Dyslipidemia Treatment in Patients with Acute Coronary Syndrome: Is It Time to Move to Combination Therapy?
Abstract
1. Introduction
2. Impact of Specific Dietary Patterns and Interventions on Dyslipidemia Management in Acute Coronary Syndrome Patients
3. Which Statins Do We Use and in What Doses After an ACS?
- Atorvastatin: 40–80 mg daily;
- Rosuvastatin: 20–40 mg daily.
4. Adding Ezetimibe to Statin Therapy in Acute Coronary Syndrome
5. PCSK9 Inhibitor Administration in ACS
6. Bempedoic Acid: Mechanism and Rationale for Use in Acute Coronary Syndrome
7. Role of Inclisiran in Patients with Acute Coronary Syndrome
8. Role of Icosapent Ethyl in Acute Coronary Syndrome
9. Role of ANGPTL3 and ApoC-III Inhibitors in Acute Coronary Syndrome (ACS)
10. Evaluating Residual Dyslipidemia Risk After Acute Coronary Syndrome (ACS)
10.1. Discordance Between LDL-C and Other Atherogenic Markers
10.2. ApoB and Non-HDL-C as Superior Predictors
10.3. Risk Evaluation by Plaque Composition Beyond Lipid Values: Lipid Core Burden Index
11. Evidence to Start Immediately After ACS with Dual- or Triple-Lowering Lipid Therapy
11.1. Reasons to Move to Early Combination Therapy Instead of Stepwise Therapy in Dyslipidemia Treatment for ACS Patients
11.2. Current RCTs on Lipid-Lowering Therapy in Post-ACS Patients
11.3. Insights from Large Real-World Databases
11.4. The Future of Lipid-Lowering Therapy: Current Gaps and Further Studies
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACC | American College of Cardiology |
ACS | Acute Coronary Syndrome |
AHA | American Heart Association |
ASCVD | Atherosclerotic Cardiovascular Disease |
BMI | Body Mass Index |
BP | Blood Pressure |
CAD | Coronary Artery Disease |
CI | Confidence Interval |
CRP | C-Reactive Protein |
CV | Cardiovascular |
CVD | Cardiovascular Disease |
DASH | Dietary Approaches to Stop Hypertension |
DM | Diabetes Mellitus |
ESC | European Society of Cardiology |
EVOPACS | Evolocumab for Early Reduction in LDL cholesterol levels in Patients With Acute Coronary Syndromes |
FPP | Farnesyl Pyrophosphate |
HDL | High-Density Lipoprotein |
HDL-C | High-Density Lipoprotein Cholesterol |
HMG-CoA | Hydroxymethylglutaryl-Coenzyme A |
HR | Hazard Ratio |
IPE | Icosapent Ethyl |
LCBI | Lipid Core Burden Index |
LDL | Low-Density Lipoprotein |
LDL-C | Low-Density Lipoprotein Cholesterol |
LLT | Lipid-Lowering Therapy |
MACE | Major Adverse Cardiovascular Events |
MI | Myocardial Infarction |
NIRS | Near-Infrared Spectroscopy |
NSTEMI | Non-ST-Elevation Myocardial Infarction |
OCT | Optical Coherence Tomography |
OR | Odds Ratio |
PACT | Pravastatin in Acute Coronary Treatment |
PCI | Percutaneous Coronary Intervention |
PCSK9 | Proprotein Convertase Subtilisin/Kexin Type 9 |
RCT | Randomized Controlled Trial |
RR | Relative Risk |
STEMI | ST-Elevation Myocardial Infarction |
SWEDEHEART | Swedish Web-system for Enhancement and Development of Evidence-based care in Heart disease Evaluated According to Recommended Therapies |
TG | Triglycerides |
UA | Unstable Angina |
VLDL | Very-Low-Density Lipoprotein |
hs-CRP | High-Sensitivity C-Reactive Protein |
siRNA | Small Interfering Ribonucleic Acid |
References
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, J.M.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Byrne, R.A.; Rossello, X.; Coughlan, J.J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.-A.; Dweck, M.R.; Galbraith, M.; et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [CrossRef]
- Claessen, B.E.; Guedeney, P.; Gibson, C.M.; Angiolillo, D.J.; Cao, D.; Lepor, N.; Mehran, R. Lipid management in patients presenting with acute coronary syndromes: A review. J. Am. Heart Assoc. 2020, 9, e018897. [Google Scholar] [CrossRef] [PubMed]
- Pitt, B.; Loscalzo, J.; Ycas, J.; Raichlen, J.S. Lipid levels after acute coronary syndromes. J. Am. Coll. Cardiol. 2008, 51, 1440–1445. [Google Scholar] [CrossRef]
- Gauthier, V.; Lafrance, M.; Barthoulot, M.; Rousselet, L.; Montaye, M.; Ferrières, J.; Kai, S.H.Y.; Biasch, K.; Moitry, M.; Amouyel, P.; et al. Long-term follow-up of survivors of a first acute coronary syndrome: Results from the French MONICA registries from 2009 to 2017. Int. J. Cardiol. 2023, 378, 138–143. [Google Scholar] [CrossRef]
- Steen, D.L.; Khan, I.; Andrade, K.; Koumas, A.; Giugliano, R.P. Event Rates and Risk Factors for Recurrent Cardiovascular Events and Mortality in a Contemporary Post Acute Coronary Syndrome Population Representing 239 234 Patients During 2005 to 2018 in the United States. J. Am. Heart Assoc. 2022, 11, e022198. [Google Scholar] [CrossRef]
- Namiuchi, S.; Sunamura, S.; Tanita, A.; Ushigome, R.; Noda, K.; Takii, T. Higher Recurrence Rate of Acute Coronary Syndrome in Patients with Multiple-Time Myocardial Infarction. Int. Heart J. 2021, 62, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Ulvenstam, A.; Graipe, A.; Irewall, A.L.; Söderström, L.; Mooe, T. Incidence and predictors of cardiovascular outcomes after acute coronary syndrome in a population-based cohort study. Sci. Rep. 2023, 13, 3447. [Google Scholar] [CrossRef]
- Chinwong, S.; Patumanond, J.; Chinwong, D.; Hall, J.J.; Phrommintikul, A. Reduction in total recurrent cardiovascular events in acute coronary syndrome patients with low-density lipoprotein cholesterol goal <70 mg/dL: A real-life cohort in a developing country. Ther. Clin. Risk Manag. 2016, 12, 353–360. [Google Scholar]
- Cholesterol Treatment Trialists’ (CTT) Collaboration; Baigent, C.; Blackwell, L.; Emberson, J.; Holland, L.E.; Reith, C.; Bhala, N.; Peto, R.; Barnes, E.H.; Keech, A.; et al. Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010, 376, 1670–1681. [Google Scholar]
- Panbehkar-Jouybari, M.; Mollahosseini, M.; Salehi-Abargouei, A.; Fallahzadeh, H.; Mirzaei, M.; Hosseinzadeh, M. The Mediterranean diet and dietary approach to stop hypertension (DASH)-style diet are differently associated with lipid profile in a large sample of Iranian adults: A cross-sectional study of Shahedieh cohort. BMC Endocr. Disord. 2021, 21, 192. [Google Scholar] [CrossRef]
- Scaglione, S.; Di Chiara, T.; Daidone, M.; Tuttolomondo, A. Effects of the Mediterranean diet on the components of metabolic syndrome concerning the cardiometabolic risk. Nutrients 2025, 17, 358. [Google Scholar] [CrossRef] [PubMed]
- Rees, K.; Takeda, A.; Martin, N.; Ellis, L.; Wijesekara, D.; Vepa, A.; Das, A.; Hartley, H.; Stranges, S. Mediterranean-style diet for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2019, 2019, CD009825. [Google Scholar] [CrossRef] [PubMed]
- Maron, D.J.; Fazio, S.; Linton, M.F. Current perspectives on statins. Circulation 2000, 101, 207–213. [Google Scholar] [CrossRef]
- Zeng, W.; Deng, H.; Luo, Y.; Zhong, S.; Huang, M.; Tomlinson, B. Advances in statin adverse reactions and the potential mechanisms: A systematic review. J. Adv. Res. 2024. [Google Scholar] [CrossRef]
- Liao, J.; Qiu, M.; Su, X.; Qi, Z.; Xu, Y.; Liu, H.; Xu, K.; Wang, X.; Li, J.; Li, Y.; et al. The residual risk of inflammation and remnant cholesterol in acute coronary syndrome patients on statin treatment undergoing percutaneous coronary intervention. Lipids Health Dis. 2024, 23, 172. [Google Scholar] [CrossRef]
- Liao, J.K.; Laufs, U. Pleiotropic effects of statins. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 89–118. [Google Scholar] [CrossRef]
- Oesterle, A.; Laufs, U.; Liao, J.K. Pleiotropic effects of statins on the cardiovascular system. Circ. Res. 2017, 120, 229–243. [Google Scholar] [CrossRef]
- Laufs, U.; Liao, J.K. Isoprenoid metabolism and the pleiotropic effects of statins. Curr. Atheroscler. Rep. 2003, 5, 372–378. [Google Scholar] [CrossRef]
- Schwartz, G.G. Effects of Atorvastatin on Early Recurrent Ischemic Events in Acute Coronary Syndromes: The MIRACL Study: A Randomized Controlled Trial. JAMA 2001, 285, 1711. [Google Scholar] [CrossRef]
- Kinlay, S.; Schwartz, G.G.; Olsson, A.G.; Rifai, N.; Leslie, S.J.; Sasiela, W.J.; Szarek, M.; Libby, P.; Ganz, P. High-Dose Atorvastatin Enhances the Decline in Inflammatory Markers in Patients With Acute Coronary Syndromes in the MIRACL Study. Circulation 2003, 108, 1560–1566. [Google Scholar] [CrossRef] [PubMed]
- Olsson, A.G.; Schwartz, G.G.; Szarek, M.; Sasiela, W.J.; Ezekowitz, M.D.; Ganz, P.; Oliver, M.F.; Waters, D.; Zeiher, A. High-density lipoprotein, but not low-density lipoprotein cholesterol levels influence short-term prognosis after acute coronary syndrome: Results from the MIRACL trial. Eur. Heart J. 2005, 26, 890–896. [Google Scholar] [CrossRef]
- Murphy, S.A.; Cannon, C.P.; Wiviott, S.D.; McCabe, C.H.; Braunwald, E. Reduction in recurrent cardiovascular events with intensive lipid-lowering statin therapy compared with moderate lipid-lowering statin therapy after acute coronary syndromes from the PROVE IT-TIMI 22 (Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis In Myocardial Infarction 22) trial. J. Am. Coll. Cardiol. 2009, 54, 2358–2362. [Google Scholar]
- Ray, K.K.; Cannon, C.P.; McCabe Carolyn, H.; Cairns, R.; Tonkin, A.M.; Sacks, F.M.; Jackson, G.; Braunwald, E. Early and late benefits of high-dose atorvastatin in patients with acute coronary syndromes: Results from the PROVE IT-TIMI 22 trial. J. Am. Coll. Cardiol. 2005, 46, 1405–1410. [Google Scholar] [CrossRef]
- Shah, C.P.; Shah, B.P.; Dani, S.I.; Channa, B.B.; Lakshmanan, S.S.; Krishnamani, N.C.; Mehta, A. Efficacy and safety of the intensive dose of rosuvastatin 40 mg/day in patients with acute coronary syndrome and at high risk of cardiovascular disease-ROSUVEES-2. Indian Heart J. 2016, 68, 766–771. [Google Scholar] [CrossRef]
- Rahhal, A.; Khir, F.; Orabi, B.; Chbib, S.; Al-Khalaila, O.; Abdelghani, M.S.; Osman, O.; Ashour, A.A.; Al-Awad, M.; Mahfouz, A.; et al. A Comparative Study of High-intensity Rosuvastatin Versus Atorvastatin Therapy Post-acute Coronary Syndrome Using Real-world Data. Curr. Probl. Cardiol. 2022, 47, 100956. [Google Scholar] [CrossRef]
- Lee, Y.J.; Hong, S.J.; Kang, W.C.; Hong, B.K.; Lee, J.Y.; Lee, J.B.; Cho, H.-J.; Yoon, J.; Lee, S.-J.; Ahn, C.-M.; et al. Rosuvastatin versus atorvastatin treatment in adults with coronary artery disease: Secondary analysis of the randomised LODESTAR trial. BMJ 2023, 383, e075837. [Google Scholar] [CrossRef]
- Stenestrand, U. Early Statin Treatment Following Acute Myocardial Infarction and 1-Year Survival. JAMA 2001, 285, 430. [Google Scholar] [CrossRef]
- McNamara, R.L.; Chung, S.C.; Jernberg, T.; Holmes, D.; Roe, M.; Timmis, A.; James, S.; Deanfield, J.; Fonarow, G.; Peterson, E.; et al. International comparisons of the management of patients with non-ST segment elevation acute myocardial infarction in the United Kingdom, Sweden, and the United States: The MINAP/NICOR, SWEDEHEART/RIKS-HIA, and ACTION Registry-GWTG/NCDR registries. Int. J. Cardiol. 2014, 175, 240–247. [Google Scholar] [CrossRef]
- Ostadal, P.; Alan, D.; Vejvoda, J. Statins in the first-line therapy of acute coronary syndrome similar to aspirin? Exp. Clin. Cardiol. 2005, 10, 9–16. [Google Scholar]
- de Lemos, J.A.; Blazing, M.A.; Wiviott, S.D.; Lewis, E.F.; Fox, K.A.A.; White, H.D.; Rouleau, J.-L.; Pedersen, T.R.; Gardner, L.H.; Mukherjee, R.; et al. Early Intensive vs. a Delayed Conservative Simvastatin Strategy in Patients With Acute Coronary Syndromes. JAMA 2004, 292, 1307. [Google Scholar] [CrossRef] [PubMed]
- Thompson, P.L.; Meredith, I.; Amerena, J.; Campbell, T.J.; Sloman, J.G.; Harris, P.J. Effect of pravastatin compared with placebo initiated within 24 h of onset of acute myocardial infarction or unstable angina: The Pravastatin in Acute Coronary Treatment (PACT) trial. Am. Heart J. 2004, 148, 91. [Google Scholar] [CrossRef] [PubMed]
- Liem, A.; van Boven, A.J.; Withagen, A.P.; Robles de Medina, R.M.; Veeger, N.J.G.M.; Tijssen, J.G.P. Fluvastatin in Acute Myocardial Infarction: Effects on Early and Late Ischemia and Events: The FLORIDA Trial. Circulation 2000, 102, 2672. [Google Scholar] [CrossRef]
- Hulten, E.; Jackson, J.L.; Douglas, K.; George, S.; Villines, T.C. The Effect of Early, Intensive Statin Therapy on Acute Coronary Syndrome. Arch. Intern. Med. 2006, 166, 1814. [Google Scholar] [CrossRef]
- Phan, B.A.P.; Dayspring, T.D.; Toth, P.P. Ezetimibe therapy: Mechanism of action and clinical update. Vasc Health Risk Manag. 2012, 8, 415–427. [Google Scholar]
- Cannon, C.P.; Blazing, M.A.; Giugliano, R.P.; McCagg, A.; White, J.A.; Theroux, P.; Darius, H.; Lewis, B.S.; Ophuis, T.O.; Jukema, J.W.; et al. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N. Engl. J. Med. 2015, 372, 2387–2397. [Google Scholar] [CrossRef]
- Correia, L.C.L. Ezetimibe: Clinical and scientific meaning of the IMPROVE-IT study. Arq. Bras. Cardiol. 2016, 106, 247–249. [Google Scholar] [CrossRef]
- Lewek, J.; Niedziela, J.; Desperak, P.; Dyrbuś, K.; Osadnik, T.; Jankowski, P.; Witkowski, A.; Bielecka-Dąbrowa, A.; Dudek, D.; Gierlotka, M.; et al. Intensive Statin Therapy Versus Upfront Combination Therapy of Statin and Ezetimibe in Patients With Acute Coronary Syndrome: A Propensity Score Matching Analysis Based on the PL-ACS Data. J. Am. Heart Assoc. 2023, 12, e030414. [Google Scholar] [CrossRef]
- Mahajan, K.; Nagendra, L.; Dhall, A.; Dutta, D. Impact of early initiation of ezetimibe in patients with acute coronary syndrome: A systematic review and meta-analysis. Eur. J. Intern. Med. 2024, 124, 99–107. [Google Scholar] [CrossRef]
- Mehta, S.R.; Bossard, M. Acute Coronary Syndromes and Multivessel Disease: Completing the Evidence. In JACC: Cardiovascular Interventions; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Volume 13, pp. 1568–1570. [Google Scholar]
- Biccirè, F.G.; Häner, J.; Losdat, S.; Ueki, Y.; Shibutani, H.; Otsuka, T.; Kakizaki, R.; Hofbauer, T.M.; Van Geuns, R.; Stortecky, S.; et al. Concomitant Coronary Atheroma Regression and Stabilization in Response to Lipid-Lowering Therapy. J. Am. Coll. Cardiol. 2023, 82, 1737–1747. [Google Scholar] [CrossRef]
- Navarese, E.P.; Kołodziejczak, M.; Kereiakes, D.J.; Tantry, U.S.; O’Connor, C.; Gurbel, P.A. Proprotein Convertase Subtilisin/Kexin Type 9 Monoclonal Antibodies for Acute Coronary Syndrome. Ann. Intern. Med. 2016, 164, 600–607. [Google Scholar] [CrossRef]
- Punch, E.; Klein, J.; Diaba-Nuhoho, P.; Morawietz, H.; Garelnabi, M. Effects of PCSK9 Targeting: Alleviating Oxidation, Inflammation, and Atherosclerosis. J. Am. Heart Assoc. 2022, 11, e023328. [Google Scholar] [CrossRef]
- Momtazi-Borojeni, A.A.; Sabouri-Rad, S.; Gotto, A.M.; Pirro, M.; Banach, M.; Awan, Z.; Barreto, G.E.; Sahebkar, A. PCSK9 and inflammation: A review of experimental and clinical evidence. Eur. Heart J. Cardiovasc. Pharmacother. 2019, 5, 237–245. [Google Scholar] [CrossRef]
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef]
- O’Donoghue, M.L.; Giugliano, R.P.; Wiviott, S.D.; Atar, D.; Keech, A.; Kuder Julia, F.; Im, K.; Murphy, S.A.; Flores-Arredondo, J.H.; López, J.A.G.; et al. Long-term evolocumab in patients with established atherosclerotic cardiovascular disease. Circulation 2022, 146, 1109–1119. [Google Scholar] [CrossRef]
- Schwartz, G.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Bujas-Bobanovic, M.; Diaz, R.; Fazio, S.; Fras, Z.; Goodman, S.G.; Harrington, R.A.; et al. Transiently achieved very low LDL-cholesterol levels by statin and alirocumab after acute coronary syndrome are associated with cardiovascular risk reduction: The ODYSSEY OUTCOMES trial. Eur. Heart J. 2023, 44, 1408–1417. [Google Scholar] [CrossRef]
- Szarek, M.; White, H.D.; Schwartz, G.G.; Alings, M.; Bhatt, D.L.; Bittner, V.A.; Chiang, C.-E.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; et al. Alirocumab Reduces Total Nonfatal Cardiovascular and Fatal Events. J. Am. Coll. Cardiol. 2019, 73, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Yifan, D.; Yue, M.; Yubin, Z.; Jiapei, G.; Xun, S.; Shenghu, H.; Li, Z.; Jing, Z. The impact of early in-hospital use of PCSK9 inhibitors on cardiovascular outcomes in acute coronary syndrome patients: A systematic review and meta-analysis. Int. J. Cardiol. 2024, 399, 131775. [Google Scholar] [CrossRef] [PubMed]
- Krychtiuk, K.A.; Claeys, M.J.; Gencer, B.; Mach, F. In-hospital initiation of PCSK9 inhibitors in ACS: Pros and cons. EuroIntervention 2023, 19, e283–e285. [Google Scholar] [CrossRef]
- D’Andrea, D.; Capone, V.; Alessandro, B.; Castaldo, R.; Franzese, M.; Carpinella, G.; Furbatto, F.; La Rocca, F.; Marsico, F.; Marfella, R.; et al. PCSK9 inhibitors “fast track’’ use versus “stepwise’’ lipid-lowering therapy in patients with acute coronary syndrome: A retrospective single-center study in a “real-world’’ population. J. Clin. Med. 2025, 14, 2992. [Google Scholar] [CrossRef]
- Trankle, C.R.; Wohlford, G.; Buckley, L.F.; Kadariya, D.; Ravindra, K.; Markley, R.; Park, T.S.; Potere, N.; Van Tassell, B.W.; Abbate, A. Alirocumab in Acute Myocardial Infarction: Results From the Virginia Commonwealth University Alirocumab Response Trial (VCU-AlirocRT). J. Cardiovasc. Pharmacol. 2019, 74, 266–269. [Google Scholar] [CrossRef]
- Koskinas, K.C.; Windecker, S.; Pedrazzini, G.; Mueller, C.; Cook, S.; Matter, C.M.; Muller, O.; Häner, J.; Gencer, B.; Crljenica, C.; et al. Evolocumab for Early Reduction of LDL cholesterol levels in Patients With Acute Coronary Syndromes (EVOPACS). J. Am. Coll. Cardiol. 2019, 74, 2452–2462. [Google Scholar] [CrossRef]
- Takeji, Y.; Shiomi, H.; Morimoto, T.; Yamamoto, K.; Matsumura-Nakano, Y.; Nagao, K.; Taniguchi, R.; Yamaji, K.; Tada, T.; Kato, E.T.; et al. Differences in mortality and causes of death between STEMI and NSTEMI in the early and late phases after acute myocardial infarction. PLoS ONE 2021, 16, e0259268. [Google Scholar] [CrossRef] [PubMed]
- Spadafora, L.; Pastena, P.; Cacciatore, S.; Betti, M.; Biondi-Zoccai, G.; D’Ascenzo, F.; De Ferrari, G.M.; De Filippo, O.; Versaci, F.; Sciarretta, S.; et al. One-Year Prognostic Differences and Management Strategies between ST-Elevation and Non-ST-Elevation Myocardial Infarction: Insights from the PRAISE Registry. Am. J. Cardiovasc. Drugs 2025, 25, 681–691. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Nissen, S.E.; Prati, F.; Windecker, S.; Kataoka, Y.; Puri, R.; Hucko, T.; Kassahun, H.; Liao, J.; Somaratne, R.; et al. Assessing the impact of PCSK9 inhibition on coronary plaque phenotype with optical coherence tomography: Rationale and design of the randomized, placebo-controlled HUYGENS study. Cardiovasc. Diagn. Ther. 2021, 11, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Räber, L.; Ueki, Y.; Otsuka, T.; Losdat, S.; Häner, J.D.; Lonborg, J.; Fahrni, G.; Iglesias, J.F.; van Geuns, R.-J.; Ondracek, A.S.; et al. Effect of Alirocumab Added to High-Intensity Statin Therapy on Coronary Atherosclerosis in Patients With Acute Myocardial Infarction. JAMA 2022, 327, 1771–1781. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Nelson, A.J.; Lincoff, A.M.; Brennan, D.; Ray, K.K.; Cho, L.; Menon, V.; Li, N.; Bloedon, L.; Nissen, S.E. Impact of Bempedoic Acid on Total Cardiovascular Events. JAMA Cardiol. 2024, 9, 245. [Google Scholar] [CrossRef]
- Biccirè, F.G.; Kakizaki, R.; Koskinas, K.C.; Ueki, Y.; Häner, J.; Shibutani, H.; Lønborg, J.; Spitzer, E.; Iglesias, J.F.; Otsuka, T.; et al. Lesion-Level Effects of LDL-C–Lowering Therapy in Patients with Acute Myocardial Infarction. JAMA Cardiol. 2024, 9, 1082. [Google Scholar] [CrossRef]
- Ferri, N.; Corsini, A.; Ruscica, M. Hypocholesterolaemic treatment in coronary unit: From statins to anti PCSK9 therapies and bempedoic acid. Eur. Heart J. Suppl. 2023, 25 (Suppl. B), B55–B59. [Google Scholar] [CrossRef]
- Raposeiras-Roubín, S.; Abu-Assi, E.; Pérez Rivera, J.Á.; Jorge Pérez, P.; Ayesta López, A.; Viana Tejedor, A.; Pascual, M.J.C.; Carrasquer, A.; Méndez, C.J.; Cambeiro, C.G.; et al. Efficacy and safety of bempedoic acid in acute coronary syndrome. Design of the clinical trial ES-BempeDACS. Rev. Esp. Cardiol. (Engl. Ed.) 2025, 78, 56–63. [Google Scholar] [CrossRef]
- Harbi, M.H. Current usage of inclisiran for cardiovascular diseases: Overview of current clinical trials. Front Pharmacol. 2025, 16, 1449712. [Google Scholar] [CrossRef] [PubMed]
- Steg, P.G.; Bhatt, D.L.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.; Jiao, L.; Pineda, A.L.; Doyle, R.T.; Tardif, J.C.; et al. Benefits of icosapent ethyl in patients with recent acute coronary syndrome (ACS): REDUCE-IT ACS. J. Am. Coll. Cardiol. 2023, 81, 1113. [Google Scholar] [CrossRef]
- Aggarwal, R.; Bhatt, D.L.; Steg, P.h.G.; Miller, M.; Brinton, E.A.; Dunbar, R.L.; Ketchum, S.B.; Tardif, J.; Martens, F.M.A.C.; Ballantyne, C.M.; et al. Cardiovascular Outcomes With Icosapent Ethyl by Baseline Low-Density Lipoprotein Cholesterol: A Secondary Analysis of the REDUCE-IT Randomized Trial. J. Am. Heart Assoc. 2025, 14, e038656. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Steg, P.h.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T.; Juliano, R.A.; Jiao, L.; Granowitz, C.; et al. Effects of Icosapent Ethyl on Total Ischemic Events. J. Am. Coll. Cardiol. 2019, 73, 2791–2802. [Google Scholar] [CrossRef]
- Haq, A.; Hanif, A.; Rasool, R.; Nayar, V. 221 Icosapent ethyl initiation amongst patients with acute coronary syndrome: Recommended, yet underutilised. Heart 2024, 110, A229–A230. [Google Scholar]
- Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T.; Juliano, R.A.; Jiao, L.; Granowitz, C.; et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N. Engl. J. Med. 2019, 380, 11–22. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, N.H. New Therapeutic Approaches to the Treatment of Dyslipidemia 1: ApoC-III and ANGPTL3. J. Lipid Atheroscler. 2023, 12, 23. [Google Scholar] [CrossRef]
- Mohamed, F.; Mansfield, B.S.; Raal, F.J. ANGPTL3 as a Drug Target in Hyperlipidemia and Atherosclerosis. Curr. Atheroscler. Rep. 2022, 24, 959–967. [Google Scholar] [CrossRef]
- Ginsberg, H.N.; Goldberg, I.J. Broadening the Scope of Dyslipidemia Therapy by Targeting APOC3 (Apolipoprotein C3) and ANGPTL3 (Angiopoietin-Like Protein 3). Arter. Thromb. Vasc. Biol. 2023, 43, 388–398. [Google Scholar] [CrossRef]
- Que, B.; Wang, C.; Ai, H.; Zhang, X.; Wang, M.; Nie, S. Residual Dyslipidemia Leads to Unfavorable Outcomes in Patients with Acute Coronary Syndrome after Percutaneous Coronary Intervention. Stem Cells Int. 2016, 2016, 6175948. [Google Scholar] [CrossRef]
- Wang, G.; Xia, M.; Liang, C.; Pu, F.; Liu, S.; Jia, D. Prognostic value of elevated lipoprotein (a) in patients with acute coronary syndromes: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2024, 11, 1362893. [Google Scholar] [CrossRef]
- Minami, Y.; Kinoshita, D.; Muramatsu, Y.; Nagata, T.; Ako, J. Role of Lipoprotein(a) in Cardiovascular Disease: A Review of Clinical Practice. J. Asian Pac. Soc. Cardiol. 2022, 1, e11. [Google Scholar] [CrossRef]
- Yurtseven, E.; Ural, D.; Gursoy, E.; Cunedioglu, B.O.; Guler, O.U.; Baysal, K.; Aytekin, S.; Aytekin, V.; Kayikcioglu, M. Is There a Need for Sex-Tailored Lipoprotein(a) Cut-Off Values for Coronary Artery Disease Risk Stratification? Clin. Cardiol. 2024, 47, e70012. [Google Scholar] [CrossRef]
- Guan, W.; Cao, J.; Steffen, B.T.; Post, W.S.; Stein, J.H.; Tattersall, M.C.; Kaufman, J.D.; McConnell, J.P.; Hoefner, D.M.; Warnick, R.; et al. Race Is a Key Variable in Assigning Lipoprotein(a) Cutoff Values for Coronary Heart Disease Risk Assessment. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 996–1001. [Google Scholar]
- Stürzebecher, P.E.; Katzmann, J.L.; Laufs, U. What is ‘remnant cholesterol’? Eur. Heart J. 2023, 44, 1446–1448. [Google Scholar]
- Chen, X.; Li, L.H. Remnant Cholesterol, a Valuable Biomarker for Assessing Arteriosclerosis and Cardiovascular Risk: A Systematic Review. Cureus 2023, 15, e44202. [Google Scholar] [CrossRef] [PubMed]
- Zafrir, B.; Khoury, R.; Saliba, W. Remnant cholesterol and risk of myocardial infarction in patients with coronary artery disease undergoing revascularization. J. Clin. Lipidol. 2023, 17, 332–341. [Google Scholar] [CrossRef]
- Sniderman, A.D.; Dufresne, L.; Pencina, K.M.; Bilgic, S.; Thanassoulis, G.; Pencina, M.J. Discordance among apoB, non-high-density lipoprotein cholesterol, and triglycerides: Implications for cardiovascular prevention. Eur. Heart J. 2024, 45, 2410–2418. [Google Scholar]
- Sehayek, D.; Cole, J.; Björnson, E.; Wilkins, J.T.; Mortensen, M.B.; Dufresne, L.; Pencina, K.M.; Pencina, M.J.; Thanassoulis, G.; Sniderman, A.D. ApoB, LDL-C, and non-HDL-C as markers of cardiovascular risk. J. Clin. Lipidol. 2025, 19, 844–859. [Google Scholar]
- Johannesen, C.D.L.; Mortensen, M.B.; Nordestgaard, B.G.; Langsted, A. Discordance analyses comparing LDL cholesterol, Non-HDL cholesterol, and apolipoprotein B for cardiovascular risk estimation. Atherosclerosis 2025, 403, 119139. [Google Scholar] [CrossRef]
- Katsi, V.; Argyriou, N.; Fragoulis Christos Tsioufis, K. The role of non-HDL cholesterol and apolipoprotein B in cardiovascular disease: A comprehensive review. J. Cardiovasc. Dev. Dis. 2025, 12, 256. [Google Scholar] [CrossRef] [PubMed]
- Witt, C.; Renfroe, L.G.; Lyons, T.S. Discordance between serum cholesterol concentration and atherogenic lipoprotein particle number in people with metabolic disease: A systematic review. Diabetes Obes. Metab. 2025, 27, 2940–2954. [Google Scholar] [CrossRef]
- Raja, V.; Aguiar, C.; Alsayed, N.; Chibber, Y.S.; ElBadawi, H.; Ezhov, M.; Hermans, M.P.; Pandey, R.C.; Ray, K.K.; Tokgözoglu, L.; et al. Non-HDL-Cholesterol in Dyslipidemia: Review of the State-of-the-Art Literature and Outlook. Atherosclerosis 2023, 383, 117312. [Google Scholar] [CrossRef]
- O’Brien, A.; LaCombe, A.; Stickland, A.; Madder, R.D. Intracoronary near-infrared spectroscopy: An overview of the technology, histologic validation, and clinical applications. Glob. Cardiol. Sci. Pract. 2016, 2016, e201618. [Google Scholar] [CrossRef]
- Hartman, E.M.J.; De Nisco, G.; Kok, A.M.; Hoogendoorn, A.; Coenen, A.; Mastik, F.; Korteland, S.-A.; Nieman, K.; Gijsen, F.J.H.; van der Steen, A.F.W.; et al. Lipid-rich Plaques Detected by Near-infrared Spectroscopy Are More Frequently Exposed to High Shear Stress. J. Cardiovasc. Transl. Res. 2021, 14, 416–425. [Google Scholar] [CrossRef]
- Oemrawsingh, R.M.; Cheng, J.M.; García-García, H.M.; van Geuns, R.J.; de Boer, S.P.M.; Simsek, C.; Kardys, I.; Lenzen, M.J.; van Domburg, R.T.; Regar, E.; et al. Near-Infrared Spectroscopy Predicts Cardiovascular Outcome in Patients with Coronary Artery Disease. J. Am. Coll. Cardiol. 2014, 64, 2510–2518. [Google Scholar] [CrossRef]
- Tomaniak, M.; Hartman, E.H.; Tovar Forero, M.T.F.; Wilschut, J.; Zijlstra, F.; Van Mieghem, N.V.M.; Kardys, I.; Wentzel, J.W.; Daemen, J. Near-infrared spectroscopy to predict plaque progression in plaque-free artery regions. EuroIntervention 2022, 18, 253–261. [Google Scholar] [CrossRef]
- Passey, S.; Jha, J.; Patel, N.; Lipari, V.; Joshi, S.; McKay, R.; Radojevic, J.; Ingrassia, J. Role of Computed Tomography and Other Non-Invasive and Invasive Imaging Modalities in Cardiac Allograft Vasculopathy. J. Cardiovasc. Dev. Dis. 2025, 12, 249. [Google Scholar] [CrossRef]
- Hudec, M.; Kaňovský, J.; Brázdil, V.; Poloczek, M.; Kask, I.; Hochmanová, K.; Smitalová, R.; Boček, O.; Jeřábek, P.; Štípal, R.; et al. Near-infrared spectroscopy derived indexes as a potential predictor of plaque burden volume progression after unprotected left main coronary artery intervention. Cor Vasa 2025, 67, 6–15. [Google Scholar] [CrossRef]
- Schuurman, A.S.; Vroegindewey, M.; Kardys, I.; Oemrawsingh, R.M.; Cheng, J.M.; de Boer, S.; Garcia-Garcia, H.M.; van Geuns, R.-J.; Regar, E.S.; Daemen, J.; et al. Near-infrared spectroscopy-derived lipid core burden index predicts adverse cardiovascular outcome in patients with coronary artery disease during long-term follow-up. Eur. Heart J. 2018, 39, 295–302. [Google Scholar] [CrossRef]
- Roleder, T.; Kovacic, J.C.; Ali, Z.; Sharma, R.; Cristea, E.; Moreno, P.; Sharma, S.K.; Narula, J.; Kini, A.S. Combined NIRS and IVUS imaging detects vulnerable plaque using a single catheter system: A head-to-head comparison with OCT. EuroIntervention 2014, 10, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, S.E.; Madder, R.D. Intracoronary near-infrared spectroscopy-role and clinical applications. Cardiovasc. Diagn. Ther. 2020, 10, 1508–1516. [Google Scholar] [CrossRef] [PubMed]
- Murai, K.; Kataoka, Y.; Nakaoku, Y.; Nishimura, K.; Kitahara, S.; Iwai, T.; Nakamura, H.; Hosoda, H.; Hirayama, A.; Matama, H.; et al. The association between the extent of lipidic burden and delta-fractional flow reserve: Analysis from coronary physiological and near-infrared spectroscopic measures. Cardiovasc. Diagn. Ther. 2021, 11, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Hoshino, M.; Sugiyama, T.; Kanaji, Y.; Nagamine, T.; Misawa, T.; Hada, M.; Araki, M.; Hamaya, R.; Usui, E.; et al. Association of near-infrared spectroscopy-defined lipid rich plaque with lesion morphology and peri-coronary inflammation on computed tomography angiography. Atherosclerosis 2022, 346, 109–116. [Google Scholar]
- Fukase, T.; Dohi, T.; Fujimoto, S.; Nishio, R.; Nozaki, Y.O.; Kudo, A.; Takeuchi, M.; Takahashi, N.; Chikata, Y.; Endo, H.; et al. Relationship between coronary high-intensity plaques on T1-weighted imaging by cardiovascular magnetic resonance and vulnerable plaque features by near-infrared spectroscopy and intravascular ultrasound: A prospective cohort study. J. Cardiovasc. Magn. Reson. 2023, 25, 4. [Google Scholar] [CrossRef]
- Ota, H.; Omori, H.; Kawasaki, M.; Hirakawa, A.; Matsuo, H. Clinical impact of PCSK9 inhibitor on stabilization and regression of lipid-rich coronary plaques: A near-infrared spectroscopy study. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 217–228. [Google Scholar] [CrossRef]
- Chen, H.; Chen, X. PCSK9 inhibitors for acute coronary syndrome: The era of early implementation. Front. Cardiovasc. Med. 2023, 10, 1138787. [Google Scholar] [CrossRef]
- Barbieri, L.; Tumminello, G.; Fichtner Isabella Corsini, A.; Santos, R.D.; Carugo, S.; Ruscica, M. PCSK9 and coronary artery plaque-new opportunity or red herring? Curr. Atheroscler. Rep. 2024, 26, 589–602. [Google Scholar] [CrossRef]
- Mensink, F.B.; Los, J.; Reda Morsy, M.M.; Oemrawsingh, R.M.; von Birgelen, C.; Ijsselmuiden, A.J.J.; Takeuchi, M.; Takahashi, N.; Chikata, Y.; Endo, H.; et al. Changes in non-culprit coronary lesions with PCSK9 inhibitors: The randomised, placebo-controlled FITTER trial. EuroIntervention 2025, 21, 910–920. [Google Scholar]
- Leosdottir, M.; Schubert, J.; Brandts, J.; Gustafsson, S.; Cars, T.; Sundström, J.; Jernberg, T.; Ray, K.K. Early Ezetimibe Initiation After Myocardial Infarction Protects Against Later Cardiovascular Outcomes in the SWEDEHEART Registry. J. Am. Coll. Cardiol. 2025, 85, 1550–1564. [Google Scholar] [CrossRef]
- Malhabi, N.; Ait Yahya, A.; Ztati, M.; Eljamili, M.; El Hattaoui, M. Comparison of different intensive lipid-lowering therapies for patients with acute coronary syndrome: Ezetimibe and rosuvastatin versus high-dose rosuvastatin. Arch. Cardiovasc. Dis. 2025, 118, S139. [Google Scholar] [CrossRef]
- Jang, J.Y.; Kim, S.; Cho, J.; Chun Syoun You, S.C.; Kim, J.S. Comparative effectiveness of moderate-intensity statin with ezetimibe therapy versus high-intensity statin monotherapy in patients with acute coronary syndrome: A nationwide cohort study. Sci. Rep. 2024, 14, 838. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.K.; Aguiar, C.; Arca, M.; Connolly, D.L.; Eriksson, M.; Ferrières, J.; Laufs, U.; Mostaza, J.M.; Nanchen, D.; Bardet, A.; et al. Use of combination therapy is associated with improved LDL cholesterol management: 1-year follow-up results from the European observational SANTORINI study. Eur. J. Prev. Cardiol. 2024, 31, 1792–1803. [Google Scholar] [CrossRef]
- Parhofer, K.G.; Aguiar, C.; Banach, M.; Drexel, H.; Gouni-Berthold, I.; Pérez de Isla, L.; Rietzschel, E.; Zambon, A.; Ray, K.K. Expert opinion on the integration of combination therapy into the treatment algorithm for the management of dyslipidaemia: The integration of ezetimibe and bempedoic acid may enhance goal attainment. Eur. Heart J. Cardiovasc. Pharmacother. 2025, 11, 367–379. [Google Scholar] [CrossRef]
- Pogran, E.; Burger, A.L.; Zweiker, D.; Kaufmann, C.C.; Muthspiel, M.; Rega-Kaun, G.; Wenkstetten-Holub, A.; Wojta, J.; Drexel, H.; Huber, K. Lipid-Lowering Therapy after Acute Coronary Syndrome. J. Clin. Med. 2024, 13, 2043. [Google Scholar] [CrossRef]
- Revankar, S.; Park, J.K.; Satish, P.; Agarwala, A. Is there a role for earlier use of combination therapy? Am. J. Prev. Cardiol. 2024, 17, 100639. [Google Scholar] [CrossRef]
- Ray, K.K.; Reeskamp, L.F.; Laufs, U.; Banach, M.; Mach, F.; Tokgözoğlu, L.S.; Connolly, D.L.; Gerrits, A.J.; Stroes, E.S.G.; Masana, L.; et al. Combination lipid-wering therapy as first-line strategy in very high-risk patients. Eur. Heart J. 2022, 43, 830–833. [Google Scholar] [CrossRef]
- Lloyd-Jones, D.M.; Morris, P.B.; Ballantyne, C.M.; Birtcher, K.K.; Covington, A.M.; DePalma, S.M.; Minissian, M.B.; Orringer, C.E.; Smith, S.C.; Waring, A.A.; et al. 2022 ACC Expert Consensus Decision Pathway on the Role of Nonstatin Therapies for LDL-Cholesterol Lowering in the Management of Atherosclerotic Cardiovascular Disease Risk. J. Am. Coll. Cardiol. 2022, 80, 1366–1418. [Google Scholar] [CrossRef]
- Jialal, I.; Abate, N. Ezetimibe-Statin Combination to Reduce Cardiovascular Events: The Evidence Base. Metab. Syndr. Relat. Disord. 2015, 13, 327–328. [Google Scholar] [CrossRef]
- Imran, T.F.; Khan, A.A.; Has, P.; Jacobson, A.; Bogin, S.; Khalid, M.; Khan, A.; Kim, S.; Erqou, S.; Choudhary, G.; et al. Proprotein Convertase Subtilisn/Kexin Type 9 Inhibitors and Small Interfering RNA Therapy for Cardiovascular Risk Reduction: A Systematic Review and Meta-Analysis. PLoS ONE 2023, 18, e0295359. [Google Scholar] [CrossRef]
- Nissen, S.E.; Lincoff, A.M.; Brennan, D.; Ray, K.K.; Mason, D.; Kastelein, J.J.P.; Thompson, P.D.; Libby, P.; Cho, L.; Plutzky, J.; et al. Bempedoic acid and cardiovascular outcomes in statin-intolerant patients. N. Engl. J. Med. 2023, 388, 1353–1364. [Google Scholar] [CrossRef]
- Ray, K.K.; Nicholls, S.J.; Li, N.; Louie, M.J.; Brennan, D.; Lincoff, A.M.; Steven, E.N.; CLEAR OUTCOMES Committees and Investigators. Efficacy and safety of bempedoic acid among patients with and without diabetes: Prespecified analysis of the CLEAR Outcomes randomised trial. Lancet Diabetes Endocrinol. 2024, 12, 19–28. [Google Scholar] [CrossRef]
- Taub, P.R.; Gutierrez, A.; Wewers, D.; Garcia Cantu, E.; Cao, H.; Deck, C.; Lesogor, A.; Ott, D.; Mena-Madrazo, J.; Zang, X.; et al. Safety and lipid-lowering Efficacy of inclisiran monotherapy in patients without ASCVD: The VICTORION-Mono randomized clinical trial. J. Am. Coll. Cardiol. 2025, 86, 196–208. [Google Scholar] [CrossRef]
- Schubert, J.; Leosdottir, M.; Lindahl, B.; Westerbergh, J.; Melhus, H.; Modica, A.; Cater, N.; Brinck, J.; Ray, K.K.; Hagström, E. Intensive early and sustained lowering of non-high-density lipoprotein cholesterol after myocardial infarction and prognosis: The SWEDEHEART registry. Eur. Heart J. 2024, 45, 4204–4215. [Google Scholar] [CrossRef] [PubMed]
- Burger, A.L.; Pogran, E.; Muthspiel, M.; Kaufmann, C.C.; Jäger, B.; Huber, K. New treatment targets and innovative lipid-lowering therapies in very-high-risk patients with cardiovascular disease. Biomedicines 2022, 10, 970. [Google Scholar] [CrossRef]
- Knowlton, K.; Navar, A.M.; Anderson, J.; Brown, A.; Muhlestein, J.; Kleeman, K.; Sarwat, S.; Abbas, C.; Ramirez, M.A.; Grines, C.; et al. LDL-C management with inclisiran plus usual care vs. usual care alone in participants with recent acute coronary syndrome: VICTORION-INCEPTION. J. Clin. Lipidol. 2025, 19, e109–e110. [Google Scholar] [CrossRef]
Study Name | No. of ACS Patients | Comparative Therapy | Outcome | Result | LDL-C Reduction Achieved | Criticism |
---|---|---|---|---|---|---|
PROVE IT-TIMI 22 | 4162 | Atorvastatin 80 mg vs. Pravastatin 40 mg | Composite CV endpoint | High-intensity statin reduced event risk (HR, 0.84; p = 0.005) | Atorvastatin: 51%; Pravastatin: 22% | Modest absolute risk reduction; short follow-up |
IMPROVE-IT | 18,144 | Simvastatin 40 mg + Ezetimibe vs. Simvastatin 40 mg | CV death, MI, stroke | Combo reduced events (HR, 0.94; p = 0.016) | Ezetimibe + statin: ~23% additional reduction (to LDL-C < 60 mg/dL) | Small absolute risk reduction; most patients on background statin |
ODYSSEY OUTCOMES | 18,924 | Alirocumab + statin vs. statin alone | MACE (CV death, MI, stroke) | Alirocumab reduced events (HR, 0.85; p = 0.0003) | Alirocumab + statin: ~55% (to LDL-C 53 mg/dL from 92 mg/dL) | Excluded patients in acute phase; high cost of PCSK9 inhibitors |
FOURIER | Subgroup: post-ACS not primary, whole trial 27,564 | Evolocumab + statin vs. statin alone | MACE | Evolocumab reduced events (HR, 0.85; p < 0.001) | Evolocumab + statin: ~59–66% (to LDL-C 30 mg/dL from 92 mg/dL) | Did not include patients during acute ACS; high cost, unclear long-term safety |
CLEAR Outcomes | Unclear for ACS; trial included high-risk patients, not strictly ACS | Bempedoic acid + statin vs. statin alone | CV events, safety | Bempedoic acid further lowers LDL-C; CV benefits under investigation | Bempedoic acid: 21% reduction | Full outcome data not yet available; limited long-term safety data |
ZODIAC | Subgroup: ACS admission, 1250 | DSS-guided vs. usual care in lipid lowering | LDL-C target achievement | DSS improved early achievement of targets (54.7% vs. 48.7%) | Not primarily reported | Did not show significant difference in primary endpoint; possible Hawthorne effect |
Trial Name | N Patients (Total) | ACS/ASCVD Patients | Comparative Therapies | Primary Outcomes | LDL-C Reduction (%) | Results | Limitations |
---|---|---|---|---|---|---|---|
ORION-1 | 497 | Majority ASCVD; ACS included (not exclusively) | Inclisiran vs. placebo (±statins) | % change in LDL-C over 180 days | ~50% (Day 180) | Durable LDL-C fall; consistent safety | Small Phase II, short duration |
ORION-3 | 382 (extension of ORION-1) | ACS/ASCVD enrichment | Inclisiran-only vs. switching (evolocumab→inclisiran) | LDL-C change over 4 years, safety | ~44% mean over 4 years | Sustained LDL-C reduction, 62–77% PCSK9 drop | Open-label, selection bias |
ORION-10 | 1561 | ASCVD (including ACS) | Inclisiran vs. placebo on top of statins | % LDL-C drop at month 17 | 52% at 17 months | 75% achieved LDL-C < 55 mg/dL; consistent safety | Surrogate endpoint focus, event data pending |
ORION-11 | 1617 | ASCVD (including ACS) | Same as above | Same | ≥50% at 18 months | 75% attained LDL-C < 55 mg/dL | Similar limitations as above |
ORION-4 (CVOT, ongoing) | ~15,000 (target) | Atherosclerotic CVD, including ACS | Inclisiran vs. placebo on standard therapy | Major CV events (MACE) | Pending | Outcome pending | Double-blind outcomes; results awaited |
ORION-8 (extension) | 3274 | ASCVD/high-risk mix | OLE inclisiran (no comparator) | LDL-C goal attainment, safety | ~49% over 3 years | 78% achieved LDL-C goals (ASCVD) | Open-label, no control group |
Trial Name | No. of Patients (Target) | Cohorts | Comparative Therapy | Outcomes (Primary) | LDL-C Reduction (Expected) | Criticisms/Limitations |
---|---|---|---|---|---|---|
EVOLVE-MI (NCT05284747) | 4000 | All post-AMI/ACS patients | Evolocumab + standard LLT vs. standard LLT | MACE (CV death, MI, etc.) | ~60% reduction (PCSK9i + statin) | Not yet reporting outcomes; cost and access |
AMUNDSEN (NCT04951856) | 1666 | All ACS (first dose pre-PCI) | Early evolocumab vs. standard therapy | LDL-C reduction, tertiary MACE | ~65% reduction (similar to EVOPACS) | Focus primarily on LDL-C as endpoint |
VICTORION-INCEPTION (NCT04873934) | ~380 | Recent ACS (within 5 weeks) | Inclisiran + statin vs. standard therapy | 1-year LDL-C reduction, lipid targets | ~50% reduction (expected for inclisiran) | Outcomes mainly surrogate/lipid-based |
PACMAN-AMI [recently completed] | 300 | PCI for acute MI | Alirocumab vs. placebo on statins | IVUS plaque regression, not events | 85% achieved LDL-C < 55 mg/dL in 1yr | Imaging endpoints, not clinical events |
EPIC-STEMI | 68 | STEMI | Alirocumab + statin vs. placebo | % LDL-C reduction at 6 weeks | 72.9% (alirocumab) vs. 48.1% (placebo) | Small sample, short duration |
HUYGENS | 161 | MI patients | Evolocumab vs. placebo (statin-based) | Plaque stabilization, LDL-C | LDL-C reduced to 28.1 mg/dL (~80% reduction) | Mechanistic, not powered for events |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brie, D.M.; Mornoș, C.; Adam, O.; Tîrziu, A.; Brie, A.D. Dyslipidemia Treatment in Patients with Acute Coronary Syndrome: Is It Time to Move to Combination Therapy? J. Clin. Med. 2025, 14, 6445. https://doi.org/10.3390/jcm14186445
Brie DM, Mornoș C, Adam O, Tîrziu A, Brie AD. Dyslipidemia Treatment in Patients with Acute Coronary Syndrome: Is It Time to Move to Combination Therapy? Journal of Clinical Medicine. 2025; 14(18):6445. https://doi.org/10.3390/jcm14186445
Chicago/Turabian StyleBrie, Daniel Miron, Cristian Mornoș, Ovidiu Adam, Alexandru Tîrziu, and Alina Diduța Brie. 2025. "Dyslipidemia Treatment in Patients with Acute Coronary Syndrome: Is It Time to Move to Combination Therapy?" Journal of Clinical Medicine 14, no. 18: 6445. https://doi.org/10.3390/jcm14186445
APA StyleBrie, D. M., Mornoș, C., Adam, O., Tîrziu, A., & Brie, A. D. (2025). Dyslipidemia Treatment in Patients with Acute Coronary Syndrome: Is It Time to Move to Combination Therapy? Journal of Clinical Medicine, 14(18), 6445. https://doi.org/10.3390/jcm14186445