol, J.; Busskamp, V.; Markiewicz, I.; Stadler, M.B.; Ribi, S.; Richter, J.; Duebel, J.; Bicker, S.; Fehling, H.J.; Schübeler, D.; et al. Characterizing Light-Regulated Retinal MicroRNAs Reveals Rapid Turnover as a Common Property of Neuronal MicroRNAs. Cell 2010, 141, 618–631. [Google Scholar] [CrossRef]
- de la Mata, M.; Gaidatzis, D.; Vitanescu, M.; Stadler, M.B.; Wentzel, C.; Scheiffele, P.; Filipowicz, W.; Großhans, H. Potent Degradation of Neuronal MiRNAs Induced by Highly Complementary Targets. EMBO Rep. 2015, 16, 500–511. [Google Scholar] [CrossRef]
- Shin, C.; Nam, J.-W.; Farh, K.K.-H.; Chiang, H.R.; Shkumatava, A.; Bartel, D.P. Expanding the MicroRNA Targeting Code: Functional Sites with Centered Pairing. Mol. Cell 2010, 38, 789–802. [Google Scholar] [CrossRef] [PubMed]
- Wee, L.M.; Flores-Jasso, C.F.; Salomon, W.E.; Zamore, P.D. Argonaute Divides Its RNA Guide into Domains with Distinct Functions and RNA-Binding Properties. Cell 2012, 151, 1055–1067. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, K. When Argonaute Takes out the Ribonuclease Sword. J. Biol. Chem. 2024, 300, 105499. [Google Scholar] [CrossRef] [PubMed]
- Rehwinkel, J.; Behm-Ansmant, I.; Gatfield, D.; Izaurralde, E. A Crucial Role for GW182 and the DCP1:DCP2 Decapping Complex in MiRNA-Mediated Gene Silencing. RNA 2005, 11, 1640–1647. [Google Scholar] [CrossRef]
- Jonas, S.; Izaurralde, E. Towards a Molecular Understanding of MicroRNA-Mediated Gene Silencing. Nat. Rev. Genet. 2015, 16, 421–433. [Google Scholar] [CrossRef]
- Chen, C.A.; Shyu, A. Mechanisms of Deadenylation-dependent Decay. WIREs RNA 2011, 2, 167–183. [Google Scholar] [CrossRef]
- Kamenska, A.; Lu, W.-T.; Kubacka, D.; Broomhead, H.; Minshall, N.; Bushell, M.; Standart, N. Human 4E-T Represses Translation of Bound MRNAs and Enhances MicroRNA-Mediated Silencing. Nucleic Acids Res. 2014, 42, 3298–3313. [Google Scholar] [CrossRef]
- Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved Seed Pairing, Often Flanked by Adenosines, Indicates That Thousands of Human Genes Are MicroRNA Targets. Cell 2005, 120, 15–20. [Google Scholar] [CrossRef]
- Alberti, C.; Cochella, L. A Framework for Understanding the Roles of MiRNAs in Animal Development. Development 2017, 144, 2548–2559. [Google Scholar] [CrossRef]
- Ouyang, Z.; Wei, K. MiRNA in Cardiac Development and Regeneration. Cell Regen. 2021, 10, 14. [Google Scholar] [CrossRef]
- Saxena, A.; Tabin, C.J. MiRNA-Processing Enzyme Dicer Is Necessary for Cardiac Outflow Tract Alignment and Chamber Septation. Proc. Natl. Acad. Sci. USA 2010, 107, 87–91. [Google Scholar] [CrossRef]
- da Costa Martins, P.A.; Bourajjaj, M.; Gladka, M.; Kortland, M.; van Oort, R.J.; Pinto, Y.M.; Molkentin, J.D.; De Windt, L.J. Conditional Dicer Gene Deletion in the Postnatal Myocardium Provokes Spontaneous Cardiac Remodeling. Circulation 2008, 118, 1567–1576. [Google Scholar] [CrossRef]
- Lagos-Quintana, M.; Rauhut, R.; Yalcin, A.; Meyer, J.; Lendeckel, W.; Tuschl, T. Identification of Tissue-Specific MicroRNAs from Mouse. Curr. Biol. 2002, 12, 735–739. [Google Scholar] [CrossRef]
- Sylva, M.; van den Hoff, M.J.B.; Moorman, A.F.M. Development of the Human Heart. Am. J. Med. Genet. A 2014, 164, 1347–1371. [Google Scholar] [CrossRef]
- Pisano, F.; Altomare, C.; Cervio, E.; Barile, L.; Rocchetti, M.; Ciuffreda, M.C.; Malpasso, G.; Copes, F.; Mura, M.; Danieli, P.; et al. Combination of MiRNA499 and MiRNA133 Exerts a Synergic Effect on Cardiac Differentiation. Stem Cells 2015, 33, 1187–1199. [Google Scholar] [CrossRef]
- van Rooij, E.; Quiat, D.; Johnson, B.A.; Sutherland, L.B.; Qi, X.; Richardson, J.A.; Kelm, R.J.; Olson, E.N. A Family of MicroRNAs Encoded by Myosin Genes Governs Myosin Expression and Muscle Performance. Dev. Cell 2009, 17, 662–673. [Google Scholar] [CrossRef]
- Li, K.-X.; Li, J.-R.; Zuo, S.-J.; Li, X.; Chen, X.-T.; Xiao, P.-Y.; Li, H.-T.; Sun, L.; Qian, T.; Zhang, H.-M.; et al. Identification of MiR-20b-5p as an Inhibitory Regulator in Cardiac Differentiation via TET2 and DNA Hydroxymethylation. Clin. Epigenetics 2024, 16, 42. [Google Scholar] [CrossRef] [PubMed]
- Hoelscher, S.C.; Stich, T.; Diehm, A.; Lahm, H.; Dreßen, M.; Zhang, Z.; Neb, I.; Aherrahrou, Z.; Erdmann, J.; Schunkert, H.; et al. MiR-128a Acts as a Regulator in Cardiac Development by Modulating Differentiation of Cardiac Progenitor Cell Populations. Int. J. Mol. Sci. 2020, 21, 1158. [Google Scholar] [CrossRef] [PubMed]
- Porrello, E.R.; Johnson, B.A.; Aurora, A.B.; Simpson, E.; Nam, Y.-J.; Matkovich, S.J.; Dorn, G.W.; van Rooij, E.; Olson, E.N. MiR-15 Family Regulates Postnatal Mitotic Arrest of Cardiomyocytes. Circ. Res. 2011, 109, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Zhu, X.; Dou, Y. The MiR-302/367 Cluster: A Comprehensive Update on Its Evolution and Functions. Open Biol. 2015, 5, 150138. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Z.-P.; Seok, H.Y.; Ding, J.; Kataoka, M.; Zhang, Z.; Hu, X.; Wang, G.; Lin, Z.; Wang, S.; et al. Mir-17–92 Cluster Is Required for and Sufficient to Induce Cardiomyocyte Proliferation in Postnatal and Adult Hearts. Circ. Res. 2013, 112, 1557–1566. [Google Scholar] [CrossRef]
- Clark, A.L.; Naya, F.J. MicroRNAs in the Myocyte Enhancer Factor 2 (MEF2)-Regulated Gtl2-Dio3 Noncoding RNA Locus Promote Cardiomyocyte Proliferation by Targeting the Transcriptional Coactivator Cited2. J. Biol. Chem. 2015, 290, 23162–23172. [Google Scholar] [CrossRef]
- Raso, A.; Dirkx, E.; Sampaio-Pinto, V.; el Azzouzi, H.; Cubero, R.J.; Sorensen, D.W.; Ottaviani, L.; Olieslagers, S.; Huibers, M.M.; de Weger, R.; et al. A MicroRNA Program Regulates the Balance between Cardiomyocyte Hyperplasia and Hypertrophy and Stimulates Cardiac Regeneration. Nat. Commun. 2021, 12, 4808. [Google Scholar] [CrossRef]
- Renikunta, H.V.; Lazarow, K.; Gong, Y.; Shukla, P.C.; Nageswaran, V.; Giral, H.; Kratzer, A.; Opitz, L.; Engel, F.B.; Haghikia, A.; et al. Large-Scale MicroRNA Functional High-Throughput Screening Identifies MiR-515-3p and MiR-519e-3p as Inducers of Human Cardiomyocyte Proliferation. iScience 2023, 26, 106593. [Google Scholar] [CrossRef]
- Fish, J.E.; Santoro, M.M.; Morton, S.U.; Yu, S.; Yeh, R.-F.; Wythe, J.D.; Ivey, K.N.; Bruneau, B.G.; Stainier, D.Y.R.; Srivastava, D. MiR-126 Regulates Angiogenic Signaling and Vascular Integrity. Dev. Cell 2008, 15, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Huang, M.; Li, Z.; Jia, F.; Ghosh, Z.; Lijkwan, M.A.; Fasanaro, P.; Sun, N.; Wang, X.; Martelli, F.; et al. MicroRNA-210 as a Novel Therapy for Treatment of Ischemic Heart Disease. Circulation 2010, 122 (Suppl. S1), S124–S131. [Google Scholar] [CrossRef] [PubMed]
- Rogg, E.-M.; Abplanalp, W.T.; Bischof, C.; John, D.; Schulz, M.H.; Krishnan, J.; Fischer, A.; Poluzzi, C.; Schaefer, L.; Bonauer, A.; et al. Analysis of Cell Type-Specific Effects of MicroRNA-92a Provides Novel Insights Into Target Regulation and Mechanism of Action. Circulation 2018, 138, 2545–2558. [Google Scholar] [CrossRef] [PubMed]
- Gallant-Behm, C.L.; Piper, J.; Dickinson, B.A.; Dalby, C.M.; Pestano, L.A.; Jackson, A.L. A Synthetic MicroRNA-92a Inhibitor (MRG-110) Accelerates Angiogenesis and Wound Healing in Diabetic and Nondiabetic Wounds. Wound Repair. Regen. 2018, 26, 311–323. [Google Scholar] [CrossRef]
- Boettger, T.; Beetz, N.; Kostin, S.; Schneider, J.; Krüger, M.; Hein, L.; Braun, T. Acquisition of the Contractile Phenotype by Murine Arterial Smooth Muscle Cells Depends on the Mir143/145 Gene Cluster. J. Clin. Investig. 2009, 119, 2634–2647. [Google Scholar] [CrossRef]
- Mohan, R.A.; Boukens, B.J.; Christoffels, V.M. Developmental Origin of the Cardiac Conduction System: Insight from Lineage Tracing. Pediatr. Cardiol. 2018, 39, 1107–1114. [Google Scholar] [CrossRef]
- Wang, J.; Bai, Y.; Li, N.; Ye, W.; Zhang, M.; Greene, S.B.; Tao, Y.; Chen, Y.; Wehrens, X.H.T.; Martin, J.F. Pitx2-MicroRNA Pathway That Delimits Sinoatrial Node Development and Inhibits Predisposition to Atrial Fibrillation. Proc. Natl. Acad. Sci. USA 2014, 111, 9181–9186. [Google Scholar] [CrossRef] [PubMed]
- Petkova, M.; Atkinson, A.J.; Yanni, J.; Stuart, L.; Aminu, A.J.; Ivanova, A.D.; Pustovit, K.B.; Geragthy, C.; Feather, A.; Li, N.; et al. Identification of Key Small Non-Coding MicroRNAs Controlling Pacemaker Mechanisms in the Human Sinus Node. J. Am. Heart Assoc. 2020, 9, e016590. [Google Scholar] [CrossRef]
- Yanni, J.; D’Souza, A.; Wang, Y.; Li, N.; Hansen, B.J.; Zakharkin, S.O.; Smith, M.; Hayward, C.; Whitson, B.A.; Mohler, P.J.; et al. Silencing MiR-370-3p Rescues Funny Current and Sinus Node Function in Heart Failure. Sci. Rep. 2020, 10, 11279. [Google Scholar] [CrossRef]
- D’Souza, A.; Pearman, C.M.; Wang, Y.; Nakao, S.; Logantha, S.J.R.J.; Cox, C.; Bennett, H.; Zhang, Y.; Johnsen, A.B.; Linscheid, N.; et al. Targeting MiR-423-5p Reverses Exercise Training–Induced HCN4 Channel Remodeling and Sinus Bradycardia. Circ. Res. 2017, 121, 1058–1068. [Google Scholar] [CrossRef]
- Belevych, A.E.; Sansom, S.E.; Terentyeva, R.; Ho, H.-T.; Nishijima, Y.; Martin, M.M.; Jindal, H.K.; Rochira, J.A.; Kunitomo, Y.; Abdellatif, M.; et al. MicroRNA-1 and -133 Increase Arrhythmogenesis in Heart Failure by Dissociating Phosphatase Activity from RyR2 Complex. PLoS ONE 2011, 6, e28324. [Google Scholar] [CrossRef]
- Yang, B.; Lin, H.; Xiao, J.; Lu, Y.; Luo, X.; Li, B.; Zhang, Y.; Xu, C.; Bai, Y.; Wang, H.; et al. The Muscle-Specific MicroRNA MiR-1 Regulates Cardiac Arrhythmogenic Potential by Targeting GJA1 and KCNJ2. Nat. Med. 2007, 13, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Callis, T.E.; Pandya, K.; Seok, H.Y.; Tang, R.-H.; Tatsuguchi, M.; Huang, Z.-P.; Chen, J.-F.; Deng, Z.; Gunn, B.; Shumate, J.; et al. MicroRNA-208a Is a Regulator of Cardiac Hypertrophy and Conduction in Mice. J. Clin. Investig. 2009, 119, 2772–2786. [Google Scholar] [CrossRef]
- Wei, Y.; Peng, S.; Wu, M.; Sachidanandam, R.; Tu, Z.; Zhang, S.; Falce, C.; Sobie, E.A.; Lebeche, D.; Zhao, Y. Multifaceted Roles of MiR-1s in Repressing the Fetal Gene Program in the Heart. Cell Res. 2014, 24, 278–292. [Google Scholar] [CrossRef]
- Lu, T.-Y.; Lin, B.; Li, Y.; Arora, A.; Han, L.; Cui, C.; Coronnello, C.; Sheng, Y.; Benos, P.V.; Yang, L. Overexpression of MicroRNA-1 Promotes Cardiomyocyte Commitment from Human Cardiovascular Progenitors via Suppressing WNT and FGF Signaling Pathways. J. Mol. Cell. Cardiol. 2013, 63, 146–154. [Google Scholar] [CrossRef]
- Li, X.; Bi, H.; Xie, S.; Cui, W. MiR-208b Regulates the Conversion of Skeletal Muscle Fiber Types by Inhibiting Mettl8 Expression. Front. Genet. 2022, 13, 820464. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, H.; Lian, X.; Yang, S.; Shen, H.; Wu, S.; Wang, X.; Lyu, G. Circulating MicroRNA: Myocardium-Derived Prenatal Biomarker of Ventricular Septal Defects. Front. Genet. 2022, 13, 899034. [Google Scholar] [CrossRef]
- Miyamoto, S.D.; Karimpour-Fard, A.; Peterson, V.; Auerbach, S.R.; Stenmark, K.R.; Stauffer, B.L.; Sucharov, C.C. Circulating MicroRNA as a Biomarker for Recovery in Pediatric Dilated Cardiomyopathy. J. Heart Lung Transplant. 2015, 34, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Li, S. Circulating MicroRNA as a Novel Biomarker for Pulmonary Arterial Hypertension Due to Congenital Heart Disease. Pediatr. Cardiol. 2017, 38, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Ai, L.; Chai, X.; Tang, P.; Zhang, W.; Yang, L.; Hu, Y.; Xu, Y.; Li, S. Maternal Circulating Exosomal MiRNAs as Non-Invasive Biomarkers for the Prediction of Fetal Ventricular Septal Defect. Front. Genet. 2021, 12, 717208. [Google Scholar] [CrossRef]
- Zhu, S.; Cao, L.; Zhu, J.; Kong, L.; Jin, J.; Qian, L.; Zhu, C.; Hu, X.; Li, M.; Guo, X.; et al. Identification of Maternal Serum MicroRNAs as Novel Non-Invasive Biomarkers for Prenatal Detection of Fetal Congenital Heart Defects. Clin. Chim. Acta 2013, 424, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Chen, L.; Xue, J.; Huang, T.; Wei, X.; Liu, D.; Ma, W.; Cao, S.; Yuan, Z. Expression Profile of Maternal Circulating MicroRNAs as Non-Invasive Biomarkers for Prenatal Diagnosis of Congenital Heart Defects. Biomed. Pharmacother. 2019, 109, 823–830. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, F.; Mi, Y.; Wang, F.; Cai, K.; Yang, X.; Zhang, R.; Liu, L.; Zhang, Y.; Wang, Y.; et al. Aberrant Expression of MiR-29b-3p Influences Heart Development and Cardiomyocyte Proliferation by Targeting NOTCH2. Cell Prolif. 2020, 53, e12764. [Google Scholar] [CrossRef]
- Kong, D.; Li, H.; Ren, C.; Yang, W.; Zhang, Z. MicroRNAs in Fetal Umbilical Cord Blood as a Prenatal Screening Tool for Congenital Heart Disease. Ann. Clin. Lab. Sci. 2021, 51, 705–712. [Google Scholar]
- Kehler, L.; Biro, O.; Lazar, L.; Rigo, J.; Nagy, B. Elevated Hsa-MiR-99a Levels in Maternal Plasma May Indicate Congenital Heart Defects. Biomed. Rep. 2015, 3, 869–873. [Google Scholar] [CrossRef]
- Felekkis, K.; Papaneophytou, C. Challenges in Using Circulating Micro-RNAs as Biomarkers for Cardiovascular Diseases. Int. J. Mol. Sci. 2020, 21, 561. [Google Scholar] [CrossRef]
- Thiene, G.; Frescura, C. Anatomical and Pathophysiological Classification of Congenital Heart Disease. Cardiovasc. Pathol. 2010, 19, 259–274. [Google Scholar] [CrossRef]
- Ombelet, F.; Goossens, E.; Van De Bruaene, A.; Budts, W.; Moons, P. Newly Developed Adult Congenital Heart Disease Anatomic and Physiological Classification: First Predictive Validity Evaluation. J. Am. Heart Assoc. 2020, 9, e014988. [Google Scholar] [CrossRef]
- González-Moyotl, N.; Huesca-Gómez, C.; Torres-Paz, Y.E.; Fuentevilla-Álvarez, G.; Romero-Maldonado, S.; Sámano, R.; Soto, M.E.; Martínez-Rosas, M.; Domínguez-López, A.; Gamboa, R. Paediatrics Congenital Heart Disease Is Associated with Plasma MiRNAs. Pediatr. Res. 2024, 96, 1220–1227. [Google Scholar] [CrossRef]
- Khairy, P.; Poirier, N.; Mercier, L.-A. Univentricular Heart. Circulation 2007, 115, 800–812. [Google Scholar] [CrossRef]
- Kritzmire, S.M.; Thomas, A.; Horenstein, M.S.; Cossu, A.E. Hypoplastic Left Heart Syndrome; StatPearls: Treasure Island, FL, USA, 2025. [Google Scholar]
- Horenstein, M.S.; Diaz-Frias, J.; Guillaume, M. Tetralogy of Fallot; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- van der Ven, J.P.G.; van den Bosch, E.; Bogers, A.J.C.C.; Helbing, W.A. Current Outcomes and Treatment of Tetralogy of Fallot. F1000Res 2019, 8, 1530. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.E.; Kibiryeva, N.; Zhou, X.-G.; Marshall, J.A.; Lofland, G.K.; Artman, M.; Chen, J.; Bittel, D.C. Noncoding RNA Expression in Myocardium from Infants with Tetralogy of Fallot. Circ. Cardiovasc. Genet. 2012, 5, 279–286. [Google Scholar] [CrossRef]
- Bittel, D.; Kibiryeva, N.; Marshall, J.; O’Brien, J. MicroRNA-421 Dysregulation Is Associated with Tetralogy of Fallot. Cells 2014, 3, 713–723. [Google Scholar] [CrossRef]
- Zhang, J.; Chang, J.-J.; Xu, F.; Ma, X.-J.; Wu, Y.; Li, W.-C.; Wang, H.-J.; Huang, G.-Y.; Ma, D. MicroRNA Deregulation in Right Ventricular Outflow Tract Myocardium in Nonsyndromic Tetralogy of Fallot. Can. J. Cardiol. 2013, 29, 1695–1703. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Xu, X.; Deng, F.; Feng, J.; Zhang, H.; Liu, Y.; Zhang, Y.; Pan, L.; Liu, Y.; Zhang, D.; et al. MiRNA-940 Reduction Contributes to Human Tetralogy of Fallot Development. J. Cell. Mol. Med. 2014, 18, 1830–1839. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, X.-J.; Wang, H.-J.; Li, W.-C.; Chen, L.; Ma, D.; Huang, G.-Y. Expression of Cx43-Related MicroRNAs in Patients with Tetralogy of Fallot. World J. Pediatr. 2014, 10, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Grunert, M.; Appelt, S.; Dunkel, I.; Berger, F.; Sperling, S.R. Altered MicroRNA and Target Gene Expression Related to Tetralogy of Fallot. Sci. Rep. 2019, 9, 19063. [Google Scholar] [CrossRef]
- Huesca-Gomez, C.; Gonzalez-Moyotl, N.; Romero-Maldonado, S.; Samano, R.; Gamboa, R. Role of Circulating MicroRNAs in Tetralogy of Fallot. Adv. Interv. Cardiol. 2025, 21, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, Y.; Chen, Q.; Li, S.; Yang, Y.; Lyu, G. Analyzing Exosomal MiRNA Profiles in Tetralogy of Fallot Fetuses’ Amniotic Fluid. Sci. Rep. 2025, 15, 96. [Google Scholar] [CrossRef] [PubMed]
- Bassett, A.S.; Costain, G.A.; Marshall, C.R.; Scherer, S.; Ogura, L.; Merico, D.; Silversides, C. Micrornas and Genetic Risk for Tetralogy of Fallot. Can. J. Cardiol. 2015, 31, S189–S190. [Google Scholar] [CrossRef]
- You, G.; Zu, B.; Wang, B.; Fu, Q.; Li, F. Identification of MiRNA–MRNA–TFs Regulatory Network and Crucial Pathways Involved in Tetralogy of Fallot. Front. Genet. 2020, 11, 552. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Shi, G.; Zhu, Z.; Chen, H.; Fu, Q. Sexual Difference of Small RNA Expression in Tetralogy of Fallot. Sci. Rep. 2018, 8, 12847. [Google Scholar] [CrossRef]
- Menillo, A.M.; Alahmadi, M.H.; Pearson-Shaver, A.L. Atrial Septal Defect; StatPearls: Treasure Island, FL, USA, 2025. [Google Scholar]
- Alahmadi, M.H.; Oliver, T.I. Ventricular Septal Defect; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Li, D.; Ji, L.; Liu, L.; Liu, Y.; Hou, H.; Yu, K.; Sun, Q.; Zhao, Z. Characterization of Circulating MicroRNA Expression in Patients with a Ventricular Septal Defect. PLoS ONE 2014, 9, e106318. [Google Scholar] [CrossRef]
- Yu, K.; Ji, Y.; Wang, H.; Xuan, Q.K.; Li, B.B.; Xiao, J.J.; Sun, W.; Kong, X.Q. Association of MiR-196a2, MiR-27a, and MiR-499 Polymorphisms with Isolated Congenital Heart Disease in a Chinese Population. Genet. Mol. Res. 2016, 15, 8929. [Google Scholar] [CrossRef]
- Wang, Y.; Du, X.; Zhou, Z.; Jiang, J.; Zhang, Z.; Ye, L.; Hong, H. A Gain-of-Function ACTC1 3′UTR Mutation That Introduces a MiR-139-5p Target Site May Be Associated with a Dominant Familial Atrial Septal Defect. Sci. Rep. 2016, 6, 25404. [Google Scholar] [CrossRef]
- Han, S.; Wang, W.-J.; Duan, L.; Hou, Z.-L.; Zeng, J.-Y.; Li, L.; Meng, M.-Y.; Zhang, Y.-Y.; Wang, Y.; Xie, Y.-H.; et al. MicroRNA Profiling of Patients with Sporadic Atrial Septal Defect. Biotechnol. Biotechnol. Equip. 2019, 33, 510–519. [Google Scholar] [CrossRef]
- Jia, L.; Limeng, D.; Xiaoyin, T.; Junwen, W.; Xintong, Z.; Gang, X.; Yun, B.; Hong, G. A Novel Splicing Mutation c.335–1 G>A in the Cardiac Transcription Factor NKX2-5 Leads to Familial Atrial Septal Defect Through MiR-19 and PYK2. Stem Cell Rev. Rep. 2022, 18, 2646–2661. [Google Scholar] [CrossRef]
- Ahmed, I.; Alahmadi, M.H.; Anjum, F. Atrioventricular Septal Defect; StatPearls: Treasure Island, FL, USA, 2025. [Google Scholar]
- Coppola, A.; Romito, A.; Borel, C.; Gehrig, C.; Gagnebin, M.; Falconnet, E.; Izzo, A.; Altucci, L.; Banfi, S.; Antonarakis, S.E.; et al. Cardiomyogenesis Is Controlled by the MiR-99a/Let-7c Cluster and Epigenetic Modifications. Stem Cell Res. 2014, 12, 323–337. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; Song, X.; Liu, L.; Su, G.; Cui, Y. Bioinformatic Analysis of Genes and MicroRNAs Associated with Atrioventricular Septal Defect in Down Syndrome Patients. Int. Heart J. 2016, 57, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.A.; Chiacchia, S.; Boehme, J.; Datar, S.A.; Morell, E.; Keller, R.L.; Romer, A.; Colglazier, E.; Parker, C.; Becerra, J.; et al. MicroRNA in Pediatric Pulmonary Hypertension MicroRNA Profiling to Inform Disease Classification, Severity, and Treatment Response in Pediatric Pulmonary Hypertension. Am. J. Physiol. Heart Circ. Physiol. 2025, 328, H47–H57. [Google Scholar] [CrossRef]
- Chouvarine, P.; Geldner, J.; Giagnorio, R.; Legchenko, E.; Bertram, H.; Hansmann, G. Trans-Right–Ventricle and Transpulmonary MicroRNA Gradients in Human Pulmonary Arterial Hypertension. Pediatr. Crit. Care Med. 2020, 21, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Xiao, Y.; Yin, X.; Gao, S.; Zhou, L.; Liu, H. Expression of Serum MiR-27b and MiR-451 in Patients with Congenital Heart Disease Associated Pulmonary Artery Hypertension and Risk Factor Analysis. Exp. Ther. Med. 2020, 20, 3196–3202. [Google Scholar] [CrossRef]
- Deng, L.; Blanco, F.J.; Stevens, H.; Lu, R.; Caudrillier, A.; McBride, M.; McClure, J.D.; Grant, J.; Thomas, M.; Frid, M.; et al. MicroRNA-143 Activation Regulates Smooth Muscle and Endothelial Cell Crosstalk in Pulmonary Arterial Hypertension. Circ. Res. 2015, 117, 870–883. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-Z.; Li, G.; Yan, D.-L.; Liu, Y.-L. MicroRNA-98 Can Serve as a Diagnostic Marker for Congenital Heart Disease-Associated Pulmonary Artery Hypertension. Chin. Med. J. 2020, 133, 3007–3009. [Google Scholar] [CrossRef]
- Su, D.; Huang, Y.; Liu, D.; Huang, Y.; Ye, B.; Qin, S.; Chen, C.; Pang, Y. Bioinformatic Analysis of Dysregulated Circular RNAs in Pediatric Pulmonary Hypertension Linked Congenital Heart Disease. Transl. Pediatr. 2022, 11, 715–727. [Google Scholar] [CrossRef]
- Ma, K.; Zhao, Q.; Chen, W.; Zhang, H.; Li, S.; Pan, X.; Chen, Q. Human Lung MicroRNA Profiling in Pulmonary Arterial Hypertension Secondary to Congenital Heart Defect. Pediatr. Pulmonol. 2015, 50, 1214–1223. [Google Scholar] [CrossRef]
- Estephan, L.E.; Genuardi, M.V.; Kosanovich, C.M.; Risbano, M.G.; Zhang, Y.; Petro, N.; Watson, A.; Al Aaraj, Y.; Sembrat, J.C.; Rojas, M.; et al. Distinct Plasma Gradients of MicroRNA-204 in the Pulmonary Circulation of Patients Suffering from WHO Groups I and II Pulmonary Hypertension. Pulm. Circ. 2019, 9, 2045894019840646. [Google Scholar] [CrossRef]
- Katsaros, O.; Ktenopoulos, N.; Korovesis, T.; Benetos, G.; Apostolos, A.; Koliastasis, L.; Sagris, M.; Milaras, N.; Latsios, G.; Synetos, A.; et al. Bicuspid Aortic Valve Disease: From Pathophysiology to Treatment. J. Clin. Med. 2024, 13, 4970. [Google Scholar] [CrossRef]
- Siu, S.C.; Silversides, C.K. Bicuspid Aortic Valve Disease. J. Am. Coll. Cardiol. 2010, 55, 2789–2800. [Google Scholar] [CrossRef]
- Antequera-González, B.; Collell-Hernández, R.; Martínez-Micaelo, N.; Marimon-Blanch, C.; Carbonell-Prat, B.; Escribano, J.; Alegret, J.M. MiR-130a Expression Is Related to Aortic Dilation in Bicuspid Aortic Valve Children. Pediatr. Res. 2024, 95, 1741–1748. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Garcia, A.d.J.; Soule-Egea, M.; Fuentevilla-Alvarez, G.; Vargas-Alarcon, G.; Hernández-Mejia, B.I.; Martínez-Hernández, H.; Mora-Canela, S.L.; Santibanez-Escobar, F.; Ávila-Martinez, V.; Castrejón-Tellez, V.; et al. Role of MiRNAs in Regulating Ascending Aortic Dilation in Bicuspid Aortic Valve Patients Operated for Aortic Stenosis. Int. J. Mol. Sci. 2025, 26, 779. [Google Scholar] [CrossRef]
- Naito, S.; Sequeira-Gross, T.; Petersen, J.; Detlef, I.; Sachse, M.; Zeller, T.; Reichenspurner, H.; Girdauskas, E. Circulating MicroRNAs in the Prediction of BAV Aortopathy: Do the Expression Patterns Correlate between Blood and Aortic Tissue? Rev. Cardiovasc. Med. 2022, 23, 47. [Google Scholar] [CrossRef]
- Borghini, A.; Foffa, I.; Pulignani, S.; Vecoli, C.; Ait-Ali, L.; Andreassi, M.G. MiRNome Profiling in Bicuspid Aortic Valve-Associated Aortopathy by Next-Generation Sequencing. Int. J. Mol. Sci. 2017, 18, 2498. [Google Scholar] [CrossRef] [PubMed]
- Sophocleous, F.; De Garate, E.; Bigotti, M.G.; Anwar, M.; Jover, E.; Chamorro-Jorganes, A.; Rajakaruna, C.; Mitrousi, K.; De Francesco, V.; Wilson, A.; et al. A Segmental Approach from Molecular Profiling to Medical Imaging to Study Bicuspid Aortic Valve Aortopathy. Cells 2022, 11, 3721. [Google Scholar] [CrossRef] [PubMed]
- Nigam, V.; Sievers, H.H.; Jensen, B.C.; Sier, H.A.; Simpson, P.C.; Srivastava, D.; Mohamed, S.A. Altered MicroRNAs in Bicuspid Aortic Valve: A Comparison between Stenotic and Insufficient Valves. J. Heart Valve Dis. 2010, 19, 459–465. [Google Scholar]
- Ragusa, R.; Di Molfetta, A.; D’Aurizio, R.; Del Turco, S.; Cabiati, M.; Del Ry, S.; Basta, G.; Pitto, L.; Amodeo, A.; Trivella, M.G.; et al. Variations of Circulating MiRNA in Paediatric Patients with Heart Failure Supported with Ventricular Assist Device: A Pilot Study. Sci. Rep. 2020, 10, 5905. [Google Scholar] [CrossRef]
- Klimczak-Tomaniak, D.; Haponiuk-Skwarlińska, J.; Kuch, M.; Pączek, L. Crosstalk between MicroRNA and Oxidative Stress in Heart Failure: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 15013. [Google Scholar] [CrossRef]
- Toni, L.; Hailu, F.; Sucharov, C.C. Dysregulated Micro-RNAs and Long Noncoding RNAs in Cardiac Development and Pediatric Heart Failure. Am. J. Physiol.-Heart Circ. Physiol. 2020, 318, H1308–H1315. [Google Scholar] [CrossRef]
- Stauffer, B.L.; Russell, G.; Nunley, K.; Miyamoto, S.D.; Sucharov, C.C. MiRNA Expression in Pediatric Failing Human Heart. J. Mol. Cell. Cardiol. 2013, 57, 43–46. [Google Scholar] [CrossRef]
- Su, X.; Liang, H.; Wang, H.; Chen, G.; Jiang, H.; Wu, Q.; Liu, T.; Liu, Q.; Yu, T.; Gu, Y.; et al. Over-Expression of MicroRNA-1 Causes Arrhythmia by Disturbing Intracellular Trafficking System. Sci. Rep. 2017, 7, 46259. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, L.; Zhang, Y.; Liang, H.; Li, X.; Cai, R.; Wang, L.; Du, W.; Zhang, R.; Li, J.; et al. Overexpression of MicroRNA-1 Causes Atrioventricular Block in Rodents. Int. J. Biol. Sci. 2013, 9, 455–462. [Google Scholar] [CrossRef]
- Moric-Janiszewska, E.; Smolik, S.; Morka, A.; Szydłowski, L.; Kapral, M. Expression Levels of Serum Circulating MicroRNAs in Pediatric Patients with Ventricular and Supraventricular Arrhythmias. Adv. Med. Sci. 2021, 66, 411–417. [Google Scholar] [CrossRef]
- Sun, L.; Sun, S.; Zeng, S.; Li, Y.; Pan, W.; Zhang, Z. Expression of Circulating MicroRNA-1 and MicroRNA-133 in Pediatric Patients with Tachycardia. Mol. Med. Rep. 2015, 11, 4039–4046. [Google Scholar] [CrossRef]
- Al-Akchar, M.; Siddique, M.S. Long QT Syndrome; StatPearls: Treasure Island, FL, USA, 2025. [Google Scholar]
- Matkovich, S.J.; Wang, W.; Tu, Y.; Eschenbacher, W.H.; Dorn, L.E.; Condorelli, G.; Diwan, A.; Nerbonne, J.M.; Dorn, G.W. MicroRNA-133a Protects Against Myocardial Fibrosis and Modulates Electrical Repolarization Without Affecting Hypertrophy in Pressure-Overloaded Adult Hearts. Circ. Res. 2010, 106, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Shan, H.; Zhang, Y.; Lu, Y.; Zhang, Y.; Pan, Z.; Cai, B.; Wang, N.; Li, X.; Feng, T.; Hong, Y.; et al. Downregulation of MiR-133 and MiR-590 Contributes to Nicotine-Induced Atrial Remodelling in Canines. Cardiovasc. Res. 2009, 83, 465–472. [Google Scholar] [CrossRef]
- Xiao, L.; Xiao, J.; Luo, X.; Lin, H.; Wang, Z.; Nattel, S. Feedback Remodeling of Cardiac Potassium Current Expression. Circulation 2008, 118, 983–992. [Google Scholar] [CrossRef] [PubMed]
- Hedley, P.L.; Jørgensen, P.; Schlamowitz, S.; Wangari, R.; Moolman-Smook, J.; Brink, P.A.; Kanters, J.K.; Corfield, V.A.; Christiansen, M. The Genetic Basis of Long QT and Short QT Syndromes: A Mutation Update. Hum. Mutat. 2009, 30, 1486–1511. [Google Scholar] [CrossRef]
- Hedley, P.L.; Carlsen, A.L.; Christiansen, K.M.; Kanters, J.K.; Behr, E.R.; Corfield, V.A.; Christiansen, M. MicroRNAs in Cardiac Arrhythmia: DNA Sequence Variation of MiR-1 and MiR-133A in Long QT Syndrome. Scand. J. Clin. Lab. Investig. 2014, 74, 485–491. [Google Scholar] [CrossRef]
- Vardas, E.P.; Oikonomou, E.; Vardas, P.E.; Tousoulis, D. MicroRNAs as Prognostic Biomarkers for Atrial Fibrillation Recurrence After Catheter Ablation: Current Evidence and Future Directions. Biomedicines 2024, 13, 32. [Google Scholar] [CrossRef] [PubMed]
- Kiliszek, M.; Maciak, K.; Maciejak, A.; Krzyżanowski, K.; Wierzbowski, R.; Gora, M.; Burzynska, B.; Segiet, A.; Skrobowski, A. Serum MicroRNA in Patients Undergoing Atrial Fibrillation Ablation. Sci. Rep. 2020, 10, 4424. [Google Scholar] [CrossRef] [PubMed]
- Hailu, F.T.; Karimpour-Fard, A.; Neltner, B.; Stauffer, B.L.; Lipshultz, S.; Miyamoto, S.D.; Sucharov, C.C. Circulating and Cardiac Tissue MiRNAs in Children with Dilated Cardiomyopathy. J. Cardiovasc. Dev. Dis. 2023, 10, 391. [Google Scholar] [CrossRef]
- Hirai, K.; Ousaka, D.; Fukushima, Y.; Kondo, M.; Eitoku, T.; Shigemitsu, Y.; Hara, M.; Baba, K.; Iwasaki, T.; Kasahara, S.; et al. Cardiosphere-Derived Exosomal MicroRNAs for Myocardial Repair in Pediatric Dilated Cardiomyopathy. Sci. Transl. Med. 2020, 12, eabb3336. [Google Scholar] [CrossRef]
- Jiao, M.; You, H.-Z.; Yang, X.-Y.; Yuan, H.; Li, Y.-L.; Liu, W.-X.; Jin, M.; Du, J. Circulating MicroRNA Signature for the Diagnosis of Childhood Dilated Cardiomyopathy. Sci. Rep. 2018, 8, 724. [Google Scholar] [CrossRef] [PubMed]
- Enes Coşkun, M.; Kervancıoğlu, M.; Öztuzcu, S.; Yılmaz Coşkun, F.; Ergün, S.; Başpınar, O.; Kılınç, M.; Temel, L.; Coşkun, M.Y. Plasma MicroRNA Profiling of Children with Idiopathic Dilated Cardiomyopathy. Biomarkers 2016, 21, 56–61. [Google Scholar] [CrossRef]
- Meng, Z.; Lu, M. RNA Interference-Induced Innate Immunity, Off-Target Effect, or Immune Adjuvant? Front. Immunol. 2017, 8, 331. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, Z.; Wang, Y.; Han, T. The Risks of MiRNA Therapeutics: In a Drug Target Perspective. Drug Des. Dev. Ther. 2021, 15, 721–733. [Google Scholar] [CrossRef]
- Segal, M.; Slack, F.J. Challenges Identifying Efficacious MiRNA Therapeutics for Cancer. Expert. Opin. Drug Discov. 2020, 15, 987–991. [Google Scholar] [CrossRef]
- Haupenthal, J.; Baehr, C.; Kiermayer, S.; Zeuzem, S.; Piiper, A. Inhibition of RNAse A Family Enzymes Prevents Degradation and Loss of Silencing Activity of SiRNAs in Serum. Biochem. Pharmacol. 2006, 71, 702–710. [Google Scholar] [CrossRef]
- Segal, M.; Biscans, A.; Gilles, M.-E.; Anastasiadou, E.; De Luca, R.; Lim, J.; Khvorova, A.; Slack, F.J. Hydrophobically Modified Let-7b MiRNA Enhances Biodistribution to NSCLC and Downregulates HMGA2 In Vivo. Mol. Ther. Nucleic Acids 2020, 19, 267–277. [Google Scholar] [CrossRef]
- Scheideler, M.; Vidakovic, I.; Prassl, R. Lipid Nanocarriers for MicroRNA Delivery. Chem. Phys. Lipids 2020, 226, 104837. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, Preparation, and Applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef]
- Gao, S.; Tian, H.; Guo, Y.; Li, Y.; Guo, Z.; Zhu, X.; Chen, X. MiRNA Oligonucleotide and Sponge for MiRNA-21 Inhibition Mediated by PEI-PLL in Breast Cancer Therapy. Acta Biomater. 2015, 25, 184–193. [Google Scholar] [CrossRef]
- Biray Avcı, Ç.; Özcan, İ.; Balcı, T.; Özer, Ö.; Gündüz, C. Design of Polyethylene Glycol–Polyethylenimine Nanocomplexes as Non-viral Carriers: Mir-150 Delivery to Chronic Myeloid Leukemia Cells. Cell Biol. Int. 2013, 37, 1205–1214. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhang, C.; Zhang, J.; Jiao, Z.; Dong, N.; Wang, G.; Wang, Z.; Wang, L. Localized Injection of MiRNA-21-Enriched Extracellular Vesicles Effectively Restores Cardiac Function after Myocardial Infarction. Theranostics 2019, 9, 2346–2360. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Corbett, A.L.; Taatizadeh, E.; Tasnim, N.; Little, J.P.; Garnis, C.; Daugaard, M.; Guns, E.; Hoorfar, M.; Li, I.T.S. Challenges and Opportunities in Exosome Research—Perspectives from Biology, Engineering, and Cancer Therapy. APL Bioeng. 2019, 3, 011503. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhan, Q.; Huang, B.; Wang, Y.; Wang, X. AAV-Mediated Gene Therapy: Advancing Cardiovascular Disease Treatment. Front. Cardiovasc. Med. 2022, 9, 952755. [Google Scholar] [CrossRef]
- Yan, H.; Wang, H.; Zhu, X.; Huang, J.; Li, Y.; Zhou, K.; Hua, Y.; Yan, F.; Wang, D.-Z.; Luo, Y. Adeno-Associated Virus-Mediated Delivery of Anti-MiR-199a Tough Decoys Attenuates Cardiac Hypertrophy by Targeting PGC-1alpha. Mol. Ther. Nucleic Acids 2021, 23, 406–417. [Google Scholar] [CrossRef] [PubMed]
- Jaski, B.E.; Jessup, M.L.; Mancini, D.M.; Cappola, T.P.; Pauly, D.F.; Greenberg, B.; Borow, K.; Dittrich, H.; Zsebo, K.M.; Hajjar, R.J. Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID Trial), a First-in-Human Phase 1/2 Clinical Trial. J. Card. Fail. 2009, 15, 171–181. [Google Scholar] [CrossRef]
- Kopechek, J.A.; McTiernan, C.F.; Chen, X.; Zhu, J.; Mburu, M.; Feroze, R.; Whitehurst, D.A.; Lavery, L.; Cyriac, J.; Villanueva, F.S. Ultrasound and Microbubble-Targeted Delivery of a MicroRNA Inhibitor to the Heart Suppresses Cardiac Hypertrophy and Preserves Cardiac Function. Theranostics 2019, 9, 7088–7098. [Google Scholar] [CrossRef]
- Yang, H.; Qin, X.; Wang, H.; Zhao, X.; Liu, Y.; Wo, H.-T.; Liu, C.; Nishiga, M.; Chen, H.; Ge, J.; et al. An in Vivo MiRNA Delivery System for Restoring Infarcted Myocardium. ACS Nano 2019, 13, 9880–9894. [Google Scholar] [CrossRef]
- Fisher, R.K.; Mattern-Schain, S.I.; Best, M.D.; Kirkpatrick, S.S.; Freeman, M.B.; Grandas, O.H.; Mountain, D.J.H. Improving the Efficacy of Liposome-Mediated Vascular Gene Therapy via Lipid Surface Modifications. J. Surg. Res. 2017, 219, 136–144. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, L.; Tong, X.; Wang, Y.; Zhang, Z.; Kong, X.; Ni, S.; Luo, X.; Zheng, M.; Tang, Y.; et al. MiCGR: Interpretable Deep Neural Network for Predicting Both Site-Level and Gene-Level Functional Targets of MicroRNA. Brief. Bioinform. 2024, 26, bbae616. [Google Scholar] [CrossRef]
- Errington, N.; Iremonger, J.; Pickworth, J.A.; Kariotis, S.; Rhodes, C.J.; Rothman, A.M.; Condliffe, R.; Elliot, C.A.; Kiely, D.G.; Howard, L.S.; et al. A Diagnostic MiRNA Signature for Pulmonary Arterial Hypertension Using a Consensus Machine Learning Approach. EBioMedicine 2021, 69, 103444. [Google Scholar] [CrossRef]
- Paolini, A.; Baldassarre, A.; Bruno, S.P.; Felli, C.; Muzi, C.; Ahmadi Badi, S.; Siadat, S.D.; Sarshar, M.; Masotti, A. Improving the Diagnostic Potential of Extracellular MiRNAs Coupled to Multiomics Data by Exploiting the Power of Artificial Intelligence. Front. Microbiol. 2022, 13, 888414. [Google Scholar] [CrossRef] [PubMed]
- White, A.K.; VanInsberghe, M.; Petriv, O.I.; Hamidi, M.; Sikorski, D.; Marra, M.A.; Piret, J.; Aparicio, S.; Hansen, C.L. High-Throughput Microfluidic Single-Cell RT-QPCR. Proc. Natl. Acad. Sci. USA 2011, 108, 13999–14004. [Google Scholar] [CrossRef] [PubMed]
- Faridani, O.R.; Abdullayev, I.; Hagemann-Jensen, M.; Schell, J.P.; Lanner, F.; Sandberg, R. Single-Cell Sequencing of the Small-RNA Transcriptome. Nat. Biotechnol. 2016, 34, 1264–1266. [Google Scholar] [CrossRef]
- Herbst, E.; Mandel-Gutfreund, Y.; Yakhini, Z.; Biran, H. Inferring Single-Cell and Spatial MicroRNA Activity from Transcriptomics Data. Commun. Biol. 2025, 8, 87. [Google Scholar] [CrossRef] [PubMed]
Disease | Key miRNAs | Expression Pattern | Clinical Significance and Function | References |
---|---|---|---|---|
HLHS | miR-150-5p | Downregulated in serum | Potential biomarker for HF, especially when combined with NT-proBNP | [7] |
miR-129-5p | Downregulated in serum | Potential biomarker for HF, likely associated with hypoxic response | [8] | |
TOF | miR-19b, miR-19c, miR-375, miR-22 | Upregulated in maternal serum | Potential biomarker | [85] |
miR-421, miR-1201 | Upregulated in RV tissue | Mediator of RV remodeling in TOF, miR-421, negatively correlated with SOX4 | [98,99] | |
miR625-5p, miR-183-5p | Upregulated in serum | Potential biomarker | [6] | |
miR-181d-5p, miR-142-5p, miR-339-5p | Downregulated in serum | Potential biomarker | [6] | |
miR-424, miR-222 | Upregulated in RVOT tissue | Enhanced proliferation, additionally, miR-222 leads to inhibition of cardiomyocyte differentiation (murine models) | [100] | |
miR-940 | Downregulated in RVOT tissue | Enhanced proliferation and inhibition lead to reduced migration, acting through the inhibition of JARID2, a protein essential for outflow tract morphogenesis | [101] | |
miR-1, miR-206 | Downregulated in RVOT tissues | Imparing myocardial conduction—increased expression of Cx-43, disrupted expression of KCNJ2 and TNNI1 | [6,102,103] | |
miR-221-5p, miR-21-5p, miR-155-5p | Upregulated in serum | Potential biomarkers, mainly active in hypoxia-sensitive signaling pathways | [104] | |
miR-21-5p, miR-144-3p | Downregulated in serum | |||
miR-200a-3p, miR-10a-5p | Upregulated in amniotic fluid | Potential biomarkers, acting through inhibition of cardiomyocyte differentiation via suppression of the transcription factor GATA4, while miR-10a-5p additionally suppresses TBX5 and NKX2.5 | [105] | |
VSD | miR-1-1 | Downregulated in heart tissue | Inhibition of GJA1 and SOX9 | [10] |
miR-181c | Upregulated in heart tissue | Downregulation of BMPR2 | [10] | |
hsa-let-7e-5p, hsa-miR-155-5p, hsa-miR-222-3p, hsa-miR-379-5p, hsa-miR- 409-3p, hsa-miR-433, hsa-miR-487b | Downregulated in serum | Impact on the expression of genes critical for cardiac development, including HAND1, NKX2-4, TBX1, MAP2K4, GATA4, NOTCH1 and ZFPM2 | [111] | |
hsa-miR-498 | Upregulated in serum | |||
miR-142-5p, miR-4666a-3p | Downregulated in maternal serum | Potential biomarkers | [86] | |
miR-1275, miR-3664-3p | Upregulated in maternal serum | |||
hsa-miR-146a-5p | Downregulated in maternal serum | Potential biomarker, acting through the suppression of NUMB expression, a negative regulator of the Notch pathway | [84] | |
ASD | miR-196a2 | Collected from serum | SNP of this miRNA is associated with disease susceptibility | [112] |
miR-139-5p | Mutation identified by whole-genome sequencing | A mutation in the 3′UTR of the ACTC1 gene results in the de novo creation of a binding site for miR-139-5p and disease development | [113] | |
hsa-let-7a, hsa-let-7b, hsa-miR-486 | Upregulated in serum, hsa-let-7a also showed a positive correlation between levels in maternal and child serum | Potential biomarker in prenatal screening, miR-486 also exhibited significantly higher levels among patients with VSD and AVSD | [11] | |
miR-29, miR-143/145 | Upregulated in murine atrial septum tissue | Involvement in the regulation of multiple pathways essential for morphogenesis. | [114] | |
miR-17-92, miR-106b-25, miR-503/424 | Downregulated in murine atrial septum tissue | |||
BAV | miR-130a | Downregulated in serum | Potential biomarker, levels reduced in patients with BAV and dilated aorta, acting through modulation of the TGF-β pathway | [129] |
let-7e-5p, miR-196a-5p | Upregulated in aortic wall tissue | Changes in concentration relative to controls were particularly pronounced in groups with BAV and aortic dilation | [130] | |
miR-17a-5p | Downregulated in aortic wall tissue | |||
miR-21, miR-133a, miR-143, miR-145 | Positive correlation between plasma and aortic tissue concentrations among BAV and UAV patients | Association between investigated miRNAs and aortopathies | [131] | |
miR-424-3p, miR-3688-3p | Downregulated in aortic aneurysm tissue among patients with BAV compared to TAV | Modulation of the expression of genes such as Hippo, ErbB, and TGF-β involved in the development of the valvular apparatus | [132] | |
miR-128-3p | Downregulated in the dilated segments of aortic tissue | Associated with inflammatory response pathways | [133] | |
miR-150-5p, and miR-199b-5p | Upregulated in the dilated segments of aortic tissue | Related to eicosanoid synthesis and the regulation of VEGF signaling pathways |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozik, A.; Piotrowski, M.; Karpierz, J.I.; Kowalewski, M.; Batko, J. The Hidden Regulators: MicroRNAs in Pediatric Heart Development and Disease. J. Clin. Med. 2025, 14, 6833. https://doi.org/10.3390/jcm14196833
Kozik A, Piotrowski M, Karpierz JI, Kowalewski M, Batko J. The Hidden Regulators: MicroRNAs in Pediatric Heart Development and Disease. Journal of Clinical Medicine. 2025; 14(19):6833. https://doi.org/10.3390/jcm14196833
Chicago/Turabian StyleKozik, Adam, Michał Piotrowski, Julia Izabela Karpierz, Mariusz Kowalewski, and Jakub Batko. 2025. "The Hidden Regulators: MicroRNAs in Pediatric Heart Development and Disease" Journal of Clinical Medicine 14, no. 19: 6833. https://doi.org/10.3390/jcm14196833
APA StyleKozik, A., Piotrowski, M., Karpierz, J. I., Kowalewski, M., & Batko, J. (2025). The Hidden Regulators: MicroRNAs in Pediatric Heart Development and Disease. Journal of Clinical Medicine, 14(19), 6833. https://doi.org/10.3390/jcm14196833