Sex Differences in Predictors of Obstructive Sleep Apnea Risk Among Young Adults: A Cross-Sectional Study in Colombian University Students
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Context
2.3. Participants
2.4. Procedure
2.4.1. Socioeconomic Status
2.4.2. Body Composition
2.4.3. OSA Screening
2.4.4. Daytime Sleepiness
2.4.5. Anatomical Risk of Upper Airway Obstruction
2.4.6. Palatine Tonsil Grading
2.4.7. Occlusal Classification
2.4.8. Facial Profile
2.5. Bias
2.6. Sample Size
2.7. Statistical Analysis
3. Results
4. Discussion
5. Strengths and Limitations
6. Clinical Implications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, J.L.; Goldberg, A.N.; Alt, J.A.; Mohammed, A.; Ashbrook, L.; Auckley, D.; Ayappa, I.; Bakhtiar, H.; Barrera, J.E.; Bartley, B.L.; et al. International Consensus Statement on Obstructive Sleep Apnea. Int. Forum Allergy Rhinol. 2023, 13, 1061–1482. [Google Scholar] [CrossRef] [PubMed]
- Chiu, H.Y.; Chou, K.T.; Su, K.C.; Lin, F.C.; Liu, Y.Y.; Shiao, T.H.; Chen, Y.M. Obstructive sleep apnea in young Asian adults with sleep-related complaints. Sci. Rep. 2022, 12, 20582. [Google Scholar] [CrossRef]
- de Araujo Dantas, A.B.; Gonçalves, F.M.; Martins, A.A.; Alves, G.Â.; Stechman-Neto, J.; Corrêa, C.C.; Santos, R.S.; Nascimento, W.V.; de Araujo, C.M.; Taveira, K.V.M. Worldwide prevalence and associated risk factors of obstructive sleep apnea: A meta-analysis and meta-regression. Sleep Breath. 2023, 27, 2083–2109. [Google Scholar] [CrossRef] [PubMed]
- Yeghiazarians, Y.; Jneid, H.; Tietjens, J.R.; Redline, S.; Brown, D.L.; El-Sherif, N.; Mehra, R.; Bozkurt, B.; Ndumele, C.E.; Somers, V.K. Obstructive Sleep Apnea and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 144, e56–e67. [Google Scholar] [CrossRef]
- Salari, N.; Khazaie, H.; Abolfathi, M.; Ghasemi, H.; Shabani, S.; Rasoulpoor, S.; Mohammadi, M.; Rasoulpoor, S.; Khaledi-Paveh, B. The effect of obstructive sleep apnea on the increased risk of cardiovascular disease: A systematic review and meta-analysis. Neurol. Sci. 2022, 43, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.F.; Zhang, Y.Z.; Sun, X.; Su, C.Y.; Zhang, L.Q. Association between obstructive sleep apnea severity and depression risk: A systematic review and dose-response meta-analysis. Sleep Breath. 2024, 28, 2175–2185. [Google Scholar] [CrossRef]
- Pauletto, P.; Réus, J.C.; Bolan, M.; Massignan, C.; Flores-Mir, C.; Maia, I.; Gozal, D.; Hallal, A.L.C.; Porporatti, A.L.; Canto, G.L. Association between obstructive sleep apnea and health-related quality of life in untreated adults: A systematic review. Sleep Breath. 2021, 25, 1773–1789. [Google Scholar] [CrossRef]
- Park, J.W.; Hamoda, M.M.; Almeida, F.R.; Wang, Z.; Wensley, D.; Alalola, B.; Alsaloum, M.; Tanaka, Y.; Huynh, N.T.; Conklin, A.I. Socioeconomic inequalities in pediatric obstructive sleep apnea. J. Clin. Sleep Med. 2022, 18, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Fagundes, N.C.F.; Flores-Mir, C. Pediatric obstructive sleep apnea-Dental professionals can play a crucial role. Pediatr. Pulmonol. 2022, 57, 1860–1868. [Google Scholar] [CrossRef]
- Ahmad, L.; Kapoor, P.; Bhaskar, S.; Khatter, H. Screening of obstructive sleep apnea (OSA) risk in adolescent population and study of association with craniofacial and upper airway morphology. J. Oral Biol. Craniofac. Res. 2020, 10, 807–813. [Google Scholar] [CrossRef]
- Šestáková, M.; Janíčková, A.; Ivančová, E.; Eötvösová, M.; Donič, V.; Dorko, E.; Rimárová, K. Sleep apnoea from a dentist’s point of view. Cent. Eur. J. Public Health 2024, 32, 66–71. [Google Scholar] [CrossRef]
- Lonia, L.; Scalese, M.; Rossato, G.; Bruno, G.; Zalunardo, F.; De Stefani, A.; Gracco, A. Validity of the STOP-Bang Questionnaire in Identifying OSA in a Dental Patient Cohort. Medicina 2020, 56, 324. [Google Scholar] [CrossRef]
- Khosla, A.A.; Nasir, K.; Saxena, A.; Aneni, E.; Ali, S.S.; Valero-Elizondo, J.; Cainzos-Achirica, M.; Feldman, T.; Fialkow, J.; Walia, H.K. Association between high risk of obstructive sleep apnea and inflammatory markers in a population sample of young and middle-aged adults in the Miami Heart Study. J. Clin. Sleep Med. 2024, 20, 1895–1903. [Google Scholar] [CrossRef]
- Gresova, S.; Gaborova, M.; Stimmelova, J.; Peregrim, I.; Svorc, P.; Donic, V.; Pallayova, M. An Obstructive Sleep Apnea—A Novel Public Health Threat. Physiol. Res. 2023, 72, 415–423. [Google Scholar] [CrossRef]
- Etindele Sosso, F.A.; Torres Silva, F.; Queiroz Rodrigues, R.; Carvalho, M.M.; Zoukal, S.; Zarate, G.C. Prevalence of Sleep Disturbances in Latin American Populations and Its Association with Their Socioeconomic Status-A Systematic Review and a Meta-Analysis. J. Clin. Med. 2023, 12, 7508. [Google Scholar] [CrossRef]
- Zasadzińska-Stempniak, K.; Zajączkiewicz, H.; Kukwa, A. Prevalence of Obstructive Sleep Apnea in the Young Adult Population: A Systematic Review. J. Clin. Med. 2024, 13, 1386. [Google Scholar] [CrossRef]
- Nagappa, M.; Liao, P.; Wong, J.; Auckley, D.; Ramachandran, S.K.; Memtsoudis, S.; Mokhlesi, B.; Chung, F. Validation of the STOP-Bang Questionnaire as a Screening Tool for Obstructive Sleep Apnea among Different Populations: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0143697. [Google Scholar] [CrossRef]
- Gonçalves, M.T.; Malafaia, S.; Moutinho Dos Santos, J.; Roth, T.; Marques, D.R. Epworth sleepiness scale: A meta-analytic study on the internal consistency. Sleep Med. 2023, 109, 261–269. [Google Scholar] [CrossRef]
- de Carvalho, C.Í.C.; da Silva, D.M.; Leite, M.S.; de Orange, F.V.A. Is Mallampati classification a good screening test? A prospective cohort evaluating the predictive values of Mallampati test at different thresholds. Braz. J. Anesthesiol. 2022, 72, 736–741. [Google Scholar] [CrossRef]
- Yilihamu, S.; Li, Y.; Nueraihemaiti, Z.; Maimaitili, G. Comparison study of chewing efficiency in patients with different vertical skeletal patterns of Angle Class I and Angle Class II malocclusions. Quintessence Int. 2024, 55, 224–230. [Google Scholar]
- Rebekah, R.; Jain, R.K.; Balasubramaniam, A.; Sreenivasagan, S. Photographic Frankfort plane subnasale pogonion (FSA) angle for assessment of anteroposterior discrepancies in malocclusion subjects: A prospective study. J. Orthod. Sci. 2023, 12, 57. [Google Scholar] [CrossRef]
- Wong, S.J.; Luitje, M.E.; Karelsky, S. Patterns of Obstruction on DISE in Adults With Obstructive Sleep Apnea Change With BMI. Laryngoscope 2021, 131, 224–229. [Google Scholar] [CrossRef]
- Cuschieri, S. The STROBE guidelines. Saudi J. Anaesth. 2019, 13, S31–S34. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research In-volving Human Participants. JAMA 2025, 333, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Waich, A.; Ruiz Severiche, J.; Manrique Andrade, M.; Castañeda Aza, J.A.; Castellanos Ramírez, J.C.; Otero Mendoza, L.; Restrepo Gualteros, S.M.; Panqueva, O.P.; Hidalgo Martínez, P. Prevalence of sleep apnea in children and adolescents in Colombia according to the national health registry 2017–2021. PLoS ONE 2022, 17, e0273324. [Google Scholar] [CrossRef]
- Gutiérrez López, J.A.; Quenguan López, L.F.; Nieto Martínez, H.D. Modelo de estratificación como generador de segregación en Bogotá. Bitácora Urbano Territ. 2021, 32, 191–204. [Google Scholar] [CrossRef]
- Silva, V.S.; Vieira, F. International Society for the Advancement of Kinanthropometry (ISAK) Global: International accreditation scheme of the competent anthropometrist. Rev. Bras. Cineantropom. Desempenho Hum. 2020, 22, e70517. [Google Scholar] [CrossRef]
- González-Ruíz, K.; Correa-Bautista, J.E.; Ramírez-Vélez, R. Evaluation of the body adiposity index in predicting percentage body fat among colombian adults. Nutr. Hosp. 2015, 32, 55–60. [Google Scholar]
- Weir, C.B.; Jan, A. BMI Classification Percentile and Cut off Points. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Garzon, S.B.A.; Muñoz-Velandia, O.M.; Ruiz, A.J.; Martínez, P.H.; Otero, L. Cut-off points of neck and waist circumference as predictors of obstructive sleep apnea in the Colombian population: A comparison with polysomnography. Sao Paulo Med. J. 2023, 142, e2022415. [Google Scholar] [CrossRef]
- Szaulińska, K.; Wichniak, A. BMI-NECK: A simple assessment of risk of obstructive sleep apnea in schizophrenia. J. Psychiatr. Res. 2020, 125, 33–37. [Google Scholar] [CrossRef]
- Mira Quirós, M.D.; Maimó Bordoy, A.; El Haji, K.; Aguilar Sánchez, J.L.; Tejada Gavela, S. Cross-cultural adaptation and validation of the STOP-bang Questionnaire from English to Spanish as a tool for the early detection of sleep apnea syndrome in the surgical patient and in the general population. Rev. Española Anestesiol. Reanim. (Engl. Ed.) 2022, 69, 393–401. [Google Scholar] [CrossRef]
- Cruces-Artero, C.; Hervés-Beloso, C.; Martín-Miguel, V.; Hernáiz-Valero, S.; Lago-Deibe, F.I.; Montero-Gumucio, M.; Orge-Amoedo, M.; Roca-Pardiñas, J.; Clavería, A. Utilidad diagnóstica del cuestionario STOP-Bang en la apnea del sueño moderada en atención primaria. Gac. Sanit. 2019, 33, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Campo-Arias, A.; Herazo, E.; Pedrozo-Pupo, J.C. Validity and reliability of the Spanish version of the Epworth Sleepiness Scale. Sleep Breath. 2025, 29, 187. [Google Scholar] [CrossRef]
- Chiner, E.; Arriero, J.M.; Signes-Costa, J.; Marco, J.; Fuentes, I. Validación de la versión española del test de somnolencia Epworth en pacientes con síndrome de apnea de sueño. Arch. Bronconeumol. 1999, 35, 422–427. [Google Scholar] [CrossRef]
- Bilge, A.; Erol, A.; Arıcan, Ş.; Tuncer Uzun, S. The use of STOP-BANG questionnaire and other difficult airway determinants in difficult airway prediction and correlation. Ulus. Travma Acil Cerrahi Derg. 2022, 28, 1277–1284. [Google Scholar] [PubMed]
- Sappenfield, J.W.; Vasilopoulos, T.; Smyth, D.; Algarra, N.N.; Enneking, F.K.; Berkow, L. Is Mallampati Class More Consistent and Reliable among Providers When Assessed from Airway Photos? Cent. Eur. Ann. Clin. Res. 2020, 2, 3. [Google Scholar] [CrossRef]
- Yu, J.L.; Rosen, I. Utility of the modified Mallampati grade and Friedman tongue position in the assessment of obstructive sleep apnea. J. Clin. Sleep Med. 2020, 16, 303–308. [Google Scholar] [CrossRef]
- Kumar, D.S.; Valenzuela, D.; Kozak, F.K.; Ludemann, J.P.; Moxham, J.P.; Lea, J.; Chadha, N.K. The reliability of clinical tonsil size grading in children. JAMA Otolaryngol. Head Neck Surg. 2014, 140, 1034–1037. [Google Scholar] [CrossRef]
- Masucci, C.; Oueiss, A.; Maniere-Ezvan, A.; Orthlieb, J.D.; Casazza, E. What is a malocclusion? L'Orthodontie Française 2020, 91, 57–67. [Google Scholar] [CrossRef]
- Campbell, S.; Goldstein, G. Angle’s Classification-A Prosthodontic Consideration: Best Evidence Consensus Statement. J. Prosthodont. 2021, 30, 67–71. [Google Scholar] [CrossRef]
- Elston, D.M. Participation bias, self-selection bias, and response bias. J. Am. Acad. Dermatol 2021. online ahead of print. [Google Scholar] [CrossRef]
- Hess, D.R. Observational Studies. Respir. Care 2023, 68, 1585–1597. [Google Scholar] [CrossRef] [PubMed]
- Skopec, M.; Issa, H.; Reed, J.; Harris, M. The role of geographic bias in knowledge diffusion: A systematic review and narrative synthesis. Res. Integr. Peer Rev. 2020, 5, 2. [Google Scholar] [CrossRef] [PubMed]
- Serdar, C.C.; Cihan, M.; Yücel, D.; Serdar, M.A. Sample size, power and effect size revisited: Simplified and practical ap-proaches in pre-clinical, clinical and laboratory studies. Biochem. Med. 2021, 31, 010502. [Google Scholar] [CrossRef] [PubMed]
- Shieh, G. Effect size, statistical power, and sample size for assessing interactions between categorical and continuous variables. Br. J. Math. Stat. Psychol. 2019, 72, 136–154. [Google Scholar] [CrossRef]
- Gunawan, J.; Marzilli, C.; Aungsuroch, Y. Establishing appropriate sample size for developing and validating a questionnaire in nursing research. Belitung Nurs. J. 2021, 7, 356–360. [Google Scholar] [CrossRef]
- Zieliński, G.; Gawda, P. Defining Effect Size Standards in Temporomandibular Joint and Masticatory Muscle Research. Med. Sci. Monit. 2025, 31, e948365. [Google Scholar] [CrossRef]
- Kim, H.Y. Statistical notes for clinical researchers: Chi-squared test and Fisher’s exact test. Restor. Dent. Endod. 2017, 42, 152–155. [Google Scholar] [CrossRef]
- McHugh, M.L. The chi-square test of independence. Biochem. Med. 2013, 23, 143–149. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, B.; Li, Z.; Lu, Q.; Li, S.; Pu, Z.; Luo, F. Gender differences of clinical and polysomnographic findings with obstructive sleep apnea syndrome. Sci. Rep. 2021, 11, 5938. [Google Scholar] [CrossRef]
- Votteler, S.; Knaack, L.; Janicki, J.; Fink, G.R.; Burghaus, L. Sex differences in polysomnographic findings in patients with obstructive sleep apnea. Sleep Med. 2023, 101, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Geer, J.H.; Hilbert, J. Gender Issues in Obstructive Sleep Apnea. Yale J. Biol. Med. 2021, 94, 487–496. [Google Scholar]
- Patel, K.M.; Shah, N.T. A Predictive Performance of STOP-BANG Score and Epworth Sleepiness Scale in Suspected Sleep Apnea Individuals. Indian J. Sleep Med. 2021, 16, 69–76. [Google Scholar] [CrossRef]
- Amra, B.; Mansouri, M.; Soltaninejad, F.; Feizi, A.; Kaminska, M. Screening Tools for Obstructive Sleep Apnea in Pregnant Women: An Extended and Updated Systematic Review and Meta-analysis. Int. J. Prev. Med. 2024, 15, 31. [Google Scholar] [CrossRef] [PubMed]
- Amiri, D.; Bracko, O.; Nahouraii, R. Revealing inconsistencies between Epworth scores and apnea-hypopnea index when evaluating obstructive sleep apnea severity: A clinical retrospective chart review. Front. Neurol. 2024, 15, 1387924. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, Y.; Wang, Y.; Zhang, H.; Zhu, J.; Jiang, X.; Shen, B.; Chen, Y.; Li, D.; Pan, Y.; et al. Novel susceptibility genes and biomarkers for obstructive sleep apnea: Insights from genetic and inflammatory proteins. Sleep 2025, 48, zsae169. [Google Scholar] [CrossRef]
- Pham, L.V.; Jun, J.; Polotsky, V.Y. Obstructive sleep apnea. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2022; Volume 189, pp. 105–136. [Google Scholar]
- Shreshta, P.; Jain, V.; Bhalla, A.; Pruthi, G. A comparative study to measure the condylar guidance by the radiographic and clinical methods. J. Adv. Prosthodont. 2012, 4, 153–157. [Google Scholar] [CrossRef]
- Mao, B.; Tian, Y.; Wang, X.; Li, J.; Zhou, Y. Soft and hard tissue changes of hyperdivergent class II patients before and after orthodontic extraction treatment. Beijing Da Xue Xue Bao Yi Xue Ban 2024, 56, 111–119. [Google Scholar]
- Suyama, T.; Ishikawa, H.; Tamaoki, S.; Higa, R.; Takata, S.; Sawa, Y. Maxillofacial morphological characteristics in growing orthodontic patients with non-syndromic oligodontia. Orthod. Craniofac. Res. 2022, 25, 393–400. [Google Scholar] [CrossRef]
- Ashraf, A.; Menon, I.; Gupta, R.; Arora, V.; Ahsan, I.; Das, D. Oral findings as predictors of obstructive sleep apnea—A case-control study. J. Fam. Med. Prim. Care 2022, 11, 5263–5267. [Google Scholar] [CrossRef]
- Haradwala, M.B.; Sivaraman, M. Largest Neck Circumference Associated With Obstructive Sleep Apnea: A Case Report. Cureus 2024, 16, e54761. [Google Scholar] [CrossRef]
- Chiang, J.K.; Lin, Y.C.; Lu, C.M.; Kao, Y.H. Snoring Index and Neck Circumference as Predictors of Adult Obstructive Sleep Apnea. Healthcare 2022, 10, 2543. [Google Scholar] [CrossRef]
- Finke, H.; Drews, A.; Engel, C.; Koos, B. Craniofacial risk factors for obstructive sleep apnea-systematic review and meta-analysis. J. Sleep Res. 2024, 33, e14004. [Google Scholar] [CrossRef]
- Chi, L.; Comyn, F.L.; Mitra, N.; Reilly, M.P.; Wan, F.; Maislin, G.; Chmiewski, L.; Thorne-FitzGerald, M.D.; Victor, U.N.; Pack, A.I.; et al. Identification of craniofacial risk factors for obstructive sleep apnoea using three-dimensional MRI. Eur. Respir. J. 2011, 38, 348–358. [Google Scholar] [CrossRef]
- Dancey, D.R.; Hanly, P.J.; Soong, C.; Lee, B.; Shepard, J., Jr.; Hoffstein, V. Gender differences in sleep apnea: The role of neck circumference. Chest 2003, 123, 1544–1550. [Google Scholar] [CrossRef]
- Huang, Z.; Zhou, N.; Chattrattrai, T.; van Selms, M.K.A.; de Vries, R.; Hilgevoord, A.A.J.; De Vries, N.; Aarab, G.; Lobbezoo, F. Associations between snoring and dental sleep conditions: A systematic review. J. Oral Rehabil. 2023, 50, 416–428. [Google Scholar] [CrossRef]
- Chen, X.C.; Pensuksan, W.; Lohsoonthorn, V.; Lertmaharit, S.; Gelaye, B.A.; Williams, M. Obstructive Sleep Apnea and Multiple Anthropometric Indices of General Obesity and Abdominal Obesity among Young Adults. Int. J. Soc. Sci. Stud. 2014, 3, 89–99. [Google Scholar] [CrossRef]
- Clements, F.; Makris, A.; Chung, Y.; Marshall, N.S.; Melehan, K.; Shanmugalingam, R.; Hennessy, A.; Vedam, H. Validation of the Apnealink Air for diagnosis of obstructive sleep apnoea (OSA) in pregnant women in early-mid gestation. Sleep Breath. 2024, 28, 1207–1216. [Google Scholar] [CrossRef]
- Jen, R.; Orr, J.E.; Li, Y.; DeYoung, P.; Smales, E.; Malhotra, A.; Owens, R.L. Accuracy of WatchPAT for the Diagnosis of Obstructive Sleep Apnea in Patients with Chronic Obstructive Pulmonary Disease. COPD 2020, 17, 34–39. [Google Scholar] [CrossRef]
Continuous Variables | Total (n = 340) | Man (n = 148) | Women (n = 192) | p-Value | Effect Size |
Age (years) | 21.36 ± 2.37 | 21.79 ± 2.45 | 21.04 ± 2.25 | 0.003 * | 0.32 |
BMI (kg/m2) | 23.80 ± 3.91 | 23.82 ± 3.58 | 23.78 ± 4.15 | 0.94 | 0.01 |
Neck circumference (cm) | 35.10 ± 4.43 | 38.18 ± 3.20 | 32.72 ± 3.74 | <0.001 * | 1.57 |
Epworth Sleepiness Scale | 9.31 ± 4.31 | 8.16 ± 3.91 | 10.20 ± 4.41 | <0.001 * | 0.49 |
Categorical Variables | Total (n = 340) | Man (n = 148) | Women (n = 192) | p-Value | Effect Size |
Socioeconomic stratum I | 13 (3.8%) | 4 (2.7%) | 9 (4.7%) | 0.45 | 0.12 |
Socioeconomic stratum II | 50 (14.7%) | 19 (12.8%) | 31 (16.1%) | ||
Socioeconomic stratum III | 163 (47.9%) | 79 (53.4%) | 84 (43.8%) | ||
Socioeconomic stratum IV | 66 (47.9%) | 26 (17.6%) | 40 (20.8%) | ||
Socioeconomic stratum V | 27 (7.9%) | 13 (8.8%) | 14 (7.3%) | ||
Socioeconomic stratum VI | 21 (6.2%) | 7 (4.7%) | 14 (7.3%) | ||
BMI. Low weight | 17 (5%) | 8 (5.4%) | 9 (4.7%) | 0.37 | 0.09 |
BMI: Normal weight | 209 (61.5%) | 88 (59.5%) | 121 (63%) | ||
BMI: Overweight | 91 (26.8%) | 45 (30.4%) | 46 (24%) | ||
BMI: Obesity | 23 (6.8%) | 7 (4.7%) | 16 (8.3%) | ||
Stop-BANG: Low risk | 300 (88.2%) | 114 (77%) | 186 (96.9%) | <0.0001 * | 0.31 |
Stop-BANG: Moderate risk | 38 (11.2%) | 32 (21.6%) | 6 (3.1%) | ||
Stop-BANG: High risk | 2 (0.6%) | 2 (1.4%) | 0 (0%) | ||
Mallampati index: Class I | 74 (21.5%) | 22 (14.9%) | 52 (27.1%) | 0.01 * | 0.17 |
Mallampati index: Class II | 129 (38%) | 55 (37.2%) | 74 (38.5%) | ||
Mallampati index: Class III | 81 (23.8%) | 45 (30.4%) | 36 (18.8%) | ||
Mallampati index: Class IV | 56 (16.5%) | 26 (17.6%) | 30 (15.6%) | ||
Friedman Scale: Grade I | 129 (38%) | 53 (35.8%) | 76 (39.6%) | 0.79 | 0.05 |
Friedman Scale: Grade II | 131 (38.5%) | 61 (41.2%) | 70 (36.5%) | ||
Friedman Scale: Grade III | 72 (21.2%) | 30 (20.3%) | 42 (21.9%) | ||
Friedman Scale: Grade IV | 8 (2.3%) | 4 (2.7%) | 4 (2.1%) | ||
Angle system: Class I | 184 (54.1%) | 77 (52%) | 107 (55.7%) | 0.04 * | 0.14 |
Angle system: Class II | 78 (22.9%) | 28 (18.9%) | 50 (26%) | ||
Angle system: Class III | 78 (22.9%) | 43 (29.1%) | 35 (18.2%) | ||
Frankfort Angle: concave | 47 (13.8%) | 29 (19.6%) | 18 (9.4%) | 0.02 * | 0.15 |
Frankfort Angle: Straight | 174 (51.2%) | 70 (47.3%) | 104 (54.2%) | ||
Frankfort Angle: convex | 119 (35%) | 49 (33.1%) | 70 (36.4%) | ||
Use medications | 95 (27.9%) | 36 (24.3%) | 59 (30.7%) | 0.24 | 0.07 |
No medications | 245 (72.1%) | 112 (75.7%) | 133 (69.3%) |
Predictor | B | OR | 95% CI | p-Value |
---|---|---|---|---|
Age (years) | –0.17 | 0.84 | 0.71–1 | 0.05 |
Neck circumference (cm) | –0.56 | 0.57 | 0.48–0.68 | <0.001 * |
Epworth Sleepiness Scale | –0.15 | 0.86 | 0.77–0.96 | 0.01 * |
Mallampati score | 0.10 | 1.10 | 0.68–1.79 | 0.69 |
Molar Angle Classification | –0.49 | 0.61 | 0.35–1.06 | 0.08 |
Facial profile | 0.52 | 1.68 | 0.97–2.92 | 0.07 |
Predictor | B | OR | 95% CI | p-Value |
---|---|---|---|---|
Age (years) | −0.12 | 0.89 | 0.73–1.08 | 0.24 |
Neck circumference (cm) | −0.48 | 0.62 | 0.51–0.76 | <0.001 * |
Epworth Sleepiness Scale | −0.12 | 0.89 | 0.79–1.01 | 0.06 |
Mallampati score | 0.17 | 1.18 | 0.69–2.03 | 0.55 |
Molar Angle Classification | −0.62 | 0.54 | 0.30–0.97 | 0.04 |
Facial profile | 1.81 | 6.12 | 0.84–44.69 | 0.07 |
Predictor | B | OR | 95% CI | p-Value |
---|---|---|---|---|
Age (years) | −0.23 | 0.80 | 0.56–1.13 | 0.20 |
Neck circumference (cm) | −1.05 | 0.35 | 0.16–0.75 | 0.01 * |
Epworth Sleepiness Scale | −0.50 | 0.60 | 0.39–0.95 | 0.03 * |
Mallampati score | −0.39 | 0.68 | 0.14–3.25 | 0.62 |
Facial profile | 1.81 | 6.12 | 0.84–44.69 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aristizábal-Hoyos, J.A.; López-Soto, O.P.; Fuentes-Barría, H.; Aguilera-Eguía, R.; Angarita-Davila, L.; Rojas-Gómez, D. Sex Differences in Predictors of Obstructive Sleep Apnea Risk Among Young Adults: A Cross-Sectional Study in Colombian University Students. J. Clin. Med. 2025, 14, 6738. https://doi.org/10.3390/jcm14196738
Aristizábal-Hoyos JA, López-Soto OP, Fuentes-Barría H, Aguilera-Eguía R, Angarita-Davila L, Rojas-Gómez D. Sex Differences in Predictors of Obstructive Sleep Apnea Risk Among Young Adults: A Cross-Sectional Study in Colombian University Students. Journal of Clinical Medicine. 2025; 14(19):6738. https://doi.org/10.3390/jcm14196738
Chicago/Turabian StyleAristizábal-Hoyos, Juan Alberto, Olga Patricia López-Soto, Héctor Fuentes-Barría, Raúl Aguilera-Eguía, Lissé Angarita-Davila, and Diana Rojas-Gómez. 2025. "Sex Differences in Predictors of Obstructive Sleep Apnea Risk Among Young Adults: A Cross-Sectional Study in Colombian University Students" Journal of Clinical Medicine 14, no. 19: 6738. https://doi.org/10.3390/jcm14196738
APA StyleAristizábal-Hoyos, J. A., López-Soto, O. P., Fuentes-Barría, H., Aguilera-Eguía, R., Angarita-Davila, L., & Rojas-Gómez, D. (2025). Sex Differences in Predictors of Obstructive Sleep Apnea Risk Among Young Adults: A Cross-Sectional Study in Colombian University Students. Journal of Clinical Medicine, 14(19), 6738. https://doi.org/10.3390/jcm14196738