State of Research on Tissue Engineering with 3D Printing for Breast Reconstruction
Abstract
1. Introduction
2. Biomaterials and Tissue Bioengineering for Breast Reconstruction
2.1. The Current State of Research on Reconstructive Materials
2.2. Role of Biodegradable Materials in Tissue Engineering
2.3. Advantages and Limitations of Biodegradable Materials
3. Preclinical Studies on Reconstructive Materials with Tissue Engineering
Materials and Methods
Author, Year | Study Objective | Methodology | Materials Used | Key Findings | Limitations |
---|---|---|---|---|---|
[44] | Examine co-culture of mammary cells and adipocytes in 3D collagen | Human mammary epithelial cells and preadipocytes co-cultured in 3D collagen gel matrix † | Collagen gel matrix | Both cell types expanded through multiple subcultures, maintained normal cell distribution and growth patterns | Limited to in vitro environment |
[45] | Enhance adipocyte survival for lipo-injection | Selective in vitro culturing of preadipocytes † | Preadipocytes | Increased proliferation and survival in cell cultures | Limited to in vitro environment |
[46] | Study stromal-epithelial interactions | Cocultures of human mammary epithelial cell line (MCF10A) and human mammary fibroblasts embedded in type I collagen or mixed Matrigel-collagen matrix † | MCF10A, fibroblasts, type I collagen, Matrigel-collagen matrix | Formation of ductal and alveolar structures confirmed histologically | Limited to in vitro environment |
[47] | Upscale small-animal adipose tissue-engineering models to a large animal (pig) | Large-volume (78.5 mL) subcutaneous chambers enclosing fat flap in pigs ‡ | Dome-shaped perforated polycarbonate TEC, poly(L-lactide-co-glycolide) sponge | Significant fat flap growth up to 56.5 mL from initial 5 mL by 22 weeks | Limited translation to human models |
[48] | Evaluate longevity of tissue-engineered adipose tissue | Chambers implanted in mice groins, filled with Matrigel and heparin; varied configurations (autograft, open, fat flap) ‡ | Matrigel, heparin, autologous fat | Higher adipose tissue volumes and vascularization, especially in fat flap group | Animal model; limited human applicability |
[49] | Generate adipose tissue from vascularized fat flap inside a chamber | Rat model, chambers with or without PLGA scaffolds ‡ | Polycarbonate chambers, PLGA scaffolds | Significant adipose volume increase in all chamber groups | Animal model; unclear mechanism for human scaling |
[50] | Evaluate long-term stability of chamber-generated adipose tissue | Rat model, perforated vs. nonperforated chambers ‡ | Polycarbonate chambers | Volume growth, greater in perforated chambers | Animal model limitations, unclear scalability to humans |
[51] | Assess external suspension device for adipose tissue growth | Rabbit model, external suspension vs. traditional chamber ‡ | External suspension device (negative pressure) | Larger volume growth with external suspension (81 mL vs. 31 mL over 36 weeks) | Animal model, device usability in human scenarios unclear |
[52] | Effects of irradiation on fat flap growth | Rat model, bioresorbable PLGA-based TEC implantation; irradiation pre- or post-implantation ‡ | PLGA-based bioresorbable TEC | Radiation reduced fat flap growth, introduced fibrosis and histological changes; viable as adjunct in breast reconstruction despite irradiation | Animal model; limited clinical translation |
[53] | Influence of TEC design on adipose tissue growth | Rat and pig models, TECs (perforated vs. nonperforated), 3D-printed bioresorbable scaffolds ‡ | PLA (rat), PGA (pig) scaffolds | Perforated TEC superior, rapid adipose growth, bioresorbable TEC achieved >140% volume growth in pigs | Animal models; unclear full clinical translation potential |
[54] | Evaluate nipple projection retention using 3D scaffolds | Nude rat model, 3D-printed scaffolds filled with human cartilage ‡ | 3D-printed P4HB scaffolds, human costal cartilage | Improved nipple projection and tissue growth, regenerative response | Small animal model; uncertain scalability |
[55] | Preserve nipple geometry using scaffolded cartilage | Nude rat model, external scaffolds with autologous cartilage ‡ | 3D-printed PLA external scaffolds, autologous cartilage | Maintained superior nipple volume, viable cartilage tissue with biomechanical similarity to human nipples | Animal model; limited human applicability |
[56] | Enhance fat graft retention with scaffold support | Nude mice model, fat graft injected into scaffold ‡ | 3D-printed polycaprolactone scaffolds | Improved graft retention, angiogenesis observed; superior cellular preservation initially | Short-term animal study |
[57] | Scaffold pre-vascularization for breast reconstruction | Minipig model, pre-vascularized scaffold compared to immediate grafting ‡ | Polycaprolactone scaffolds | Pre-vascularized scaffolds improved adipose tissue retention significantly | Limited animal study duration, scalability unclear |
[58] | Hybrid scaffold approach to improve fat graft survival | Male mice model, hybrid devices combining implants + scaffolds + inguinal fat grafts ‡ | Polycaprolactone scaffolds, electrospun nanofibers, silicone implants | Improved adipocyte morphology at early stage; limited overall retention benefits | Small animal model; unclear human translation |
- Gaps in preclinical testing: lack of specific preclinical studies on reconstructive materials for breast reconstruction and Implications.
4. Clinical Indicators for Reconstructive Materials
4.1. Identification and Evaluation of Clinical Indicators of Success for Breast Reconstruction
4.2. Assessment of Existing Clinical Studies on Reconstructive Materials (Table 3)
5. Discussion
5.1. Identification of Research Gaps and Areas for Future Exploration
5.2. Regulatory Considerations and Future Perspectives
5.3. Challenges and Requirements for Clinical Translation
Clinical Translation and Implementation
5.4. Future Prospects and Potential Impact of Tissue Engineering in Breast Reconstruction
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. Cancer Statistics Working Group. U.S. Cancer Statistics Data Visualizations Tool, Based on 2022 Submission Data (1999–2020): U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Available online: https://www.cdc.gov/cancer/dataviz (accessed on 13 June 2023).
- Park, J.; Look, K.A. Health Care Expenditure Burden of Cancer Care in the United States. Inquiry 2019, 56, 46958019880696. [Google Scholar] [CrossRef] [PubMed]
- Carreira, H.; Williams, R.; Dempsey, H.; Stanway, S.; Smeeth, L.; Bhaskaran, K. Quality of life and mental health in breast cancer survivors compared with non-cancer controls: A study of patient-reported outcomes in the United Kingdom. J. Cancer Surviv. 2021, 15, 564–575. [Google Scholar]
- Fortunato, L.; Loreti, A.; Cortese, G.; Spallone, D.; Toto, V.; Cavaliere, F.; Farina, M.; La Pinta, M.; Manna, E.; Detto, L.; et al. Regret and Quality of Life After Mastectomy With or Without Reconstruction. Clin. Breast Cancer 2021, 21, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, M.; Krämer, S.; Friedrich, D.; Kraft, C.; Maass, N.; Rogmans, C. Difficulties of Breast Reconstruction-Problems That No One Likes to Face. Anticancer Res. 2021, 41, 5365–5375. [Google Scholar]
- FDA Takes Action to Protect Patients from Risk of Certain Textured Breast Implants; Requests Allergan Voluntarily Recall Certain Breast Implants and Tissue Expanders from Market: Food and Drug Administration. 2019. Available online: https://www.fda.gov/news-events/press-announcements/fda-takes-action-protect-patients-risk-certain-textured-breast-implants-requests-allergan (accessed on 30 June 2023).
- UPDATE: Reports of Squamous Cell Carcinoma (SCC) in the Capsule Around Breast Implants-FDA Safety Communication: Food and Drug Administration. 2023. Available online: https://www.fda.gov/medical-devices/safety-communications/update-reports-squamous-cell-carcinoma-scc-capsule-around-breast-implants-fda-safety-communication (accessed on 30 June 2023).
- Fracon, S.; Renzi, N.; Manara, M.; Ramella, V.; Papa, G.; Arnež, Z.M. Patient Satisfaction After Breast Reconstruction: Implants vs. Autologous Tissues. Acta Chir. Plast. 2018, 59, 120–128. [Google Scholar]
- Mortada, H.; AlNojaidi, T.F.; AlRabah, R.; Almohammadi, Y.; AlKhashan, R.; Aljaaly, H. Morbidity of the Donor Site and Complication Rates of Breast Reconstruction with Autologous Abdominal Flaps: A Systematic Review and Meta-Analysis. Breast J. 2022, 2022, 7857158. [Google Scholar] [CrossRef]
- Atisha, D.; Alderman, A.K. A systematic review of abdominal wall function following abdominal flaps for postmastectomy breast reconstruction. Ann. Plast. Surg. 2009, 63, 222–230. [Google Scholar] [CrossRef]
- Nangole, W.F.; Khainga, S.; Aswani, J.; Kahoro, L.; Vilembwa, A. Free Flaps in a Resource Constrained Environment: A Five-Year Experience-Outcomes and Lessons Learned. Plast. Surg. Int. 2015, 2015, 194174. [Google Scholar] [CrossRef]
- Citron, I.; Galiwango, G.; Hodges, A. Challenges in global microsurgery: A six year review of outcomes at an East African hospital. J. Plast. Reconstr. Aesthetic Surg. 2016, 69, 189–195. [Google Scholar] [CrossRef]
- Gentile, P.; Cervelli, V. Systematic review: Oncological safety of reconstruction with fat grafting in breast cancer outcomes. J. Plast. Reconstr. Aesthetic Surg. 2022, 75, 4160–4168. [Google Scholar] [CrossRef] [PubMed]
- Nava, M.B.; Blondeel, P.; Botti, G.; Casabona, F.; Catanuto, G.; Clemens, M.W.; De Fazio, D.; De Vita, R.; Grotting, J.; Hammond, D.C.; et al. International Expert Panel Consensus on Fat Grafting of the Breast. Plast. Reconstr. Surg. Glob. Open 2019, 7, e2426. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.; Abu-Ghname, A.; Davis, M.J.; Winocour, S.J.; Hanson, S.E.; Chu, C.K. Fat Grafting in Breast Reconstruction. Semin. Plast. Surg. 2020, 34, 17–23. [Google Scholar] [CrossRef]
- Zielins, E.R.; Brett, E.A.; Longaker, M.T.; Wan, D.C. Autologous Fat Grafting: The Science Behind the Surgery. Aesthetic Surg. J. 2016, 36, 488–496. [Google Scholar] [CrossRef]
- Mironov, V. Printing technology to produce living tissue. Expert Opin. Biol. Ther. 2003, 3, 701–704. [Google Scholar] [CrossRef]
- Moroni, L.; Burdick, J.A.; Highley, C.; Lee, S.J.; Morimoto, Y.; Takeuchi, S.; Yoo, J.J. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat. Rev. Mater. 2018, 3, 21–37. [Google Scholar] [CrossRef]
- Shafiee, A.; Atala, A. Tissue Engineering: Toward a New Era of Medicine. Annu. Rev. Med. 2017, 68, 29–40. [Google Scholar] [CrossRef]
- Derby, B. Printing and prototyping of tissues and scaffolds. Science 2012, 338, 921–926. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today 2011, 14, 88–95. [Google Scholar] [CrossRef]
- Place, E.S.; Evans, N.D.; Stevens, M.M. Complexity in biomaterials for tissue engineering. Nat. Mater. 2009, 8, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Mollica, P.A.; Booth-Creech, E.N.; Reid, J.A.; Zamponi, M.; Sullivan, S.M.; Palmer, X.L.; Sachs, P.C.; Bruno, R.D. 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels. Acta Biomater. 2019, 95, 201–213. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Yue, K.; Aleman, J.; Moghaddam, K.M.; Bakht, S.M.; Yang, J.; Jia, W.; Dell’Erba, V.; Assawes, P.; Shin, S.R.; et al. 3D Bioprinting for Tissue and Organ Fabrication. Ann. Biomed. Eng. 2017, 45, 148–163. [Google Scholar] [CrossRef]
- Almouemen, N.; Kelly, H.M.; O’Leary, C. Tissue Engineering: Understanding the Role of Biomaterials and Biophysical Forces on Cell Functionality Through Computational and Structural Biotechnology Analytical Methods. Comput. Struct. Biotechnol. J. 2019, 17, 591–598. [Google Scholar] [CrossRef]
- Gaharwar, A.K.; Singh, I.; Khademhosseini, A. Engineered biomaterials for in situ tissue regeneration. Nat. Rev. Mater. 2020, 5, 686–705. [Google Scholar] [CrossRef]
- Han, F.; Wang, J.; Ding, L.; Hu, Y.; Li, W.; Yuan, Z.; Guo, Q.; Zhu, C.; Yu, L.; Wang, H.; et al. Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Front. Bioeng. Biotechnol. 2020, 8, 83. [Google Scholar] [CrossRef]
- Kim, H.S.; Kumbar, S.G.; Nukavarapu, S.P. Biomaterial-directed cell behavior for tissue engineering. Curr. Opin. Biomed. Engineering 2021, 17, 100260. [Google Scholar] [CrossRef]
- Leung, C.M.; de Haan, P.; Ronaldson-Bouchard, K.; Kim, G.-A.; Ko, J.; Rho, H.S.; Chen, Z.; Habibovic, P.; Jeon, N.L.; Takayama, S.; et al. A guide to the organ-on-a-chip. Nat. Rev. Methods Primers 2022, 2, 33. [Google Scholar] [CrossRef]
- Marei, I.; Abu Samaan, T.; Al-Quradaghi, M.A.; Farah, A.A.; Mahmud, S.H.; Ding, H.; Triggle, C.R. 3D Tissue-Engineered Vascular Drug Screening Platforms: Promise and Considerations. Front. Cardiovasc. Med. 2022, 9, 847554. [Google Scholar] [CrossRef]
- O’Connor, C.; Brady, E.; Zheng, Y.; Moore, E.; Stevens, K.R. Engineering the multiscale complexity of vascular networks. Nat. Rev. Mater. 2022, 7, 702–716. [Google Scholar] [CrossRef]
- Middleton, J.C.; Tipton, A.J. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000, 21, 2335–2346. [Google Scholar] [CrossRef]
- Kim, K.; Jeong, C.G.; Hollister, S.J. Non-invasive monitoring of tissue scaffold degradation using ultrasound elasticity imaging. Acta Biomater. 2008, 4, 783–790. [Google Scholar] [CrossRef]
- Larsen, A.; Rasmussen, L.E.; Rasmussen, L.F.; Weltz, T.K.; Hemmingsen, M.N.; Poulsen, S.S.; Jacobsen, J.C.B.; Vester-Glowinski, P.; Herly, M. Histological Analyses of Capsular Contracture and Associated Risk Factors: A Systematic Review. Aesthetic Plast. Surg. 2021, 45, 2714–2728. [Google Scholar] [CrossRef]
- Yang, S.; Klietz, M.-L.; Harren, A.K.; Wei, Q.; Hirsch, T.; Aitzetmüller, M.M. Understanding Breast Implant Illness: Etiology is the Key. Aesthetic. Surg. J. 2021, 42, 370–377. [Google Scholar] [CrossRef]
- Daghighi, S.; Sjollema, J.; van der Mei, H.C.; Busscher, H.J.; Rochford, E.T.J. Infection resistance of degradable versus non-degradable biomaterials: An assessment of the potential mechanisms. Biomaterials 2013, 34, 8013–8017. [Google Scholar] [CrossRef] [PubMed]
- Kontio, R.; Ruuttila, P.; Lindroos, L.; Suuronen, R.; Salo, A.; Lindqvist, C.; Virtanen, I.; Konttinen, Y. Biodegradable polydioxanone and poly(l/d)lactide implants: An experimental study on peri-implant tissue response. Int. J. Oral Maxillofac. Surg. 2005, 34, 766–776. [Google Scholar] [CrossRef] [PubMed]
- Alipour, S.; Omranipour, R.; Eslami, B.; Khalighfard, S.; Saberi, A.; Shabestari, A.; Alizadeh, A.M. A pilot study of the use of human amniotic membrane as subcutaneous implants in a mouse model: A potential for temporary substitutes in two-stage breast reconstructions. BMC Women’s Health 2023, 23, 367. [Google Scholar] [CrossRef] [PubMed]
- Otani, N.; Tomita, K.; Taminato, M.; Kuroda, K.; Yano, K.; Kubo, T. Sensory Reinnervation With Subcutaneously Embedded Innervated Flaps: An Experimental Study in Rats. Ann. Plast. Surg. 2022, 88, e1–e8. [Google Scholar] [CrossRef]
- Stec, E.; Lombardi, J.; Augustin, J.; Sandor, M. Acellular Dermal Matrix Susceptibility to Collagen Digestion: Effect on Mechanics and Host Response. Tissue Eng. Part A 2023, 29, 269–281. [Google Scholar] [CrossRef]
- Thomas, B.; Warszawski, J.; Falkner, F.; Bleichert, S.; Haug, V.; Bigdeli, A.K.; Schulte, M.; Hoffmann, S.H.L.; Garvalov, B.K.; Schreiber, C.; et al. Fat Grafts Show Higher Hypoxia, Angiogenesis, Adipocyte Proliferation, and Macrophage Infiltration than Flaps in a Pilot Mouse Study. Plast. Reconstr. Surg. 2023, 152, 96e–109e. [Google Scholar] [CrossRef]
- Vieira, V.J.; D’Acampora, A.; Neves, F.S.; Mendes, P.R.; Vasconcellos, Z.A.; Neves, R.D.; Figueiredo, C.P. Capsular Contracture In Silicone Breast Implants: Insights From Rat Models. An. Acad. Bras. Cienc. 2016, 88, 1459–1470. [Google Scholar] [CrossRef]
- Wang, D.; Chen, W. Indocyanine Green Angiography for Continuously Monitoring Blood Flow Changes and Predicting Perfusion of Deep Inferior Epigastric Perforator Flap in Rats. J. Investig. Surg. 2021, 34, 393–400. [Google Scholar] [CrossRef]
- Huss, F.R.; Kratz, G. Mammary epithelial cell and adipocyte co-culture in a 3-D matrix: The first step towards tissue-engineered human breast tissue. Cells Tissues Organs 2001, 169, 361–367. [Google Scholar] [CrossRef]
- Huss, F.R.; Kratz, G. Adipose tissue processed for lipoinjection shows increased cellular survival in vitro when tissue engineering principles are applied. Scand. J. Plast. Reconstr. Surg. Hand Surg. 2002, 36, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Krause, S.; Maffini, M.V.; Soto, A.M.; Sonnenschein, C. A novel 3D in vitro culture model to study stromal-epithelial interactions in the mammary gland. Tissue Eng. Part C Methods 2008, 14, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Findlay, M.W.; Dolderer, J.H.; Trost, N.; Craft, R.O.; Cao, Y.; Cooper-White, J.; Stevens, G.; Morrison, W.A. Tissue-engineered breast reconstruction: Bridging the gap toward large-volume tissue engineering in humans. Plast. Reconstr. Surg. 2011, 128, 1206–1215. [Google Scholar] [CrossRef]
- Findlay, M.W.; Messina, A.; Thompson, E.W.; Morrison, W.A. Long-term persistence of tissue-engineered adipose flaps in a murine model to 1 year: An update. Plast. Reconstr. Surg. 2009, 124, 1077–1084. [Google Scholar] [CrossRef]
- Dolderer, J.H.; Abberton, K.M.; Thompson, E.W.; Slavin, J.L.; Stevens, G.W.; Penington, A.J.; Morrison, W.A. Spontaneous large volume adipose tissue generation from a vascularized pedicled fat flap inside a chamber space. Tissue Eng. 2007, 13, 673–681. [Google Scholar] [CrossRef]
- Doldere, J.H.; Thompson, E.W.; Slavin, J.; Trost, N.; Cooper-White, J.J.; Cao, Y.; O’connor, A.J.; Penington, A.F.; Morrison, W.A.F.; Abberton, K.M.M. Long-Term Stability of Adipose Tissue Generated from a Vascularized Pedicled Fat Flap inside a Chamber. Plast. Reconstr. Surg. 2011, 127, 2283–2292. [Google Scholar] [CrossRef]
- Wan, J.; Dong, Z.; Lei, C.; Lu, F. Generating an Engineered Adipose Tissue Flap Using an External Suspension Device. Plast. Reconstr. Surg. 2016, 138, 109–120. [Google Scholar] [CrossRef]
- Cleret, D.; Gradwohl, M.; Dekerle, L.; Drucbert, A.S.; Idziorek, T.; Pasquier, D.; Blanchemain, N.; Payen, J.; Guerreschi, P.; Marchetti, P. Preclinical Study of Radiation on Fat Flap Regeneration under Tissue-engineering Chamber: Potential Consequences for Breast Reconstruction. Plast. Reconstr. Surg. Glob. Open 2022, 10, e4720. [Google Scholar] [CrossRef]
- Faglin, P.; Gradwohl, M.; Depoortere, C.; Germain, N.; Drucbert, A.-S.; Brun, S.; Nahon, C.; Dekiouk, S.; Rech, A.; Azaroual, N.; et al. Rationale for the design of 3D-printable bioresorbable tissue-engineering chambers to promote the growth of adipose tissue. Sci. Rep. 2020, 10, 11779. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Premaratne, I.D.; Sariibrahimoglu, K.; Limem, S.; Scott, J.; Gadjiko, M.; Berri, N.; Ginter, P.; Spector, J.A. 3D-printed poly-4-hydroxybutyrate bioabsorbable scaffolds for nipple reconstruction. Acta Biomater. 2022, 143, 333–343. [Google Scholar]
- Samadi, A.; Premaratne, I.D.; Wright, M.A.; Bernstein, J.L.; Lara, D.O.; Kim, J.; Zhao, R.; Bonassar, L.J.; Spector, J.A. Nipple Engineering: Maintaining Nipple Geometry with Externally Scaffolded Processed Autologous Costal Cartilage. J. Plast. Reconstr. Aesthet. Surg. 2021, 74, 2596–2603. [Google Scholar] [CrossRef]
- Bao, W.; Cao, L.; Wei, H.; Zhu, D.; Zhou, G.; Wang, J.; Guo, S. Effect of 3D printed polycaprolactone scaffold with a bionic structure on the early stage of fat grafting. Mater. Sci. Eng. C 2021, 123, 111973. [Google Scholar] [CrossRef]
- Chhaya, M.P.; Balmayor, E.R.; Hutmacher, D.W.; Schantz, J.-T. Transformation of Breast Reconstruction via Additive Biomanufacturing. Sci. Rep. 2016, 6, 28030. [Google Scholar] [CrossRef]
- Baek, W.; Kim, M.S.; Park, D.B.; Joo, O.Y.; Lee, W.J.; Roh, T.S.; Sung, H.-J. Three-Dimensionally Printed Breast Reconstruction Devices Facilitate Nanostructure Surface-Guided Healthy Lipogenesis. ACS Biomater. Sci. Eng. 2019, 5, 4962–4969. [Google Scholar]
- Anderson, J.M.; Rodriguez, A.; Chang, D.T. Foreign body reaction to biomaterials. Semin. Immunol. 2008, 20, 86–100. [Google Scholar] [CrossRef] [PubMed]
- Klopfleisch, R.; Jung, F. The pathology of the foreign body reaction against biomaterials. J. Biomed. Mater. Res. Part A 2017, 105, 927–940. [Google Scholar]
- Li, C.; Guo, C.; Fitzpatrick, V.; Ibrahim, A.; Zwierstra, M.J.; Hanna, P.; Lechtig, A.; Nazarian, A.; Lin, S.J.; Kaplan, D.L. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 2020, 5, 61–81. [Google Scholar]
- Idrees, H.; Zaidi, S.Z.J.; Sabir, A.; Khan, R.U.; Zhang, X.; Hassan, S.U. A Review of Biodegradable Natural Polymer-Based Nanoparticles for Drug Delivery Applications. Nanomaterials 2020, 10, 1970. [Google Scholar] [CrossRef] [PubMed]
- Prakasam, M.; Locs, J.; Salma-Ancane, K.; Loca, D.; Largeteau, A.; Berzina-Cimdina, L. Biodegradable Materials and Metallic Implants-A Review. J. Funct. Biomater. 2017, 8, 44. [Google Scholar] [CrossRef]
- Li, J.-W.; Du, C.-F.; Yuchi, C.-X.; Zhang, C.-Q. Application of Biodegradable Materials in Orthopedics. J. Med. Biol. Eng. 2019, 39, 633–645. [Google Scholar] [CrossRef]
- Hua, W.; Shi, W.; Mitchell, K.; Raymond, L.; Coulter, R.; Zhao, D.; Jin, Y. 3D Printing of Biodegradable Polymer Vascular Stents: A Review. Chin. J. Mech. Eng. Addit. Manuf. Front. 2022, 1, 100020. [Google Scholar] [CrossRef]
- Xu, R.; Fang, Y.; Zhang, Z.; Cao, Y.; Yan, Y.; Gan, L.; Xu, J.; Zhou, G. Recent Advances in Biodegradable and Biocompatible Synthetic Polymers Used in Skin Wound Healing. Materials 2023, 16, 5459. [Google Scholar] [CrossRef]
- Ongarora, B.G. Recent technological advances in the management of chronic wounds: A literature review. Health Sci. Rep. 2022, 5, e641. [Google Scholar] [CrossRef]
- Seitz, J.M.; Durisin, M.; Goldman, J.; Drelich, J.W. Recent advances in biodegradable metals for medical sutures: A critical review. Adv. Healthc. Mater. 2015, 4, 1915–1936. [Google Scholar]
- Chima, V.M.; Mohammed, A.; Evran, U.; Michael, O.H.; Maxwell, M.K.; Kylie, S.; Makela, A.V.; Pope, H.; Chen, S.; Hix, J.M.; et al. Polylactide Degradation Activates Immune Cells by Metabolic Reprogramming. bioRxiv 2022, 2022.09.22.509105. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, H.; Wang, X.; Yu, X.; Zhou, W.; Peng, S. Super tough poly(lactic acid) blends: A comprehensive review. RSC Adv. 2020, 10, 13316–13368. [Google Scholar] [CrossRef] [PubMed]
- Khiste, S.V.; Ranganath, V.; Nichani, A.S. Evaluation of tensile strength of surgical synthetic absorbable suture materials: An in vitro study. JPIS 2013, 43, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Sanko, V.; Sahin, I.; Aydemir Sezer, U.; Sezer, S. A versatile method for the synthesis of poly(glycolic acid): High solubility and tunable molecular weights. Polym. J. 2019, 51, 637–647. [Google Scholar] [CrossRef]
- Gentile, P.; Chiono, V.; Carmagnola, I.; Hatton, P.V. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci. 2014, 15, 3640–3659. [Google Scholar] [CrossRef] [PubMed]
- Deeken, C.R.; Matthews, B.D. Characterization of the Mechanical Strength, Resorption Properties, and Histologic Characteristics of a Fully Absorbable Material (Poly-4-hydroxybutyrate-PHASIX Mesh) in a Porcine Model of Hernia Repair. ISRN Surg. 2013, 2013, 238067. [Google Scholar] [CrossRef]
- Utsunomia, C.; Ren, Q.; Zinn, M. Poly(4-Hydroxybutyrate): Current State and Perspectives. Front. Bioeng. Biotechnol. 2020, 8, 257. [Google Scholar] [CrossRef]
- König Kardgar, A.; Ghosh, D.; Sturve, J.; Agarwal, S.; Carney Almroth, B. Chronic poly(l-lactide) (PLA)- microplastic ingestion affects social behavior of juvenile European perch (Perca fluviatilis). Sci. Total Environ. 2023, 881, 163425. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Tan, B.H.; Lin, T.; He, C. Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Prog. Polym. Sci. 2016, 62, 22–72. [Google Scholar] [CrossRef]
- BaoLin, G.; Ma, P.X. Synthetic biodegradable functional polymers for tissue engineering: A brief review. Sci. China Chem. 2014, 57, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Vegas, M.R.; Martin del Yerro, J.L. Stiffness, Compliance, Resilience, and Creep Deformation: Understanding Implant-Soft Tissue Dynamics in the Augmented Breast: Fundamentals Based on Materials Science. Aesthetic Plast. Surg. 2013, 37, 922–930. [Google Scholar] [CrossRef]
- Honkala, A.; Malhotra, S.V.; Kummar, S.; Junttila, M.R. Harnessing the predictive power of preclinical models for oncology drug development. Nat. Rev. Drug Discov. 2022, 21, 99–114. [Google Scholar] [CrossRef]
- Mishra, A.; Sarangi, S.C.; Reeta, K. First-in-human dose: Current status review for better future perspectives. Eur J Clin Pharmacol. 2020, 76, 1237–1243. [Google Scholar] [CrossRef]
- Shanks, N.; Greek, R.; Greek, J. Are animal models predictive for humans? Philos. Ethics Humanit. Med. 2009, 4, 2. [Google Scholar] [CrossRef]
- Varkey, B. Principles of Clinical Ethics and Their Application to Practice. Med. Princ. Pract. 2021, 30, 17–28. [Google Scholar]
- Nimpf, S.; Keays, D.A. Why (and how) we should publish negative data. EMBO Rep. 2020, 21, e49775. [Google Scholar] [CrossRef]
- Mainz, J. Defining and classifying clinical indicators for quality improvement. Int. J. Qual. Health Care 2003, 15, 523–530. [Google Scholar] [CrossRef]
- Pusic, A.L.; Klassen, A.F.; Scott, A.M.; Klok, J.A.; Cordeiro, P.G.; Cano, S.J. Development of a New Patient-Reported Outcome Measure for Breast Surgery: The BREAST-Q. Plast. Reconstr. Surg. 2009, 124, 345–353. [Google Scholar] [CrossRef]
- Liu, L.Q.; Branford, O.A.; Mehigan, S. BREAST-Q Measurement of the Patient Perspective in Oncoplastic Breast Surgery: A Systematic Review. Plast. Reconstr. Surg. Glob. Open 2018, 6, e1904. [Google Scholar] [CrossRef] [PubMed]
- Seth, I.; Seth, N.; Bulloch, G.; Rozen, W.M.; Hunter-Smith, D.J. Systematic Review of Breast-Q: A Tool to Evaluate Post-Mastectomy Breast Reconstruction. Breast Cancer Targets Ther. (Dove Med. Press) 2021, 13, 711–724. [Google Scholar] [CrossRef] [PubMed]
- Morley, R.; Leech, T. Optimal assessment tools in assessing breast surgery: Patient reported outcome measures (PROMs) vs. objective measures. Gland Surg. 2019, 8, 416–424. [Google Scholar] [CrossRef]
- Cardoso, M.J.; Cardoso, J.S.; Wild, T.; Krois, W.; Fitzal, F. Comparing two objective methods for the aesthetic evaluation of breast cancer conservative treatment. Breast Cancer Res. Treat. 2009, 116, 149–152. [Google Scholar] [CrossRef]
- Duraes, E.F.R.; Durand, P.; Morisada, M.; Scomacao, I.; Duraes, L.C.; de Sousa, J.B.; Abedi, N.; Djohan, R.S.; Bernard, S.; Moreira, A.; et al. A Novel Validated Breast Aesthetic Scale. Plast. Reconstr. Surg. 2022, 149, 1297–1308. [Google Scholar] [CrossRef] [PubMed]
- Rehnke, R.D.; Schusterman, M.A., II; Clarke, J.M.; Price, B.C.; Waheed, U.; Debski, R.E.; Badylak, S.F.D.; Rubin, J.P. Breast Reconstruction Using a Three-Dimensional Absorbable Mesh Scaffold and Autologous Fat Grafting: A Composite Strategy Based on Tissue-Engineering Principles. Plast. Reconstr. Surg. 2020, 146, 409e–413e. [Google Scholar] [CrossRef]
- Morrison, W.A.; Marre, D.; Grinsell, D.; Batty, A.; Trost, N.; O’Connor, A.J. Creation of a Large Adipose Tissue Construct in Humans Using a Tissue-engineering Chamber: A Step Forward in the Clinical Application of Soft Tissue Engineering. EBioMedicine 2016, 6, 238–245. [Google Scholar] [CrossRef]
- First-in-Human, Study of MATTISSE® Tissue Engineering Chamber in Adult Female Patients Undergoing Immediate Breast Reconstruction After Mastectomy for Cancer. Available online: https://classic.clinicaltrials.gov/show/NCT05460780 (accessed on 30 June 2023).
- Lattice Medical. LATTICE MEDICAL Announces the Success of the First Breast Reconstruction Operation with the MATTISSE Implant. 2022. Available online: https://www.medical-xprt.com/news/lattice-medical-announces-the-success-of-the-first-breast-reconstruction-operation-with-the-mattisse-1094762 (accessed on 30 June 2023).
- van Turnhout, A.; Franke, C.J.J.; Vriens-Nieuwenhuis, E.J.C.; van der Sluis, W.B. The use of SERI™ Surgical Scaffolds in direct-to-implant reconstruction after skin-sparing mastectomy: A retrospective study on surgical outcomes and a systematic review of current literature. J. Plast. Reconstr. Aesthet. Surg. 2018, 71, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Scaffold-Guided Breast Surgery. Available online: https://classic.clinicaltrials.gov/show/NCT05437757 (accessed on 30 June 2023).
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. 3D printing applications for healthcare research and development. Glob. Health J. 2022, 6, 217–226. [Google Scholar] [CrossRef]
- Tashman, J.W.; Shiwarski, D.J.; Feinberg, A.W. Development of a high-performance open-source 3D bioprinter. Sci. Rep. 2022, 12, 22652. [Google Scholar] [CrossRef]
- Kahl, M.; Gertig, M.; Hoyer, P.; Friedrich, O.; Gilbert, D. Ultra-Low-Cost 3D Bioprinting: Modification and Application of an Off-the-Shelf Desktop 3D-Printer for Biofabrication. Front. Bioeng. Biotechnol. 2019, 7, 184. [Google Scholar] [CrossRef] [PubMed]
- Bessler, N.; Ogiermann, D.; Buchholz, M.-B.; Santel, A.; Heidenreich, J.; Ahmmed, R.; Zaehres, H.; Brand-Saberi, B. Nydus One Syringe Extruder (NOSE): A Prusa i3 3D printer conversion for bioprinting applications utilizing the FRESH-method. HardwareX 2019, 6, e00069. [Google Scholar] [CrossRef]
- Krige, A.; Haluška, J.; Rova, U.; Christakopoulos, P. Design State of Research on Tissue Engineering with 3D Printing for Breast Reconstruction. Preprints 2025. [Google Scholar] [CrossRef]
- Mohammadrezaei, D.; Moghimi, N.; Vandvajdi, S.; Powathil, G.; Hamis, S.; Kohandel, M. Predicting and elucidating the post-printing behavior of 3D printed cancer cells in hydrogel structures by integrating in-vitro and in-silico ex-periments. Sci. Rep. 2023, 13, 1211. [Google Scholar] [CrossRef]
- Neufeld, L.; Yeini, E.; Pozzi, S.; Satchi-Fainaro, R. 3D bioprinted cancer models: From basic biology to drug de-velopment. Nat. Rev. Cancer 2022, 22, 679–692. [Google Scholar] [CrossRef]
- Zhu, Z.; Ng, D.W.H.; Park, H.S.; McAlpine, M.C. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nat. Rev. Mater. 2021, 6, 27–47. [Google Scholar] [CrossRef]
- Rojek, I.; Mikołajewski, D.; Dostatni, E.; Macko, M. AI-Optimized Technological Aspects of the Material Used in 3D Printing Processes for Selected Medical Applications. Materials 2020, 13, 5437. [Google Scholar] [CrossRef] [PubMed]
- FDA’s Role in 3D Printing: Food and Drug Administration. 2017. Available online: https://www.fda.gov/medical-devices/3d-printing-medical-devices/fdas-role-3d-printing (accessed on 30 June 2023).
- Overview of Medical Device Classification and Reclassification: Food and Drug Administration. 2017. Available online: https://www.fda.gov/about-fda/cdrh-transparency/overview-medical-device-classification-and-reclassification (accessed on 30 June 2023).
- How to Find and Effectively Use Predicate Devices: Food and Drug Administration. 2018. Available online: https://www.fda.gov/medical-devices/premarket-notification-510k/how-find-and-effectively-use-predicate-devices (accessed on 30 June 2023).
- FDA Strengthens Safety Requirements and Updates Study Results for Breast Implants: Food and Drug Ad-ministration. 2021. Available online: https://www.prnewswire.com/news-releases/fda-strengthens-safety-requirements-and-updates-study-results-for-breast-implants-301410216.html (accessed on 30 June 2023).
- 3D Printing Medical Devices at the Point of Care: Discussion Paper: Food and Drug Administration. 2021. Available online: https://www.fda.gov/medical-devices/3d-printing-medical-devices/3d-printing-medical-devices-point-care-discussion-paper (accessed on 30 June 2023).
- Bernier, J. Translational breast cancer research: Recent advances through the lens of experimental radio-therapy. Breast 2010, 19, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Bogdan, R.G. Assessing Fat Grafting in Breast Surgery: A Narrative Review of Evaluation Techniques. J. Clin. Med. 2024, 13, 7209. [Google Scholar] [CrossRef] [PubMed]
Material (References: [59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79]) | Biocompatibility | Degradation Kinetics | Biomechanical Properties | Key Points and Considerations |
---|---|---|---|---|
PLA (Polylactic Acid) | Moderate; can trigger inflammatory responses due to acidic degradation products (lactic acid). | 6 to 12 months | Good initial mechanical properties but tends to become brittle. | Widely utilized; concern about inflammation due to acidic degradation byproducts. |
PGA (Polyglycolic Acid) | Good biocompatibility; broadly accepted in medical applications such as sutures. | Rapid degradation within weeks to months, breaking down into glycolic acid. | High initial strength, diminishes quickly due to rapid degradation. | Beneficial for short-term applications; degradation may be too rapid for prolonged structural support. |
PLGA (Poly(lactic-co-glycolic acid) | Generally good; however, inflammatory concerns exist due to acidic degradation products. | Adjustable degradation time from weeks to months depending on the PLA to PGA ratio. | Mechanical properties adjustable through composition ratio (versatile). | Highly customizable; requires careful formulation to balance degradation rate and inflammatory response. |
P4HB (Poly-4-hydroxybutyrate) | Excellent biocompatibility with minimal inflammatory response. | Degrades over approximately 12 to 18 months into 4-hydroxybutyric acid. | Flexible, robust mechanical strength suited for soft tissue implants. | Ideal for long-term, flexible support; more complex and costly due to exclusive fermentation-based synthesis. |
Poly(D,L-lactide) | Moderate biocompatibility; inflammatory response potential similar to PLA. | Similarly to PLA; adjustable by altering blend ratio of stereoisomers. | Properties depend on stereoisomer ratios; can exhibit brittleness. | Mechanical and degradation profiles can be customized, yet inflammatory potential remains a concern. |
Author, Year | Study Objective | Methodology | Materials Used | Key Findings | Limitations |
---|---|---|---|---|---|
Rehnke, 2020 [92] | Evaluate effectiveness of composite strategy combining absorbable mesh with autologous fat grafting | Retrospective review, 22 patients, 28 reconstructed breasts, mean follow-up 19 months | Lotus scaffold (TIGR Matrix, SERI Scaffold, PHASIX mesh), Autologous fat graft | High elasticity, natural feel; histology: PHASIX mesh had superior fat structuring and milder foreign body response | Small sample size, retrospective design, limited follow-up period |
Morrison, 2016 [93] | Assess clinical feasibility of TEC for adipose tissue growth | Case series, 5 patients, TEC with TAP flaps, follow-up up to 6–12 months | Acrylic chambers, thoracodorsal artery perforator (TAP) flaps | One patient achieved significant tissue expansion (210 mL); others no significant growth | Small sample size, limited success, patient discomfort led to early removal |
Clinical trial NCT05460780 [94,95] | Safety and efficacy of bioabsorbable TEC with LICAp/LTAp flap | Ongoing trial, immediate reconstruction post-mastectomy | Bioabsorbable TEC, LICAp or LTAp pedicled flaps | Preliminary results: successful implantation in first human case (as reported) | Awaiting comprehensive data and long-term follow-up results |
van Turnhout, 2018 [96] | Evaluate SERI surgical scaffold for direct-to-implant reconstruction | Retrospective review, 16 patients, 22 breasts; literature review included | SERI surgical scaffold | High complication rate (seroma 45%, scaffold integration issues 14%) | Retrospective, small sample, potential product-associated bias |
Clinical trial NCT05437757 [97] | Safety and efficacy of fat grafting within 3D-printed scaffolds | Prospective trial, recruiting 20 participants | 3D-printed polycaprolactone scaffold, autologous fat | Ongoing, preliminary safety and effectiveness assessment in progress | Awaiting results, small planned sample |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Sario Velasquez, G.D.; Tanas, Y.; Taraballi, F.; Herzog, T.; Spiegel, A. State of Research on Tissue Engineering with 3D Printing for Breast Reconstruction. J. Clin. Med. 2025, 14, 6737. https://doi.org/10.3390/jcm14196737
De Sario Velasquez GD, Tanas Y, Taraballi F, Herzog T, Spiegel A. State of Research on Tissue Engineering with 3D Printing for Breast Reconstruction. Journal of Clinical Medicine. 2025; 14(19):6737. https://doi.org/10.3390/jcm14196737
Chicago/Turabian StyleDe Sario Velasquez, Gioacchino D., Yousef Tanas, Francesca Taraballi, Tanya Herzog, and Aldona Spiegel. 2025. "State of Research on Tissue Engineering with 3D Printing for Breast Reconstruction" Journal of Clinical Medicine 14, no. 19: 6737. https://doi.org/10.3390/jcm14196737
APA StyleDe Sario Velasquez, G. D., Tanas, Y., Taraballi, F., Herzog, T., & Spiegel, A. (2025). State of Research on Tissue Engineering with 3D Printing for Breast Reconstruction. Journal of Clinical Medicine, 14(19), 6737. https://doi.org/10.3390/jcm14196737