High-Definition Transcranial Direct Current Stimulation (HD-tDCS) Therapy in Amyotrophic Lateral Sclerosis: Study Protocol for a Multicenter Randomized Controlled Clinical Trial
Abstract
1. Introduction
1.1. Objectives
1.1.1. Primary Objective
1.1.2. Secondary Objectives
- ▪
- To assess cortical excitability by measuring patterns of facilitation, inhibition, active and resting motor thresholds, central motor conduction time, cortical silent period, and Motor Evoked Potentials (MEPs) in individuals with ALS;
- ▪
- To evaluate cortical tissue perfusion in the region of the diaphragmatic primary motor cortex in individuals with ALS through specific respiratory tests before and after the HD-tDCS intervention protocol;
- ▪
- To assess respiratory muscle electrical activity in individuals with ALS before and after the HD-tDCS intervention protocol;
- ▪
- To observe the effects of HD-tDCS on aspects such as respiratory muscle strength, nasal inspiratory and expiratory pressures, and peak cough flow through specific respiratory tests in individuals with ALS;
- ▪
- To observe the effects of HD-tDCS on clinical and functional aspects using the Amyotrophic Lateral Sclerosis Functional Rating Scale—Revised (ALSFRS-R);
- ▪
- To assess motor control and muscle performance using a protocol for evaluating peripheral muscle electrical activity;
- ▪
- To assess fatigue, dyspnea, pain, sleep, quality of life, and cognition before and after the HD-tDCS intervention protocol;
- ▪
- To identify adverse effects of HD-tDCS on the diaphragmatic motor cortex in individuals with ALS.
2. Methods
2.1. Study Type and Sample
2.2. Sample Recruitment, Randomization, and Blinding
2.3. Eligibility Criteria
2.4. Interventions
HD-tDCS Protocol and Patient Familiarization
2.5. Procedures and Outcomes
2.5.1. Pulmonary Function
2.5.2. Surface Electromyography (sEMG) of Respiratory Muscles
2.5.3. Functional Near-Infrared Spectroscopy (fNIRS)
2.5.4. Cortical Excitability—Transcranial Magnetic Stimulation (TMS)
2.6. Secondary Outcomes
2.6.1. Functional Capacity
2.6.2. Motor Control and Muscle Performance
2.6.3. Fatigue and Dyspnea
2.6.4. Pain Assessment
2.6.5. Sleep Monitoring
2.6.6. Cognitive Assessment
2.6.7. Quality of Life
2.6.8. Monitoring and Adverse Effects
2.7. Measurement of Outcomes
3. Ethics and Disclosure
4. Discussion
5. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALS | Amyotrophic Lateral Sclerosis |
ALS-CBS-Br | Amyotrophic Lateral Sclerosis Cognitive Behavioral Screen—Brazilian version |
ALSFRS-R | Revised Amyotrophic Lateral Sclerosis Functional Rating Scale |
BP | Blood Pressure |
CONSORT | Consolidated Standards of Reporting Trials |
CSP | Cortical Silent Period |
EEG | Electroencephalogram |
fNIRS | Functional Near-Infrared Spectroscopy |
FVC | Forced Vital Capacity |
gSham | Sham Group |
gTDCS | tDCS Group |
HD-tDCS | High-Definition Transcranial Direct Current Stimulation |
HR | Heart Rate |
ICF | Informed Consent Form |
M1 | Primary Motor Cortex |
MEP | Motor Evoked Potential |
MEPs | Maximum Expiratory Pressure (context-dependent) |
MIP | Maximum Inspiratory Pressure |
MNI | Montreal Neurological Institute |
MRI | Magnetic Resonance Imaging |
NIV | Non-Invasive Ventilation |
PCF | Peak Cough Flow |
QVELA-Br | Short Specific Quality of Life Questionnaire for ALS Patients—Brazilian version |
rMT | Resting Motor Threshold |
SICI | Short-Interval Intracortical Inhibition |
SICF | Short-Interval Intracortical Facilitation |
SNIP | Sniff Nasal Inspiratory Pressure |
SNEP | Sniff Nasal Expiratory Pressure |
sEMG | Surface Electromyography |
SpO2 | Peripheral Oxygen Saturation |
SPIRIT | Standard Protocol Items: Recommendations for Interventional Trials |
tDCS | Transcranial Direct Current Stimulation |
TMS | Transcranial Magnetic Stimulation |
References
- Van Es, M.A.; Hardiman, O.; Chio, A.; Al-Chalabi, A.; Pasterkamp, R.J.; Veldink, J.H.; Van den Berg, L.H. Amyotrophic lateral sclerosis. Lancet 2017, 390, 2084–2098. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, W.; Wei, C.; Jiang, S.; Li, S.; Wang, X.; Xu, R. Pathological mechanisms of amyotrophic lateral Sclerosis. Neural Regen. Res. 2024, 19, 1036–1044. [Google Scholar] [CrossRef]
- Akpa, B.; Pusalavidyasagar, S.; Iber, C. Respiratory issues and current management in neuromuscular diseases: A narrative review. J. Thorac. Dis. 2024, 16, 6292–6307. [Google Scholar] [CrossRef]
- Schell, W.E.; Mar, V.S.; Silva, C.P. Correlation of falls in patients with amyotrophic lateral sclerosis with objective measures of balance, strength, and spasticity. NeuroRehabilitation 2019, 44, 85–93. [Google Scholar] [CrossRef]
- Arroyo-Rojas, M.E.; Torres-Fraga, M.G.; Rodríguez-Reyes, Y.G.; Guerrero-Zúñiga, S.; Carrillo-Alduenda, J.L. Respiratory complications of amyotrophic lateral sclerosis. Rev. Mex. Neuroci 2019, 20, 275–283. [Google Scholar] [CrossRef]
- Bertazzi, R.N.; Martins, F.R.; Saade, S.Z.Z.; Guedes, V.R. Amyotrophic lateral sclerosis. Rev. Patol. Tocantins 2017, 4, 54–65. [Google Scholar] [CrossRef]
- Sales de Campos, P.; Olsen, W.L.; Wymer, J.P.; Smith, B.K. Respiratory therapies for Amyotrophic Lateral Sclerosis: A state-of-the-art review. Chron Respir Dis. 2023, 20, 14799731231175915. [Google Scholar] [CrossRef] [PubMed]
- Boentert, M. Sleep and Sleep Disruption in Amyotrophic Lateral Sclerosis. Curr. Neurol. Neurosci. Rep. 2020, 20, 25. [Google Scholar] [CrossRef]
- Prell, T.; Ringer, T.M.; Wullenkord, K.; Garrison, P.; Gunkel, A.; Stubendorff, B.; Witte, O.W.; Grosskreutz, J. Assessment of pulmonary function in amyotrophic lateral sclerosis: When can polygraphy help evaluate the need for non-invasive ventilation? J. Neurol. Neurosurg. Psychiatry 2016, 87, 1022–1026. [Google Scholar] [CrossRef]
- Yu, L.; De Mazancourt, M.; Hess, A.; Ashadi, F.R.; Klein, I.; Mal, H.; Courbage, M.; Mangin, L. Functional connectivity and information flow of the respiratory neural network in chronic obstructive pulmonary disease. Human. Brain Mapp. 2016, 37, 2736–2754. [Google Scholar] [CrossRef]
- Nguyen, D.A.T.; Boswell-Ruys, C.L.; McBain, R.A.; Eckert, D.J.; Gandevia, S.C.; Butler, J.E.; Hudson, A.L. Inspiratory premotor potentials during quiet breathing in aging and chronic obstructive pulmonary disease. J. Physiol. 2018, 596, 6173–6189. [Google Scholar] [CrossRef] [PubMed]
- Herigstad, M.; Faull, O.K.; Hayen, A.; Evans, E.; Hardinge, F.M.; Wiech, K.; Pattinson, K.T.S. Treating breathlessness via the brain: Changes in brain activity over a course of pulmonary rehabilitation. Eur. Respir. J. 2017, 50, 1701029. [Google Scholar] [CrossRef] [PubMed]
- Faull, O.K.; Pattinson, K.T. The cortical connectivity of the periaqueductal gray and the conditioned response to the threat of breathlessness. Elife 2017, 6, e21749. [Google Scholar] [CrossRef]
- Moreira, T.S.; Takakura, A.C.; Falquetto, B.; Ramirez, J.M.; Oliveira, L.M.; Silva, P.E.; Araujo, E.V. Neuroanatomical and neurochemical organization of brainstem and forebrain circuits involved in breathing regulation. J. Neurophysiol. 2025, 133, 1116–1137. [Google Scholar] [CrossRef]
- Azabou, E.; Bao, G.; Heming, N.; Bounab, R.; Moine, P.; Chevallier, S.; Chevret, S.; Resche-Rigon, M.; Siami, S.; Sharshar, T.; et al. Randomized controlled study evaluating the efficiency of low-intensity transcranial direct current stimulation (tDCS) for dyspnea relief in mechanically ventilated COVID-19 patients in ICU: The tDCS-DYSP-COVID protocol. Front. Med. 2020, 7, 372. [Google Scholar] [CrossRef]
- Lefaucheur, J.P.; Chalah, M.A.; Mhalla, A.; Palm, U.; Ayache, S.S.; Mylius, V. The treatment of fatigue by non-invasive brain stimulation. Neurophysiol. Clin. 2017, 47, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Morya, E.; Monte-Silva, K.; Bikson, M.; Esmaeilpour, Z.; Biazoli, C.E.; Fonseca, A.; Okano, A.H. Beyond the target area: An integrative view of tDCS-induced motor cortex modulation in patients and athletes. J. Neuroeng. Rehabil. 2019, 16, 141. [Google Scholar]
- Bikson, M.; Grossman, P.; Thomas, C.; Zannou, A.L.; Jiang, J.; Adnan, T.; Mourdoukoutas, A.P.; Kronberg, G.; Truong, D.; Boggio, P.; et al. Safety of transcranial direct current stimulation: Evidence-based update 2016. Brain Stimul 2016, 9, 641–661. [Google Scholar] [CrossRef]
- Fregni, F.; Nitsche, M.A.; Loo, C.K.; Brunoni, A.R.; Marangolo, P.; Leite, J.; Carvalho, S.; Bolognini, N.; Caumo, W.; Paik, N.J.; et al. Regulatory considerations for the clinical and research use of transcranial direct current stimulation (tDCS): Review and recommendations from an expert panel. Clin. Res. Regul. Aff. 2015, 32, 22–35. [Google Scholar] [CrossRef]
- Villamar, M.F.; Wivatvongvana, P.; Patumanond, J.; Bikson, M.; Truong, D.Q.; Datta, A.; Fregni, F. Focal modulation of the primary motor cortex in fibromyalgia using 4×1-ring high-definition transcranial direct current stimulation (HD-tDCS): Immediate and delayed analgesic effects of cathodal and anodal stimulation. J. Pain. 2013, 14, 371–383. [Google Scholar] [CrossRef]
- Reckow, J.; Rahman-Filipiak, A.; Garcia, S.; Schlaefflin, S.; Calhoun, O.; DaSilva, A.F.; Hampstead, B.M. Tolerability and blinding of 4×1 high-definition transcranial direct current stimulation (HD-tDCS) at two and three milliamps. Brain Stimul. 2018, 11, 991–997. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.; Elwassif, M.; Battaglia, F.; Bikson, M. Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis. J. Neural Eng. 2008, 5, 163. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Saavedra, L.; Gebodh, N.; Bikson, M.; Diaz-Cruz, C.; Brandao, R.; Coutinho, L.; Truong, D.; Datta, A.; Shani-Hershkovich, R.; Weiss, M.; et al. Clinically Effective Treatment of Fibromyalgia Pain With High-Definition Transcranial Direct Current Stimulation: Phase II Open-Label Dose Optimization. J. Pain. 2016, 17, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.; Cortes, M.; Datta, A.; Minhas, P.; Wassermann, E.M.; Bikson, M. Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: A basis for high definition tDCS. Neuroimage 2013, 74, 266–275. [Google Scholar] [CrossRef]
- Rahman, A.; Reato, D.; Arlotti, M.; Gasca, F.; Datta, A.; Parra, L.C.; Bikson, M. Cellular effects of acute direct current stimulation: Somatic and synaptic terminal effects. J Physiol 2013, 591 Pt 10, 2563–2578. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Cohen, L.G.; Wassermann, E.M.; Priori, A.; Lang, N.; Antal, A.; Paulus, W.; Hummel, F.; Boggio, P.S.; Fregni, F.; et al. Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 2008, 1, 206–223. [Google Scholar] [CrossRef]
- Madhavan, S.; Sivaramakrishnan, A.; Bond, S.; Jiang, Q.L. Safety and feasibility of transcranial direct current stimulation in amyotrophic lateral sclerosis: A pilot study with a single subject experimental design. Physiother. Theory Pract. 2019, 35, 458–463. [Google Scholar] [CrossRef]
- Sivaramakrishnan, A.; Datta, A.; Bikson, M.; Madhavan, S. Remotely supervised transcranial direct current stimulation: A feasibility study for amyotrophic lateral sclerosis. NeuroRehabilitation 2019, 45, 369–378. [Google Scholar] [CrossRef]
- Benussi, A.; Alberici, A.; Cotelli, M.S.; Dell’eRa, V.; Cantoni, V.; Bonetta, E.; Manenti, R.; Filosto, M.; Morini, R.; Datta, A.; et al. Cortico-spinal tDCS in ALS: A randomized, double-blind, sham-controlled trial. Brain Stimul. 2019, 12, 1332–1334. [Google Scholar] [CrossRef] [PubMed]
- Benussi, A.; Cantoni, V.; Grassi, M.; Libri, I.; Cotelli, M.S.; Tarantino, B.; Datta, A.; Thomas, C.; Huber, N.; Kärkkäinen, S.; et al. Cortico-spinal tDCS in amyotrophic lateral sclerosis: A randomized, double-blind, sham-controlled trial followed by an open-label phase. Brain Stimul. 2023, 16, 1666–1676. [Google Scholar] [CrossRef]
- Di Lazzaro, V.; Ranieri, F.; Bączyk, M.; de Carvalho, M.; Dileone, M.; Dubbioso, R.; Ziemann, U. Novel approaches to motoneuron disease/ALS treatment using non-invasive brain and spinal stimulation: IFCN handbook chapter. Clin. Neurophysiol. 2024, 158, 114–136. [Google Scholar] [PubMed]
- Munneke, M.A.; Stegeman, D.F.; Hengeveld, Y.A.; Rongen, J.J.; Schelhaas, J.H.; Zwarts, M.J. Transcranial direct current stimulation does not modulate motor cortex excitability in patients with amyotrophic lateral sclerosis. Muscle Nerve 2011, 44, 109–114. [Google Scholar] [CrossRef]
- Schulz, K.F.; Altman, D.G.; Moher, D.; The CONSORT Group. CONSORT 2010 statement: Updated guidelines for reporting parallel group randomised trials. BMC Med. 2010, 8, 18. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.-W.; Tetzlaff, J.M.; Altman, D.G.; Laupacis, A.; Gøtzsche, P.C.; Krleža-Jerić, K.; Hróbjartsson, A.; Mann, H.; Dickersin, K.; Berlin, J.A.; et al. SPIRIT 2013 statement: Defining standard protocol items for clinical trials. Ann. Intern. Med. 2013, 158, 200–207. [Google Scholar] [CrossRef]
- Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W.; Shaw, P.J.; Simmons, Z.; van den Berg, L.H. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Primers 2017, 3, 17071. [Google Scholar]
- Brooks, B.R.; Miller, R.G.; Swash, M.; Munsat, T.L. World Federation of Neurology Research Group on Motor Neuron Diseases. El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 2000, 1, 293–299. [Google Scholar] [CrossRef]
- Pereira, C.A.; Sato, T.; Rodrigues, S.C. New reference values for forced spirometry in adult white Brazilian individuals. J. Bras. Pneumol. 2007, 33, 397–406. [Google Scholar] [CrossRef]
- Araújo, P.R.S.; Fonseca, J.D.M.D.; Marcelino, A.A.; Moreno, M.A.; Dornelas de Andrade, A.F.; Yañez, M.O.; Torres-Castro, R.; Resqueti, V.R.; Fregonezi, G.A.F. Reference values for respiratory muscle strength and maximal voluntary ventilation in the Brazilian adult population: A multicentric study. PLoS ONE 2024, 19, e0313209. [Google Scholar] [CrossRef] [PubMed]
- Araújo, P.R.S.; Resqueti, V.R.; Junior, J.N.; de Andrade Carvalho, L.; Cavalcanti, A.G.L.; Silva, V.C.; Silva, E.; Moreno, M.A.; de Fátima Dornelas de Andrade, A.; de Freitas Fregonezi, G.A. Reference values for sniff nasal inspiratory pressure in healthy subjects in Brazil: A multicenter study. J. Bras. Pneumol. 2012, 38, 700–707. [Google Scholar] [CrossRef]
- Ichikawa, T. Expiratory muscle activity and nasal expiratory pressure during reverse sniff. Kitasato Med. J. 2015, 45, 53–61. [Google Scholar]
- Souza, R.B. Maximum static respiratory pressures. J. Pneumol. 2002, 28 (Suppl. 3), S155–S165. [Google Scholar]
- Laveneziana, P.; Albuquerque, A.; Aliverti, A.; Babb, T.; Barreiro, E.; Dres, M.; Dubé, B.P.; Fauroux, B.; Gea, J.; Guenette, J.A.; et al. ERS statement on respiratory muscle testing at rest and during exercise. Eur. Respir. J. 2019, 53, 1801214. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Merletti, R.; Stegeman, D.; Blok, J.; Rau, G.; Disselhorst-Klug, C.; Hägg, G. SENIAM European Recommendations for Surface Electromyography: Results of the SENIAM Project. Roessingh Research and Development b.v.; ISBN 90-75452-15-2. Available online: http://www.seniam.org/pdf/contents8.PDF (accessed on 22 February 2025).
- Nawab, S.H.; Chang, S.S.; De Luca, C.J. High-yield decomposition of surface EMG signals. Clin. Neurophysiol. 2010, 121, 1602–1611. [Google Scholar] [CrossRef]
- Shefner, J.M.; Watson, M.L.; Simionescu, L.; Caress, J.B.; Burns, T.M.; Maragakis, N.J.; Benatar, M.; David, W.S.; Sharma, K.R.; Rutkove, S.B. Incremental multipoint estimation of motor unit number as an outcome measure in ALS. Neurology 2011, 77, 235–241. [Google Scholar] [CrossRef] [PubMed]
- De Luca, C.J.; Chang, S.S.; Roy, S.H.; Kline, J.C.; Nawab, S.H. Decomposition of surface EMG signals from cyclic dynamic contractions. J. Neurophysiol. 2015, 113, 1941–1951. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M.; Quaresima, V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 2012, 63, 921–935. [Google Scholar] [CrossRef] [PubMed]
- Lloyd-Fox, S.; Blasi, A.; Elwell, C.E. Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy. Neurosci. Biobehav. Rev. 2010, 34, 269–284. [Google Scholar] [CrossRef]
- Mesquita, R.C.; Yodh, A.G. Diffuse optics: Fundamentals and tissue applications. In Nano Optics and Atomics: Transport of Light and Matter Waves; Kaiser, R., Wiersma, D.S., Fallani, L., Eds.; IOS Books: Amsterdam, The Netherlands, 2011; Volume 173, pp. 51–74. [Google Scholar]
- de Medeiros Cirne, G.N.; Bezerra, L.A.P.; de Oliveria Cacho, R.; Ferreira, T.B.; da Costa Cavalcati, F.A. Functional profile of patients with amyotrophic lateral sclerosis over 14 months of physiotherapy treatment. Cad. Ter. Ocup. UFSCar 2016, 24, 557–562. [Google Scholar]
- Maskill, D.; Murphy, K.; Mier, A.; Owen, M.; Guz, A. Motor cortical representation of the diaphragm in man. J. Physiol. 1991, 443, 105–121. [Google Scholar] [CrossRef]
- Wendt, K.; Sorkhabi, M.M.; Stagg, C.J.; Fleming, M.K.; Denison, T.; O’Shea, J. The effect of pulse shape in theta-burst stimulation: Monophasic vs biphasic TMS. Brain Stimul. 2023, 16, 1178–1185. [Google Scholar] [CrossRef]
- Luo, Y.M.; Moxham, J.; Polkey, M.I. Diaphragm electromyogram measured with unilateral magnetic stimulation. Eur. Respir. J. 1999, 13, 385–390. [Google Scholar] [CrossRef]
- Sharshar, T.; Ross, E.; Hopkinson, N.S.; Dayer, M.; Nickol, A.; Lofaso, F.; Moxham, J.; Similowski, T.; Polkey, M.I. Effect of voluntary facilitation on the diaphragmatic response to transcranial magnetic stimulation. J. Appl. Physiol. 2003, 95, 26–34. [Google Scholar] [CrossRef]
- Elnemr, R.; Sweed, R.A.; Shafiek, H. Diaphragmatic motor cortex hyperexcitability in patients with chronic obstructive pulmonary disease. PLoS ONE 2019, 14, e0217886. [Google Scholar] [CrossRef] [PubMed]
- Azabou, E.; Roche, N.; Sharshar, T.; Bussel, B.; Lofaso, F.; Petitjean, M. Transcranial direct-current stimulation reduced the excitability of diaphragmatic corticospinal pathways whatever the polarity used. Respir. Physiol. Neurobiol. 2013, 189, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Andrade, S.M.; Silvestre, M.C.d.A.; de França, E.É.T.; Queiroz, M.H.B.S.; Santana, K.d.J.; Madruga, M.L.L.H.; Mendes, C.K.T.T.; de Oliveira, E.A.; Bezerra, J.F.; Barreto, R.G.; et al. Efficacy and safety of HD-tDCS and respiratory rehabilitation for critically ill patients with COVID-19: The HD-RECOVERY randomized clinical trial. Brain Stimul. 2022, 15, 780–788. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lefaucheur, J.P.; Lofaso, F. Diaphragmatic silent period to transcranial magnetic cortical stimulation for assessing cortical motor control of the diaphragm. Exp. Brain Res. 2002, 146, 404–409. [Google Scholar] [CrossRef]
- Sharshar, T.; Ross, E.T.; Hopkinson, N.S.; Porcher, R.; Nickol, A.H.; Jonville, S.; Dayer, M.J.; Hart, N.; Moxham, J.; Lofaso, F.; et al. Depression of diaphragm motor cortex excitability during mechanical ventilation. J. Appl. Physiol. 2004, 97, 3–10. [Google Scholar] [CrossRef]
- Welch, J.F.; Argento, P.J.; Mitchell, G.S.; Fox, E.J. Reliability of diaphragmatic motor-evoked potentials induced by transcranial magnetic stimulation. J. Appl. Physiol. 2020, 129, 1393–1404. [Google Scholar] [CrossRef]
- Guedes, K.; Pereira, C.; Pavan, K.; Valério, B.C.O. Cross-cultural adaptation and validation of ALS Functional Rating Scale-Revised in Portuguese language. Arq. Neuropsiquiatr. 2010, 68, 44–47. [Google Scholar] [CrossRef]
- Neudert, C.; Wasner, M.; Borasio, G. Individual quality of life is not correlated with health-related quality of life or physical function in patients with amyotrophic lateral sclerosis. J. Palliat. Med. 2004, 7, 551–557. [Google Scholar] [CrossRef]
- Mannino, M.; Cellura, E.; Grimaldi, G.; Volanti, P.; Piccoli, F.; La Bella, V. Telephone follow-up for patients with amyotrophic lateral sclerosis. Eur. J. Neurol. 2007, 14, 79–84. [Google Scholar] [CrossRef]
- Cedarbaum, J.; Stambler, N.; Malta, E.; Fuller, C.; Hilt, D.; Thurmond, B. The ALSFRS-R: A revised ALS functional rating scale that incorporates assessments of respiratory function. J. Neurol. Sci. 1999, 169, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Holanda, L.J.; Lindquist, A.R.; Fernandes, A.P.M.; Oliveira, D.C.S.; Nagem, D.A.P.; Valentim, R.A.M. Statistical properties of upper limb accelerometer signals of patients with amyotrophic lateral sclerosis. In 2022 International Conference on Robotics, Automation and Mechatronics (ROMA); IEEE: New York City, NY, USA, 2022; pp. 300–305. [Google Scholar] [CrossRef]
- Krupp, L.B.; Pollina, D.A. Mechanisms and management of fatigue in progressive neurological disorders. Curr. Opin. Neurol. 1996, 9, 456–460. [Google Scholar] [CrossRef]
- Clawson, L.L.; Cudkowicz, M.; Krivickas, L.; Brooks, B.R.; Sanjak, M.; Allred, P.; Atassi, N.; Swartz, A.; Steinhorn, G.; Uchil, A.; et al. A randomized controlled trial of resistance and endurance exercise in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2018, 19, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Gomes, R.C.F. Evaluation of fatigue, mood state, and quality of life in amyotrophic lateral sclerosis. Master’s thesis, University of São Paulo, São Paulo, Brazil, 2011. [Google Scholar]
- Lo Coco, D.; La Bella, V. Fatigue, sleep, and nocturnal complaints in patients with amyotrophic lateral sclerosis. Eur. J. Neurol. 2012, 19, 760–764. [Google Scholar] [CrossRef] [PubMed]
- Merico, A.; Bertolasi, L.; Troni, W. A prospective study on the role of functional electrical stimulation in maintaining the upper limb performance of ALS patients: Clinical and neurophysiological correlations. Amyotroph. Lateral Scler. Front. Degener. 2018, 19, 110–118. [Google Scholar]
- Silva Martins, R.S.; Masson, C.J.; de Lima, L.H.A. Validation of the Brazilian Portuguese version of the Fatigue Severity Scale in patients with Amyotrophic Lateral Sclerosis. Arq. Neuropsiquiatr. 2014, 72, 229–232. [Google Scholar]
- Zucchi, E.; Montuschi, A. Fatigue in amyotrophic lateral sclerosis: An emerging hallmark. Neurodegener. Dis. 2019, 19, 83–91. [Google Scholar]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Zamparette, H.P.; Wamosy, R.M.G.; Schivinsk, C.I.S. Dyspnea: Integrative review on the concept of shortness of breath. ASSOBRAFIR Ciênc 2022, 13, e44458. [Google Scholar] [CrossRef]
- Ferreira-Valente, M.A.; Pais-Ribeiro, J.L.; Jensen, M.P. Validity of four pain intensity rating scales. Pain® 2011, 152, 2399–2404. [Google Scholar] [CrossRef]
- Gallasch, C.H.; Alexandre, N.M.C. The measurement of musculoskeletal pain intensity: A comparison of four methods. Rev. Gaúcha Enferm. 2007, 28, 260–267. [Google Scholar]
- Margolis, R.B.; Tait, R.C.; Krause, S.J. A rating system for use with patient pain drawings. Pain® 1986, 24, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Gorestein, C.; Pinto, D.B.S.; Andrade, L. Validation of the Portuguese version of the Mini Sleep Questionnaire. Psychiatry Res. 2000, 101, 271–278. [Google Scholar]
- Zomer, J.; Goncalves, L.; Conti, C. Sleep and circadian rhythms in aging. Psychiatry Res. 1985, 14, 179–187. [Google Scholar]
- Falavigna, A.; Teles, A.R.; Vedana, V.M.; Kleber, F.D.; Mosena, G.; Velho, M.C.; Mazzocchin, T.; da Silva, R.C.; Lucena, L.F.; Santin, J.T.; et al. Awareness of stroke risk factors and warning signs in southern Brazil. Arq. Neuropsiquiatr. 2009, 67, 1076–1081. [Google Scholar] [CrossRef]
- Branco, L.M.; Zanao, T.; De Rezende, T.J.; Casseb, R.F.; Balthazar, M.F.; Woolley, S.C.; França, M.C., Jr. Transcultural validation of the ALS-CBS Cognitive Section for the Brazilian population. Amyotroph. Lateral Scler. Front. Degener. 2017, 18, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Gayoso, M.V.; Domingues, F.S.; Junior, M.C.F.; Felgoise, S.H.; Oliveira, A.S.B.; de Barros, G.A.M. Cross-cultural adaptation and validation for the Brazilian population of the instrument Amyotrophic Lateral Sclerosis-Specific Quality of Life–Short Form (ALSSQOL-SF). Qual. Life Res. 2020, 29, 805–813. [Google Scholar] [CrossRef]
- Brunoni, A.R.; Amadera, J.; Berbel, B.; Volz, M.S.; Rizzerio, B.G.; Fregni, F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int. J. Neuropsychopharmacol. 2011, 14, 1133–1145. [Google Scholar] [CrossRef]
- Baptista, A.F.; Fernandes, A.M.B.; Sá, K.N.; Okano, A.H.; Brunoni, A.R.; Lara-Solares, A.; Iskandar, A.J.; Guerrero, C.; Amescua-García, C.; Kraychete, D.C.; et al. Latin American and Caribbean consensus on noninvasive central nervous system neuromodulation for chronic pain management (LAC 2 -NIN-CP). Pain. Rep. 2019, 4, e701. [Google Scholar]
- Liebetanz, D.; Koch, R.; Mayenfels, S.; König, F.; Paulus, W.; Nitsche, M.A. Safety limits of cathodal transcranial direct current stimulation in rats. Clin. Neurophysiol. 2009, 120, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
Outcome | Measures | Instrument |
---|---|---|
Cortical excitability | Latency and amplitude MEP—Motor Evoked Potential LMr—Rest Motor Threshold LMa—Active Motor Threshold CSP—Cortical Silent Period CMCT—Central Motor Conduction Time CIF—Intracortical Facilitation LICI—Long Interval Intracortical Inhibition SICI—Short Interval Intracortical Inhibition | TMS |
Cerebral perfusion | HbDiff—Hemoglobin concentration difference at wavelength tHb—Total hemoglobin concentration at wavelength HHb—Deoxygenated hemoglobin concentration at wavelength O2Hb—Oxygenated hemoglobin concentration at wavelength TSI %—Tissue Saturation Index | f-NIRS |
Respiratory muscular electrical activity | RMS (Root Mean Square)—Signal amplitude in microvolts Standardization of the signal in % RMS FM—Median Frequency Motor unit activation (recruitment) Neuronal firing Fatigue development | sEMG |
Nasal pressures | SNIP—Maximum Inspiratory Nasal Pressure SNEP—Maximum Expiratory Nasal Pressure | PowerLab C |
Cough peak flow | Maximum expiratory flow measured during a cough maneuver | PowerLab C |
Functionality | Bulbar function—speech, salivation, swallowing; fine motor function—handwriting, food cutting, utensil handling; gross motor function—bed mobility, walking, stair climbing; respiratory function—breathing, orthopnea, respiratory failure | ALSFRS-R |
Motor control and performance | Protocol for evaluating muscle activity through %RMS during rest, gestures, and object handling | sEMG |
Fatigue | Nine statements, each item scored from 1 to 7, where 7 indicates maximum agreement with the statement | Fatigue Severity Scale |
Fatigue/dyspnea | Scale from 0–10 | Borg scale |
Pain | Presence, intensity, and location of pain, with scores from 0 (no pain) to 10 (maximum pain) and body diagrams | Numerical Rating Scale (NRS) and Pain Body Drawings |
Sleep | Frequency of sleep complaints via ten questions with scores ranging from 10 to 70, where 10–24 indicates good sleep, 25–27 mildly altered sleep, 28–30 moderately altered sleep, and over 30 indicates highly altered sleep | MSQ |
Quality of life | 20 items related to physical, emotional, social, spiritual, and financial aspects | QVELA-20/Br |
Cognitive assessment | Attention, concentration, tracking and recall, fluency | ALS-CBS-Br |
Adverse effects | Presence and severity | Subjective |
Lung function | FVC—Forced Vital Capacity FEV1—Forced Expiratory Volume in the first second FEV1/FVC—FEV1/FVC ratio FEF25–75%—Forced Expiratory Flow at 25–75% range | PowerLab C |
Vital signs | HR—heart rate RR—respiratory rate SaO2—arterial oxygen saturation BP—blood pressure | Digital oximeter and sphygmomanometer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira Laurentino, E.K.; Maldaner da Silva, V.Z.; Costa Meneses, W.R.; da Costa, L.M.; Otto-Yañez, M.; Vera-Uribe, R.; Torres-Castro, R.; Carneiro de Sousa, B.R.; de Abreu Freitas, R.P.; Menezes Mateus, S.R.; et al. High-Definition Transcranial Direct Current Stimulation (HD-tDCS) Therapy in Amyotrophic Lateral Sclerosis: Study Protocol for a Multicenter Randomized Controlled Clinical Trial. J. Clin. Med. 2025, 14, 6701. https://doi.org/10.3390/jcm14196701
Ferreira Laurentino EK, Maldaner da Silva VZ, Costa Meneses WR, da Costa LM, Otto-Yañez M, Vera-Uribe R, Torres-Castro R, Carneiro de Sousa BR, de Abreu Freitas RP, Menezes Mateus SR, et al. High-Definition Transcranial Direct Current Stimulation (HD-tDCS) Therapy in Amyotrophic Lateral Sclerosis: Study Protocol for a Multicenter Randomized Controlled Clinical Trial. Journal of Clinical Medicine. 2025; 14(19):6701. https://doi.org/10.3390/jcm14196701
Chicago/Turabian StyleFerreira Laurentino, Edna Karla, Vinicius Zacarias Maldaner da Silva, Wesley Ribeiro Costa Meneses, Lariza Maria da Costa, Matias Otto-Yañez, Roberto Vera-Uribe, Rodrigo Torres-Castro, Bruna Ribeiro Carneiro de Sousa, Rodrigo Pegado de Abreu Freitas, Sergio Ricardo Menezes Mateus, and et al. 2025. "High-Definition Transcranial Direct Current Stimulation (HD-tDCS) Therapy in Amyotrophic Lateral Sclerosis: Study Protocol for a Multicenter Randomized Controlled Clinical Trial" Journal of Clinical Medicine 14, no. 19: 6701. https://doi.org/10.3390/jcm14196701
APA StyleFerreira Laurentino, E. K., Maldaner da Silva, V. Z., Costa Meneses, W. R., da Costa, L. M., Otto-Yañez, M., Vera-Uribe, R., Torres-Castro, R., Carneiro de Sousa, B. R., de Abreu Freitas, R. P., Menezes Mateus, S. R., Vasconcellos, I. F. d., Fernandes Franco, H. C., Pinto Nagem, D. A., Medeiros Valentim, R. A. d., Dourado Júnior, M. E., Rodrigues Lindquist, A. R., Santos Andrade, S. M. M. d., Medeiros Fonseca, J. D., Resqueti, V. R., & Freitas Fregonezi, G. d. (2025). High-Definition Transcranial Direct Current Stimulation (HD-tDCS) Therapy in Amyotrophic Lateral Sclerosis: Study Protocol for a Multicenter Randomized Controlled Clinical Trial. Journal of Clinical Medicine, 14(19), 6701. https://doi.org/10.3390/jcm14196701