Global Disease Control in Inflammatory Arthritis Patients with Fibromyalgia Multi-Failure to Biologic Drugs: Short-Term Impact of Target Therapies on Both Disease Courses
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Clinical Assessment at the Baseline and Follow-Up Visit
2.3. Definition of Inflammatory Chronic Arthritis
2.4. Definition of Remission and Low Disease Activity
2.5. Statistical Analysis
2.6. Ethics Approval
3. Results
3.1. Main Demographic and Clinical Characteristics of the Patients
3.2. Efficacy of b/ts-DAMRDs to Reach Low-Disease Activity or Remission at the 6-Month Follow-Up
3.3. Impact on Fibromyalgia Syndrome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMI | Body Mass Index |
DAPSA | Disease Activity in Psoriatic Arthritis |
DAS | disease activity score |
DMARDs | Disease-modifying antirheumatic drugs |
ESR | Erythrocyte sedimentation |
FACIT | Functional Assessment of Chronic Illness Therapy |
FSS | Fibromyalgia Severity Scale |
HAQ | Health Assessment Questionnaire |
ICA | inflammatory chronic arthritis |
LDA | low-disease activity |
LEI | Leeds Enthesitis Index |
MoA | mechanism of action |
MTX | Methotrexate |
PsA | psoriatic arthritis |
RA | rheumatoid arthritis |
SSS | Symptom Severity Scale |
TNF | Tumour Necrosis Factor |
VAS | Visual Analogue Scale |
WPI | Widespread Pain Index |
References
- Atzeni, F.; Sallì, S.; Benucci, M.; Di Franco, M.; Alciati, A.; Sarzi-Puttini, P. Fibromyalgia and Arthritides. Reum. Ital. J. Rheumatol. 2012, 64, 286–292. [Google Scholar] [CrossRef]
- Sarzi-Puttini, P.; Giorgi, V.; Marotto, D.; Atzeni, F. Fibromyalgia: An update on clinical characteristics, aetiopathogenesis and treatment. Nat. Rev. Rheumatol. 2020, 16, 645–660. [Google Scholar] [CrossRef]
- Gracely, R.H.; Grant, M.A.B.; Giesecke, T. Evoked pain measures in fibromyalgia. In Best Practice and Research: Clinical Rheumatology; Bailliere Tindall Ltd.: London, UK, 2003; Volume 17, pp. 593–609. [Google Scholar]
- Zhao, S.S.; Duffield, S.J.; Goodson, N.J. The prevalence and impact of comorbid fibromyalgia in inflammatory arthritis. Best Pract. Res. Clin. Rheumatol. 2019, 33, 101423. [Google Scholar] [CrossRef]
- Moltó, A.; Etcheto, A.; Gossec, L.; Boudersa, N.; Claudepierre, P.; Roux, N.; Lemeunier, L.; Martin, A.; Sparsa, L.; Coquerelle, P.; et al. Evaluation of the impact of concomitant fibromyalgia on TNF alpha blockers’ effectiveness in axial spondyloarthritis: Results of a prospective, multicentre study. Ann. Rheum. Dis. 2018, 77, 533–540. [Google Scholar] [CrossRef]
- Nagy, G.; Roodenrijs, N.M.T.; Welsing, P.M.; Kedves, M.; Hamar, A.; van der Goes, M.C.; Kent, A.; Bakkers, M.; Blaas, E.; Senolt, L.; et al. EULAR definition of difficult-to-treat rheumatoid arthritis. Ann. Rheum. Dis. 2021, 80, 31–35. [Google Scholar] [CrossRef]
- Fagni, F.; Motta, F.; Schett, G.; Selmi, C. Difficult-to-Treat Psoriatic Arthritis: A Conceptual Approach. Arthritis Rheumatol. 2024, 76, 670–674. [Google Scholar] [CrossRef]
- Roodenrijs, N.M.T.; Welsing, P.M.J.; van Roon, J.; Schoneveld, J.L.M.; van der Goes, M.C.; Nagy, G.; Townsend, M.J.; van Laar, J.M. Mechanisms underlying DMARD inefficacy in difficult-to-treat rheumatoid arthritis: A narrative review with systematic literature search. Rheumatology 2022, 61, 3552–3566. [Google Scholar] [CrossRef]
- Gazel, U.; Acikgoz, S.; Sabido-Sauri, R.; Tsechelidis, O.; Sangwa, S.; Hepworth, E.; Aydin, S. Prediction of Response to Therapies and Flares Based on Ultrasound Findings at Baseline in Psoriatic Arthritis: An Analysis on a Joint Level. J. Rheumatol. 2025, 52 (Suppl. 2), 40. [Google Scholar] [CrossRef]
- Rotondo, C.; Cantatore, F.P.; Cici, D.; Erroi, F.; Sciacca, S.; Rella, V.; Corrado, A. Vitamin D Status and Psoriatic Arthritis: Association with the Risk for Sacroiliitis and Influence on the Retention Rate of Methotrexate Monotherapy and First Biological Drug Survival-A Retrospective Study. Int. J. Mol. Sci. 2023, 24, 5368. [Google Scholar] [CrossRef]
- Perez-Alamino, R.; Garcia-Valladares, I.; Cuchacovich, R.; Iglesias-Gamarra, A.; Espinoza, L.R. Are anti-CCP antibodies in psoriatic arthritis a biomarker of erosive disease? Rheumatol. Int. 2014, 34, 1211–1216. [Google Scholar] [CrossRef]
- Gottenberg, J.E.; Courvoisier, D.S.; Hernandez, M.V.; Iannone, F.; Lie, E.; Canhão, H.; Pavelka, K.; Hetland, M.L.; Turesson, C.; Mariette, X.; et al. Brief report: Association of rheumatoid factor and anti-citrullinated protein antibody positivity with better effectiveness of abatacept: Results from the Pan-European registry analysis. Arthritis Rheumatol. 2016, 68, 1346–1352. [Google Scholar] [CrossRef]
- Rotondo, C.; Corrado, A.; Cici, D.; Berardi, S.; Cantatore, F.P. Anti-cyclic-citrullinated-protein-antibodies in psoriatic arthritis patients: How autoimmune dysregulation could affect clinical characteristics, retention rate of methotrexate monotherapy and first line biotechnological drug survival. A single center retrospective study. Ther. Adv. Chronic Dis. 2021, 12, 2040622320986722. [Google Scholar]
- Vencovsky, J.; Machacek, S.; Sedova, L.; Kafková, J.; Gatterová, J.; Pesáková, V.; Růzickováet, S. Autoantibodies can be prognostic markers of an erosive disease in early rheumatoid arthritis. Ann. Rheum. Dis. 2003, 62, 427–430. [Google Scholar] [CrossRef]
- Park, D.J.; Choi, S.J.; Shin, K.; Shin, K.; Kim, H.A.; Park, Y.-B.; Kang, S.W.; Kwok, S.K.; Kim, S.K.; Nam, E.J.; et al. Switching profiles in a population-based cohort of rheumatoid arthritis receiving biologic therapy: Results from the KOBIO registry. Clin. Rheumatol. 2017, 36, 1013–1022. [Google Scholar] [CrossRef]
- Mewar, D.; Coote, A.; Moore, D.J.; Marinou, I.; Keyworth, J.; Dickson, M.C.; Montgomery, D.S.; Binks, M.H.; Wilson, A.G. Independent associations of anti-cyclic citrullinated peptide antibodies and rheumatoid factor with radiographic severity of rheumatoid arthritis. Arthritis Res. Ther. 2006, 8, R128. [Google Scholar] [CrossRef]
- Lage-Hansen, P.R.; Chrysidis, S.; Lage-Hansen, M.; Hougaard, A.; Ejstrup, L.; Amris, K. Concomitant fibromyalgia in rheumatoid arthritis is associated with the more frequent use of biological therapy: A cross-sectional study. Scand. J. Rheumatol. 2016, 45, 45–48. [Google Scholar] [CrossRef]
- Chakr, R.M.d.S.; Brenol, C.; Ranzolin, A.; Bernardes, A.; Dalosto, A.P.; Ferrari, G.; Scalco, S.; Olszewski, V.; Kohem, C.; Monticielo, O.; et al. Rheumatoid arthritis seems to have DMARD treatment decision influenced by fibromyalgia. Rev. Bras. Reumatol. (Engl. Ed.) 2017, 57, 403–411. [Google Scholar] [CrossRef]
- Ulutatar, F.; Unal-Ulutatar, C.; Tuncay Duruoz, M. Fibromyalgia in patients with psoriatic arthritis: Relationship with enthesopathy, sleep, fatigue and quality of life. Int. J. Rheum. Dis. 2021, 24, 183–188. [Google Scholar] [CrossRef]
- Sayın, S.; Yurdakul, F.G.; Sivas, F.; Bodur, H. Is fibromyalgia frequency increasing in axial spondyloarthritis? Association with fibromyalgia and biological therapies. Rheumatol. Int. 2020, 40, 1835–1841. [Google Scholar] [CrossRef]
- Iannone, F.; Nivuori, M.; Fornaro, M.; Venerito, V.; Cacciapaglia, F.; Lopalco, G. Comorbid fibromyalgia impairs the effectiveness of biologic drugs in patients with psoriatic arthritis. Rheumatology 2020, 59, 1599–1606. [Google Scholar] [CrossRef]
- Coskun Benlidayi, I. Fibromyalgia interferes with disease activity and biological therapy response in inflammatory rheumatic diseases. In Rheumatology International; Springer: Berlin/Heidelberg, Germany, 2020; Volume 40, pp. 849–858. [Google Scholar]
- Graceffa, D.; Maiani, E.; Sperduti, I.; Ceralli, F.; Bonifati, C. Clinical remission of psoriatic arthritis in patients receiving continuous biological therapies for 1 year: The experience of an outpatient dermatological clinic for psoriasis. Clin. Exp. Dermatol. 2015, 40, 136–141. [Google Scholar] [CrossRef]
- Macfarlane, G.J.; MacDonald, R.I.R.; Pathan, E.; Siebert, S.; Gaffney, K.; Choy, E.; Packham, J.; Martin, K.R.; Haywood, K.; Sengupta, R. Influence of co-morbid fibromyalgia on disease activity measures and response to tumour necrosis factor inhibitors in axial spondyloarthritis: Results from a UK national register. Rheumatology 2018, 57, 1982–1990. [Google Scholar] [CrossRef]
- Provan, S.A.; Dean, L.E.; Jones, G.T.; MacFarlane, G.J. The changing states of fibromyalgia in patients with axial spondyloarthritis: Results from the British Society of Rheumatology Biologics Register for Ankylosing Spondylitis. Rheumatology 2021, 60, 4121–4129. [Google Scholar] [CrossRef]
- Taylor, W.; Gladman, D.; Helliwell, P.; Marchesoni, A.; Mease, P.; Mielants, H. Classification criteria for psoriatic arthritis: Development of new criteria from a large international study. Arthritis Rheum. 2006, 54, 2665–2673. [Google Scholar] [CrossRef]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., 3rd; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010, 62, 2569–2581. [Google Scholar]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.A.; Goldenberg, D.L.; Häuser, W.; Katz, R.L.; Mease, P.J.; Russell, A.S.; Russell, I.J.; Walitt, B. 2016 Revisions to the 2010/2011 fibromyalgia diagnostic criteria. Semin. Arthritis Rheum. 2016, 46, 319–329. [Google Scholar] [CrossRef]
- Salaffi, F.; Gerardi, M.C.; Atzeni, F.; Batticciotto, A.; Talotta, R.; Draghessi, A.; Di Carlo, M.; Sarzi-Puttini, P. The influence of fibromyalgia on achieving remission in patients with long-standing rheumatoid arthritis. Rheumatol. Int. 2017, 37, 2035–2042. [Google Scholar] [CrossRef]
- Mease, P.; Reed, G.; Ogdie, A.; Pappas, D.A.; Kremer, J.M. Prevalence of Fibromyalgia and widespread pain in psoriatic arthritis: Association with disease severity assessment in a large US registry. Arthritis Care Res. 2024, 76, 1313–1321. [Google Scholar] [CrossRef]
- Luciano, N.; Barone, E.; Brunetta, E.; D’Isanto, A.; De Santis, M.; Ceribelli, A.; Caprioli, M.; Guidelli, G.M.; Renna, D.; Selmi, C. Obesity and fibromyalgia are associated with Difficult-to-Treat Rheumatoid Arthritis (D2T-RA) independent of age and gender. Arthritis Res. Ther. 2025, 27, 2. [Google Scholar] [CrossRef]
- Kannayiram, S.; Schmukler, J.; Li, T.; Goodson, N.; Sridhar, A.; Pincus, T. Elevated DAS28-ESR in patients with rheumatoid arthritis who have comorbid fibromyalgia is associated more with tender joint counts than with patient global assessment or swollen joint counts: Implications for assessment of inflammatory activity. Clin. Exp. Rheumatol. 2024, 42, 1083–1090. [Google Scholar] [CrossRef]
- Ranzolin, A.; Brenol, J.C.T.; Bredemeier, M.; Guarienti, J.; Rizzatti, M.; Feldman, D.; Machado Xavier, R. Association of concomitant fibromyalgia with worse disease activity score in 28 joints, health assessment questionnaire, and short form 36 scores in patients with rheumatoid arthritis. Arthritis Care Res. 2009, 61, 794–800. [Google Scholar] [CrossRef]
- Duffield, S.J.; Miller, N.; Zhao, S.; Goodson, N.J. Concomitant fibromyalgia complicating chronic inflammatory arthritis: A systematic review and meta-analysis. Rheumatology 2018, 57, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Coskun Benlidayi, I. Role of inflammation in the pathogenesis and treatment of fibromyalgia. In Rheumatology International; Springer: Berlin/Heidelberg, Germany, 2019; Volume 39, pp. 781–791. [Google Scholar]
- Mendieta, D.; De la Cruz-Aguilera Becerril-Villanueva, E.; Arreola, R.; Hernández-Ferreira, E.; Pérez-Tapia, S.M.; Pérez-Sánchez, G.; Garcés-Alvarez, M.E.; Aguirre-Cruz, L. IL-8 and IL-6 primarily mediate the inflammatory response in fibromyalgia patients. J. Neuroimmunol. 2016, 290, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Wang, S.; Han, Y.; Zhao, H.; Yin, Y.; Zhang, Y.; Zeng, X. Micro-inflammation related gene signatures are associated with clinical features and immune status of fibromyalgia. J. Transl. Med. 2023, 21, 594. [Google Scholar] [CrossRef]
- Aktürk, S.; Büyükavcı, R. Evaluation of blood neutrophil-lymphocyte ratio and platelet distribution width as inflammatory markers in patients with fibromyalgia. Clin. Rheumatol. 2017, 36, 1885–1889. [Google Scholar] [CrossRef] [PubMed]
- Banfi, G.; Diani, M.; Pigatto, P.D.; Reali, E. T Cell Subpopulations in the Physiopathology of Fibromyalgia: Evidence and Perspectives. Int. J. Mol. Sci. 2020, 21, 1186. [Google Scholar] [CrossRef]
- Creed, F. Psychiatric disorders and the onset of self-reported fibromyalgia and chronic fatigue syndrome: The lifelines cohort study. Front. Psychiatry 2023, 14, 1120250. [Google Scholar] [CrossRef]
- García-Domínguez, M. Fibromyalgia and Inflammation: Unrevealing the Connection. Cells 2025, 14, 271. [Google Scholar] [CrossRef]
ICA + FS n = 47 | ICA n = 17 | p-Value | |
---|---|---|---|
Age (years) | 46.7 ± 11.5 | 47.8 ± 8.1 | 0.724 |
Female/Male | 45/2 | 15/2 | 0.285 |
BMI (kg/m2) | 27.4 ± 5.5 | 27.5 ± 4.9 | 0.931 |
Diagnosis | |||
RA | 6 (13) | 5 (29) | 0.295 |
PsA | 41 (87) | 12 (71) | 0.325 |
Disease duration (years) | 9 ± 6.8 | 14.5 ± 8.7 | 0.011 |
DAS 28 (ESR) | 4.1 ± 0.8 | 3.7 ± 1.1 | 0.216 |
DAPSA | 26.3 ± 7.0 | 19.1 ± 7.2 | 0.004 |
ERS (mm/h) | 32.6 ± 14.8 | 28.8 ± 16.7 | 0.275 |
CRP (mg/L) | 6.2 ±4.8 | 4.6 ± 3.9 | 0.254 |
LEI | 1.5 ± 1.4 | 1.3 ± 1.4 | 0.711 |
FSS | 20.1 ± 3.8 | 7.1 ± 3.6 | 0.0001 |
WPI | 11.0 ± 3.9 | 2.8 ± 2.4 | 0.0001 |
SSS | 8.9 ± 2.1 | 4.2 ± 2.4 | 0.0001 |
VAS pain | 73.0 ± 16.7 | 60.1 ± 25.5 | 0.065 |
FACIT | 23.3 ± 9.6 | 36.6 ± 10.4 | 0.0001 |
HAQ | 1.3 ± 0.8 | 0.7 ± 0.6 | 0.016 |
25-hydroxyvitamin D (ng/mL) | 25.3 ± 12.1 | 42.9 ± 23.9 | 0.088 |
MoA of b/ts-DMARDs started | |||
Anti-TNFα | 22 (47) | 6 (35) | 0.698 |
No anti-TNFα | 19 (40) | 8 (47) | 0.696 |
Abatacept | 1 (2) | 1 (6) | 0.341 |
Anti-IL-23 | 5 (11) | 2 (11) | 0.964 |
Anti IL-17 | 10 (21) | 3 (18) | 0.842 |
Anti IL-6 | 3 (6) | 2 (11) | 0.639 |
JAK-inhibitors | 6 (13) | 3 (18) | 0.412 |
Steroid users | 20 (43) | 2 (12) | 0.019 |
Equivalent prednisone dose (mg) | 2.2 ± 2.8 | 0.2 ± 0.8 | 0.008 |
Combo therapy with MTX | 18 (39) | 9 (53) | 0.223 |
ICA + FS | ICA | p-Value | |
---|---|---|---|
DAS 28 (ESR) | 3.1 ± 1 | 2.6 ± 0.8 | 0.088 |
DAPSA | 17.5 ± 10.4 | 13.0 ± 8.8 | 0.114 |
LEI | 0.9 ± 1.1 | 0.2 ± 0.6 | 0.045 |
FSS | 16.1 ± 7.4 | 7.6 ± 4.6 | 0.0001 |
WPI | 8.7 ± 5.5 | 3.7 ± 3.1 | 0.001 |
SSS | 7.3 ± 3.3 | 3.9 ± 2.3 | 0.0001 |
VAS pain | 54.2 ± 29.8 | 42.6 ± 23.8 | 0.154 |
FACIT | 27.3 ± 10.8 | 38.7 ± 9.2 | 0.0001 |
HAQ | 1.1 ± 0.6 | 0.4 ± 0.4 | 0.0001 |
LDA/REM | No LDA/REM | p-Value | |
---|---|---|---|
Δ%FSS | 31.0 ± 32.9 | 8.4 ± 37.7 | 0.034 |
Δ%WPI | 31.9 ± 48.9 | 4.5 ± 57.3 | 0.087 |
Δ%SSS | 28.6 ± 32.4 | −0.9 ± 52.9 | 0.028 |
Δ%VAS pain | 54.4 ± 38.4 | 4.5 ± 20.1 | 0.0001 |
Δ%FACIT | −40.0 ± 58.0 | −17.0 ± 53.3 | 0.172 |
Δ%HAQ | 13.1 ± 64.1 | 2.0 ± 53.5 | 0.537 |
Diagnosis | |||
RA | 2 (9) | 4 (16) | 0.479 |
PsA | 20 (91) | 21 (84) | 0.397 |
Steroid users | 5 (21) | 14 (54) | 0.017 |
Failure to satisfy FS criteria at 6-month follow-up visit | 9 (38) | 5 (19) | 0.151 |
No More FS | FS Persistence | p-Value | |
---|---|---|---|
Δ% DAS 28 (ESR) | 21.3 ± 23.3 | 24.3 ± 29 | 0.742 |
Δ% DAPSA | 48.5 ± 31.6 | 29.4 ± 35.9 | 0.107 |
Δ% LEI | 61.1 ± 48.5 | 28.1 ± 54.6 | 0.146 |
Δ% FSS | 56.8 ± 15.6 | −3.1 ± 27.7 | 0.0001 |
Δ% WPI | 65.0 ± 23.3 | −11.4 ± 52.7 | 0.0001 |
Δ% SSS | 48.5 ± 26.2 | −8.1 ± 40.1 | 0.0001 |
Δ% VAS pain | 41.8 ± 37.2 | 22.9 ± 37.3 | 0.135 |
Δ% FACIT fatigue scale | −51.3 ± 77.0 | −16.9 ± 40.4 | 0.064 |
Δ% HAQ | 43.6 ± 40.4 | −6.4 ± 61.9 | 0.018 |
LDA | 6 (50) | 11 (35) | 0.291 |
Remission | 2 (17) | 2 (6) | 0.121 |
b/ts-DMARDs retention rate | 12 (86) | 27 (77) | 0.403 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rotondo, C.; Stefania, S.; Nardella, L.; Colia, R.; Maruotti, N.; Rella, V.; Busto, G.; Barile, R.; Cantatore, F.P.; Corrado, A. Global Disease Control in Inflammatory Arthritis Patients with Fibromyalgia Multi-Failure to Biologic Drugs: Short-Term Impact of Target Therapies on Both Disease Courses. J. Clin. Med. 2025, 14, 6703. https://doi.org/10.3390/jcm14196703
Rotondo C, Stefania S, Nardella L, Colia R, Maruotti N, Rella V, Busto G, Barile R, Cantatore FP, Corrado A. Global Disease Control in Inflammatory Arthritis Patients with Fibromyalgia Multi-Failure to Biologic Drugs: Short-Term Impact of Target Therapies on Both Disease Courses. Journal of Clinical Medicine. 2025; 14(19):6703. https://doi.org/10.3390/jcm14196703
Chicago/Turabian StyleRotondo, Cinzia, Silvia Stefania, Luigi Nardella, Ripalta Colia, Nicola Maruotti, Valeria Rella, Giuseppe Busto, Raffaele Barile, Francesco Paolo Cantatore, and Addolorata Corrado. 2025. "Global Disease Control in Inflammatory Arthritis Patients with Fibromyalgia Multi-Failure to Biologic Drugs: Short-Term Impact of Target Therapies on Both Disease Courses" Journal of Clinical Medicine 14, no. 19: 6703. https://doi.org/10.3390/jcm14196703
APA StyleRotondo, C., Stefania, S., Nardella, L., Colia, R., Maruotti, N., Rella, V., Busto, G., Barile, R., Cantatore, F. P., & Corrado, A. (2025). Global Disease Control in Inflammatory Arthritis Patients with Fibromyalgia Multi-Failure to Biologic Drugs: Short-Term Impact of Target Therapies on Both Disease Courses. Journal of Clinical Medicine, 14(19), 6703. https://doi.org/10.3390/jcm14196703