Unilateral vs. Bilateral Selective Cerebral Perfusion for Acute Type A Aortic Dissection with Frozen Elephant Trunk: Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Search Strategy
2.3. Inclusion and Exclusion Criteria
2.4. Data Extraction
2.5. Critical Appraisal and Outcomes of Interest
2.6. Statistical Analysis
3. Results
3.1. Study Selection and Characteristics
3.2. Baseline Patients’ Characteristics
3.3. Meta-Analysis
3.4. Meta-Regression
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATAAD | Acute type A aortic dissection |
CI | Confidence interval |
CVA | Cerebrovascular accident |
FET | Frozen elephant trunk |
OR | Odds ratio |
SACP | Selective antegrade cerebral perfusion |
SCI | Spinal cord injury |
TAR | Total arch replacement |
References
- Zhu, Y.; Lingala, B.; Baiocchi, M.; Tao, J.J.; Toro Arana, V.; Khoo, J.W.; Williams, K.M.; Traboulsi, A.A.-R.; Hammond, H.C.; Lee, A.M.; et al. Type A Aortic Dissection-Experience Over 5 Decades: JACC Historical Breakthroughs in Perspective. J. Am. Coll. Cardiol. 2020, 76, 1703–1713. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Qi, R.; Zhu, J.; Liu, Y.; Zheng, J. Total Arch Replacement Combined with Stented Elephant Trunk Implantation: A New “Standard” Therapy for Type a Dissection Involving Repair of the Aortic Arch? Circulation 2011, 123, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Kayali, F.; Jubouri, M.; Tan, S.Z.; Mohammed, I.; Bashir, M. Aortic Remodeling in Aortic Dissection after Frozen Elephant Trunk: Overcoming the Challenges. J. Cardiovasc. Surg. 2022, 63, 434–438. [Google Scholar] [CrossRef] [PubMed]
- Sá, M.P.; Jacquemyn, X.; Tasoudis, P.T.; Van den Eynde, J.; Erten, O.; Sicouri, S.; Dokollari, A.; Torregrossa, G.; Kurz, S.; Heuts, S.; et al. Long-Term Outcomes of Total Arch Replacement versus Proximal Aortic Replacement in Acute Type A Aortic Dissection: Meta-Analysis of Kaplan-Meier-Derived Individual Patient Data. J. Card. Surg. 2022, 37, 4256–4266. [Google Scholar] [CrossRef]
- Preventza, O.; Liao, J.L.; Olive, J.K.; Simpson, K.; Critsinelis, A.C.; Price, M.D.; Galati, M.; Cornwell, L.D.; Orozco-Sevilla, V.; Omer, S.; et al. Neurologic Complications after the Frozen Elephant Trunk Procedure: A Meta-Analysis of More than 3000 Patients. J. Thorac. Cardiovasc. Surg. 2020, 160, 20–33.e4. [Google Scholar] [CrossRef]
- Hameed, I.; Rahouma, M.; Khan, F.M.; Wingo, M.; Demetres, M.; Tam, D.Y.; Lau, C.; Iannacone, E.M.; Di Franco, A.; Palaniappan, A.; et al. Cerebral Protection Strategies in Aortic Arch Surgery: A Network Meta-Analysis. J. Thorac. Cardiovasc. Surg. 2020, 159, 18–31. [Google Scholar] [CrossRef]
- Angeloni, E.; Melina, G.; Refice, S.K.; Roscitano, A.; Capuano, F.; Comito, C.; Sinatra, R. Unilateral Versus Bilateral Antegrade Cerebral Protection During Aortic Surgery: An Updated Meta-Analysis. Ann. Thorac. Surg. 2015, 99, 2024–2031. [Google Scholar] [CrossRef]
- Tian, D.H.; Wilson-Smith, A.; Koo, S.K.; Forrest, P.; Kiat, H.; Yan, T.D. Unilateral Versus Bilateral Antegrade Cerebral Perfusion: A Meta-Analysis of Comparative Studies. Heart Lung Circ. 2019, 28, 844–849. [Google Scholar] [CrossRef]
- Tasoudis, P.T.; Varvoglis, D.N.; Vitkos, E.; Ikonomidis, J.S.; Athanasiou, T. Unilateral versus Bilateral Anterograde Cerebral Perfusion in Acute Type A Aortic Dissection Repair: A Systematic Review and Meta-Analysis. Perfusion 2023, 38, 931–938. [Google Scholar] [CrossRef]
- Naito, N.; Takagi, H. Meta-Analysis: Bilateral and Unilateral Cerebral Perfusion in Type A Dissection. Thorac. Cardiovasc. Surg. 2025, 73, 33–42. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A Tool for Assessing Risk of Bias in Non-Randomised Studies of Interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [PubMed]
- López Almodóvar, L.F.; Lima Cañadas, P.; Enríquez Puga, A.; Narváez Mayorga, I.; Buendía Miñano, J.A.; Sánchez Casado, M.; Cañas Cañas, A. Single Low-Volume Center Experience with Frozen Elephant Trunk in Acute Type A Aortic Dissections. Aorta 2018, 6, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Azuma, S.; Shimada, R.; Motohashi, Y.; Yoshii, Y. Postoperative Results of the in Situ Fenestrated Open Stent Technique for Acute Aortic Dissection Type A. Gen. Thorac. Cardiovasc. Surg. 2023, 71, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, E.; Martens, A.; Kaufeld, T.; Natanov, R.; Krueger, H.; Rudolph, L.; Haverich, A.; Shrestha, M. Frozen Elephant Trunk in Acute Aortic Type a Dissection: Risk Analysis of Concomitant Root Replacement. Eur. J. Cardiothorac. Surg. 2022, 62, ezac051. [Google Scholar] [CrossRef]
- Berger, T.; Kreibich, M.; Morlock, J.; Kondov, S.; Scheumann, J.; Kari, F.A.; Rylski, B.; Siepe, M.; Beyersdorf, F.; Czerny, M. True-Lumen and False-Lumen Diameter Changes in the Downstream Aorta after Frozen Elephant Trunk Implantation. Eur. J. Cardiothorac. Surg. 2018, 54, 375–381. [Google Scholar] [CrossRef]
- Berger, T.; Weiss, G.; Voetsch, A.; Arnold, Z.; Kreibich, M.; Rylski, B.; Krombholz-Reindl, P.; Winkler, A.; Mach, M.; Geisler, D.; et al. Multicentre Experience with Two Frozen Elephant Trunk Prostheses in the Treatment of Acute Aortic Dissection†. Eur. J. Cardiothorac. Surg. 2019, 56, 572–578. [Google Scholar] [CrossRef]
- Chen, I.-M.; Chen, P.-L.; Weng, S.-H.; Hsu, C.-P.; Shih, C.-C.; Chang, H.-H.; Wei, J. Clinical Outcomes of VasoRing Connector in Patients with Acute Type A Aortic Dissection. Ann. Thorac. Surg. 2018, 106, 764–770. [Google Scholar] [CrossRef]
- Chen, X.; Huang, F.; Xu, M.; Wang, L.; Jiang, Y.; Xiao, L.; Chen, X.; Qiu, Z. The Stented Elephant Trunk Procedure Combined Total Arch Replacement for Debakey I Aortic Dissection: Operative Result and Follow-Up. Interact. Cardiovasc. Thorac. Surg. 2010, 11, 594–598. [Google Scholar] [CrossRef]
- Chivasso, P.; Mastrogiovanni, G.; Bruno, V.D.; Miele, M.; Colombino, M.; Triggiani, D.; Cafarelli, F.; Leone, R.; Rosapepe, F.; De Martino, M.; et al. Systematic Total Arch Replacement with Thoraflex Hybrid Graft in Acute Type A Aortic Dissection: A Single Centre Experience. Front. Cardiovasc. Med. 2022, 9, 997961. [Google Scholar] [CrossRef]
- Cuellar, F.L.; Oberhuber, A.; Martens, S.; Rukosujew, A.; Marchiori, E.; Ibrahim, A. Analysis of Spinal Ischemia after Frozen Elephant Trunk for Acute Aortic Dissection: An Observational, Single-Center Study. Diagnostics 2022, 12, 2781. [Google Scholar] [CrossRef]
- Cuko, B.; Pernot, M.; Busuttil, O.; Baudo, M.; Rosati, F.; Taymoor, S.; Modine, T.; Labrousse, L. Frozen Elephant Trunk Technique for Aortic Arch Surgery: The Bordeaux University Hospital Experience with Thoraflex Hybrid Prosthesis. J. Cardiovasc. Surg. 2023, 64, 668–677. [Google Scholar] [CrossRef]
- Dai, L.; Qiu, J.; Zhao, R.; Cao, F.; Qiu, J.; Wang, D.; Fan, S.; Xie, E.; Song, J.; Yu, C. A Novel Sutureless Integrated Stented (SIS) Graft Prosthesis for Type A Aortic Dissection: A Pilot Study for a Prospective, Multicenter Clinical Trial. Front. Cardiovasc. Med. 2021, 8, 806104. [Google Scholar] [CrossRef]
- Fang, C.; Gao, S.; Ren, X.; Pang, X.; Zhao, X.; Ma, Z.; Wang, C.; Liu, K. Comparison of Two Techniques in Proximal Anastomosis in Acute Type A Aortic Dissection. Front. Cardiovasc. Med. 2022, 9, 1047939. [Google Scholar] [CrossRef] [PubMed]
- Goebel, N.; Nagib, R.; Salehi-Gilani, S.; Ahad, S.; Albert, M.; Ursulescu, A.; Franke, U.F.W. One-Stage Hybrid Aortic Repair Using the Frozen Elephant Trunk in Acute DeBakey Type I Aortic Dissection. J. Thorac. Dis. 2018, 10, 4195–4203. [Google Scholar] [CrossRef] [PubMed]
- Hohri, Y.; Yamasaki, T.; Matsuzaki, Y.; Hiramatsu, T. Early and Mid-Term Outcome of Frozen Elephant Trunk Using Spinal Cord Protective Perfusion Strategy for Acute Type A Aortic Dissection. Gen. Thorac. Cardiovasc. Surg. 2020, 68, 1119–1127. [Google Scholar] [CrossRef]
- Huang, F.; Li, X.; Zhang, Z.; Li, C.; Ren, F. Comparison of Two Surgical Approaches for Acute Type A Aortic Dissection: Hybrid Debranching versus Total Arch Replacement. J. Cardiothorac. Surg. 2022, 17, 166. [Google Scholar] [CrossRef]
- Iida, Y.; Fujii, S.; Shimizu, H.; Sawa, S. Patterns of Aortic Remodelling after Total Arch Replacement with Frozen Elephant Trunk for Acute Aortic Dissection. Interact. Cardiovasc. Thorac. Surg. 2019, 29, 923–929. [Google Scholar] [CrossRef]
- Iino, K.; Takago, S.; Saito, N.; Ueda, H.; Yamamoto, Y.; Kato, H.; Kimura, K.; Takemura, H. Total Arch Replacement and Frozen Elephant Trunk for Acute Type A Aortic Dissection. J. Thorac. Cardiovasc. Surg. 2022, 164, 1400–1409.e3. [Google Scholar] [CrossRef]
- Inoue, Y.; Matsuda, H.; Omura, A.; Seike, Y.; Uehara, K.; Sasaki, H.; Kobayashi, J. Comparative Study of the Frozen Elephant Trunk and Classical Elephant Trunk Techniques to Supplement Total Arch Replacement for Acute Type A Aortic Dissection†. Eur. J. Cardiothorac. Surg. 2019, 56, 579–586. [Google Scholar] [CrossRef]
- Jakob, H.; Tsagakis, K.; Tossios, P.; Massoudy, P.; Thielmann, M.; Buck, T.; Eggebrecht, H.; Kamler, M. Combining Classic Surgery with Descending Stent Grafting for Acute DeBakey Type I Dissection. Ann. Thorac. Surg. 2008, 86, 95–101. [Google Scholar] [CrossRef]
- Kaneyuki, D.; Mogi, K.; Watanabe, H.; Otsu, M.; Sakurai, M.; Takahara, Y. The Frozen Elephant Trunk Technique for Acute Retrograde Type A Aortic Dissection: Preliminary Results. Interact. Cardiovasc. Thorac. Surg. 2020, 31, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Katayama, A.; Uchida, N.; Katayama, K.; Arakawa, M.; Sueda, T. The Frozen Elephant Trunk Technique for Acute Type A Aortic Dissection: Results from 15 Years of Experience†. Eur. J. Cardiothorac. Surg. 2015, 47, 355–360, discussion 360. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Ruan, P.; Yu, J.; Jiang, H.; Chu, T.; Ge, J. Innominate Artery Direct Cannulation Provides Brain Protection during Total Arch Replacement for Acute Type A Aortic Dissection. J. Cardiothorac. Surg. 2022, 17, 165. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Chang, Y.; Guo, H.; Qian, X.; Sun, X.; Yu, C. Prediction Nomogram for Postoperative 30-Day Mortality in Acute Type A Aortic Dissection Patients Receiving Total Aortic Arch Replacement with Frozen Elephant Trunk Technique. Front. Cardiovasc. Med. 2022, 9, 905908. [Google Scholar] [CrossRef]
- Liu, H.; Liu, S.; Zaki, A.; Wang, X.; Cong, S.; Yang, Y.; Li, J.; Lai, H.; Sun, Y.; Wei, L.; et al. Quantifying the Learning Curve of Emergent Total Arch Replacement in Acute Type A Aortic Dissection. J. Thorac. Dis. 2020, 12, 4070–4081. [Google Scholar] [CrossRef]
- Liu, P.; Wen, B.; Liu, C.; Xu, H.; Zhao, G.; Sun, F.; Zhang, H.; Yao, X. En Bloc Arch Reconstruction with the Frozen Elephant Trunk Technique for Acute Type a Aortic Dissection. Front. Cardiovasc. Med. 2021, 8, 727125. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, H.; Wang, B.; Yang, Z.; Xia, L.; Wang, H. Efficacy of Pump-Controlled Selective Antegrade Cerebral Perfusion in Total Arch Replacement: A Propensity-Matched Analysis. Front. Surg. 2022, 9, 918461. [Google Scholar] [CrossRef]
- Mariscalco, G.; Bilal, H.; Catarino, P.; Hadjinikolaou, L.; Kuduvalli, M.; Field, M.; Mascaro, J.; Oo, A.Y.; Quarto, C.; Kuo, J.; et al. Reflection from UK Aortic Group: Frozen Elephant Trunk Technique as Optimal Solution in Type A Acute Aortic Dissection. Semin. Thorac. Cardiovasc. Surg. 2019, 31, 686–690. [Google Scholar] [CrossRef]
- Morokuma, H.; Hamada, K.; Shimauchi, K.; Osaki, J.; Takahashi, B.; Yamamoto, H.; Hayashi, N.; Jinnouchi, K.; Itoh, M.; Yunoki, J.; et al. How to Select the Optimal Size of Frozen Elephant Trunk in Total Arch Replacement for Type A Acute Aortic Dissection. Asian Cardiovasc. Thorac. Ann. 2023, 31, 75–80. [Google Scholar] [CrossRef]
- Sato, H.; Fukada, J.; Tamiya, Y.; Mikami, T. Morphometric Predictors of Aortic Remodeling after Frozen Elephant Trunk Repair of Type A Dissection. Ann. Vasc. Surg. 2022, 84, 179–186. [Google Scholar] [CrossRef]
- Shen, K.; Tan, L.; Tang, H.; Zhou, X.; Xiao, J.; Xie, D.; Li, J.; Chen, Y. Total Arch Replacement with Frozen Elephant Trunk Using a NEW “Brain-Heart-First” Strategy for Acute DeBakey Type I Aortic Dissection Can Be Performed Under Mild Hypothermia (≥30 °C) With Satisfactory Outcomes. Front. Cardiovasc. Med. 2022, 9, 806822. [Google Scholar] [CrossRef]
- Shi, E.; Gu, T.; Yu, Y.; Yu, L.; Wang, C.; Fang, Q.; Zhang, Y. Early and Midterm Outcomes of Hemiarch Replacement Combined with Stented Elephant Trunk in the Management of Acute DeBakey Type I Aortic Dissection: Comparison with Total Arch Replacement. J. Thorac. Cardiovasc. Surg. 2014, 148, 2125–2131. [Google Scholar] [CrossRef]
- Shi, F.; Wang, Z. Acute Aortic Dissection Surgery: Hybrid Debranching Versus Total Arch Replacement. J. Cardiothorac. Vasc. Anesth. 2020, 34, 1487–1493. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, M.; Beckmann, E.; Krueger, H.; Fleissner, F.; Kaufeld, T.; Koigeldiyev, N.; Umminger, J.; Ius, F.; Haverich, A.; Martens, A. The Elephant Trunk Is Freezing: The Hannover Experience. J. Thorac. Cardiovasc. Surg. 2015, 149, 1286–1293. [Google Scholar] [CrossRef] [PubMed]
- Tochii, M.; Takami, Y.; Ishikawa, H.; Ishida, M.; Higuchi, Y.; Sakurai, Y.; Amano, K.; Takagi, Y. Aortic Remodeling with Frozen Elephant Trunk Technique for Stanford Type A Aortic Dissection Using Japanese J-Graft Open Stent Graft. Heart Vessel. 2019, 34, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Wada, T.; Yamamoto, H.; Takagi, D.; Kadohama, T.; Yamaura, G.; Kiryu, K.; Igarashi, I. Aortic Remodeling, Reintervention, and Survival after Zone 0 Arch Repair with Frozen Elephant Trunks for Acute Type A Aortic Dissection: Midterm Results. JTCVS Tech. 2022, 14, 29–38. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, Y.; Qian, S.; Liu, Y.; Zhu, J.; Sun, L.; Zhang, H.; Li, H. Differences Between Sexes in Patients Who Underwent Total Arch Replacement and Frozen Elephant Trunk Procedures for Acute Dissection. Perfusion 2023, 38, 1478–1491. [Google Scholar] [CrossRef]
- Yamane, Y.; Uchida, N.; Mochizuki, S.; Furukawa, T.; Yamada, K. Early- and Mid-Term Aortic Remodelling after the Frozen Elephant Trunk Technique for Retrograde Type A Acute Aortic Dissection Using the New Japanese J Graft Open Stent Graft. Interact. Cardiovasc. Thorac. Surg. 2017, 25, 720–726. [Google Scholar] [CrossRef]
- Xiao, Z.; Meng, W.; Zhu, D.; Guo, Y.; Zhang, E. Treatment Strategies for Left Subclavian Artery during Total Arch Replacement Combined with Stented Elephant Trunk Implantation. J. Thorac. Cardiovasc. Surg. 2014, 147, 639–643. [Google Scholar] [CrossRef]
- Yang, C.; Hou, P.; Wang, D.; Wang, Z.; Duan, W.; Liu, J.; Yu, S.; Fu, F.; Jin, Z. Serum Myoglobin is Associated with Postoperative Acute Kidney Injury in Stanford Type A Aortic Dissection. Front. Med. 2022, 9, 821418. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-M.; Xu, P.; Li, C.-X.; Huang, Q.; Gao, H.-B.; Li, Z.-F.; Chang, Q. A Modified Total Arch Replacement Combined with a Stented Elephant Trunk Implantation for Acute Type A Dissection under Deep Hypothermic Circulatory Arrest and Selective Antegrade Cerebral Perfusion. J. Cardiothorac. Surg. 2014, 9, 140. [Google Scholar] [CrossRef] [PubMed]
- Yoshitake, A.; Tochii, M.; Tokunaga, C.; Hayashi, J.; Takazawa, A.; Yamashita, K.; Chubachi, F.; Hori, Y.; Nakajima, H.; Iguchi, A.; et al. Early and Long-Term Results of Total Arch Replacement with the Frozen Elephant Trunk Technique for Acute Type A Aortic Dissection. Eur. J. Cardiothorac. Surg. 2020, 58, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Teng, P.; Ma, L. Four-Branched Graft Inversion Technique for the Distal Anastomosis in Acute Aortic Dissection. J. Cardiothorac. Surg. 2021, 16, 317. [Google Scholar] [CrossRef]
- Okita, Y. Frozen Elephant Trunk Usage in Acute Aortic Dissection. Asian Cardiovasc. Thorac. Ann. 2021, 29, 612–618. [Google Scholar] [CrossRef]
- Baudo, M.; Rosati, F.; D’Alonzo, M.; Fiore, A.; Muneretto, C.; Benussi, S.; Di Bacco, L. Total Arch Replacement with Ascyrus Medical Dissection Stent Versus Frozen Elephant Trunk in Acute Type A Aortic Dissection: A Meta-Analysis. J. Clin. Med. 2025, 14, 5170. [Google Scholar] [CrossRef]
- Yang, B. Commentary: Individualize the Strategy of Cerebral Protection in Aortic Arch Surgery. JTCVS Tech. 2021, 7, 20–21. [Google Scholar] [CrossRef]
- Misfeld, M.; Mohr, F.W.; Etz, C.D. Best Strategy for Cerebral Protection in Arch Surgery—Antegrade Selective Cerebral Perfusion and Adequate Hypothermia. Ann. Cardiothorac. Surg. 2013, 2, 331–338. [Google Scholar] [CrossRef]
- Czerny, M.; Grabenwöger, M.; Berger, T.; Aboyans, V.; Della Corte, A.; Chen, E.P.; Desai, N.D.; Dumfarth, J.; Elefteriades, J.A.; Etz, C.D.; et al. EACTS/STS Guidelines for Diagnosing and Treating Acute and Chronic Syndromes of the Aortic Organ. Ann. Thorac. Surg. 2024, 118, 5–115. [Google Scholar] [CrossRef]
- Tsai, M.-T.; Wu, H.-Y.; Hu, Y.-N.; Lin, T.-W.; Wen, J.-S.; Luo, C.-Y.; Roan, J.-N. Safety Time and Optimal Temperature of Unilateral Antegrade Cerebral Perfusion in Acute Type A Aortic Dissection: A Single-Center 15-Year Experience. Acta Cardiol. Sin. 2022, 38, 159–168. [Google Scholar] [CrossRef]
- Abjigitova, D.; Veen, K.M.; van Tussenbroek, G.; Mokhles, M.M.; Bekkers, J.A.; Takkenberg, J.J.M.; Bogers, A.J.J.C. Cerebral Protection in Aortic Arch Surgery: Systematic Review and Meta-Analysis. Interact. Cardiovasc. Thorac. Surg. 2022, 35, ivac128. [Google Scholar] [CrossRef]
- Papantchev, V.; Stoinova, V.; Aleksandrov, A.; Todorova-Papantcheva, D.; Hristov, S.; Petkov, D.; Nachev, G.; Ovtscharoff, W. The Role of Willis Circle Variations during Unilateral Selective Cerebral Perfusion: A Study of 500 Circles. Eur. J. Cardiothorac. Surg. 2013, 44, 743–753. [Google Scholar] [CrossRef]
- Harrer, M.; Waldenberger, F.R.; Weiss, G.; Folkmann, S.; Gorlitzer, M.; Moidl, R.; Grabenwoeger, M. Aortic Arch Surgery Using Bilateral Antegrade Selective Cerebral Perfusion in Combination with Near-Infrared Spectroscopy. Eur. J. Cardiothorac. Surg. 2010, 38, 561–567. [Google Scholar] [CrossRef]
- Urbanski, P.P.; Lenos, A.; Blume, J.C.; Ziegler, V.; Griewing, B.; Schmitt, R.; Diegeler, A.; Dinkel, M. Does Anatomical Completeness of the Circle of Willis Correlate with Sufficient Cross-Perfusion during Unilateral Cerebral Perfusion? Eur. J. Cardiothorac. Surg. 2008, 33, 402–408. [Google Scholar] [CrossRef]
Variable | Overall (N = 5983) | Unilateral (N = 3872) | Bilateral (N = 2111) | p-Value |
---|---|---|---|---|
Mean age, years | 57.0 ± 6.9 | 51.6 ± 6.4 | 59.8 ± 5.4 | <0.001 |
Male | 75.8% (4538/5983) | 79.3% (3069/3872) | 69.6% (1469/2111) | <0.001 |
BMI | 25.8 ± 1.8 | 25.5 ± 1.8 | 26.3 ± 1.8 | 0.1069 |
Connective tissue disease | 4.8% (169/3556) | 4.6% (112/2432) | 5.1% (57/1124) | 0.6014 |
Diabetes | 5.6% (287/5147) | 5.5% (197/3613) | 5.9% (90/1534) | 0.5986 |
COPD | 2.9% (118/4138) | 1.2%% (40/3239) | 8.7% (78/899) | <0.001 |
History of stroke | 5.2% (193/3733) | 4.3% (128/2954) | 8.3% (65/779) | <0.001 |
Hypertension | 73.9% (3891/5265) | 74.9% (2793/3730) | 71.5% (1098/1535) | 0.0131 |
CKD | 5.2% (216/4169) | 3.0% (98/3277) | 13.2% (118/892) | <0.001 |
CAD | 7.6% (309/4045) | 6.7% (236/3498) | 13.3% (73/547) | <0.001 |
Previous cardiac surgery | 2.9% (110/3809) | 2.5% (78/3124) | 4.7% (32/685) | 0.003 |
Acute neurological deficit | 5.4% (192/3563) | 1.7% (32/1871) | 9.5% (160/1692) | <0.001 |
Hemodynamic compromise | 6.0% (201/3358) | 3.8% (110/2859) | 18.2% (91/499) | <0.001 |
Hemopericardium | 7.7% (301/3933) | 5.2% (166/3182) | 17.8% (135/751) | <0.001 |
Outcome | Group | Studies | Total Pts | Estimate [95%CI] | Heterogeneity: I2, p-Value | Egger’s | Group Difference |
---|---|---|---|---|---|---|---|
Root replacement | Bilateral | 26 | 1917 | 12.90% [7.77–20.66] | 91.0%, p < 0.0001 | p = 0.0012 | p = 0.0012 |
Unilateral | 13 | 3697 | 30.11% [23.95–37.07] | 91.5%, p < 0.0001 | p = 0.2448 | ||
VSRR | Bilateral | 20 | 1393 | 5.73% [2.94–10.88] | 84.5%, p < 0.0001 | p < 0.0001 | p = 0.0833 |
Unilateral | 12 | 2541 | 2.09% [0.82–5.26] | 80.5%, p < 0.0001 | p = 0.5701 | ||
Bentall | Bilateral | 20 | 1393 | 8.64% [5.11–14.24] | 78.9%, p < 0.0001 | p = 0.0009 | p < 0.0001 |
Unilateral | 11 | 2508 | 28.64% [22.66–35.49] | 85.5%, p < 0.0001 | p = 0.0165 | ||
Wheat | Bilateral | 21 | 1608 | 1.36% [0.82–2.25] | 0.0%, p = 0.9661 | p = 0.0405 | p = 0.6375 |
Unilateral | 11 | 2508 | 1.03% [0.36–2.92] | 60.2%, p = 0.0051 | p = 0.0028 | ||
Root repair | Bilateral | 23 | 1497 | 0.00% [0.00–0.00] | 0.0%, p = 0.9964 | p < 0.0001 | p = 0.5901 |
Unilateral | 12 | 2541 | 1.76% [0.34–8.51] | 87.8%, p < 0.0001 | p = 0.1098 | ||
AV repair | Bilateral | 25 | 1778 | 1.70% [0.66–4.35] | 84.0%, p < 0.0001 | p < 0.0001 | p = 0.4877 |
Unilateral | 12 | 2175 | 2.73% [1.06–6.87] | 80.0%, p < 0.0001 | p = 0.0008 | ||
AV replacement | Bilateral | 26 | 1917 | 5.20% [2.85–9.30] | 81.6%, p < 0.0001 | p = 0.0023 | p = 0.0534 |
Unilateral | 12 | 2175 | 1.41% [0.42–4.58] | 80.0%, p < 0.0001 | p = 0.0039 | ||
CABG | Bilateral | 26 | 1917 | 7.64% [5.35–10.78] | 64.8%, p < 0.0001 | p = 0.0027 | p = 0.5575 |
Unilateral | 13 | 3697 | 9.57% [4.84–18.02] | 97.0%, p < 0.0001 | p = 0.3827 | ||
CPB time | Bilateral | 29 | 2111 | 218.3 min [204.5–233.0] | 99.0%, p < 0.0001 | p = 0.0643 | p = 0.9015 |
Unilateral | 14 | 2716 | 217.1 min [205.0–229.9] | 98.2%, p < 0.0001 | p = 0.4348 | ||
CXC time | Bilateral | 27 | 2081 | 125.0 min [116.1–134.5] | 98.4%, p < 0.0001 | p = 0.0937 | p = 0.7091 |
Unilateral | 14 | 2716 | 122.4 min [112.7–132.9] | 98.4%, p < 0.0001 | p = 0.4867 | ||
CA time | Bilateral | 27 | 1965 | 38.9 min [32.2–47.0] | 99.8%, p < 0.0001 | p = 0.5360 | p = 0.1019 |
Unilateral | 11 | 2129 | 30.7 min [24.9–37.9] | 99.7%, p < 0.0001 | p = 0.8003 | ||
SACP time | Bilateral | 19 | 1270 | 80.5 min [54.7–118.5] | 99.9%, p < 0.0001 | p = 0.0305 | p = 0.0395 |
Unilateral | 9 | 1994 | 49.8 min [39.0–63.5] | 99.6%, p < 0.0001 | - | ||
Target temperature | Bilateral | 27 | 1984 | 26.0 °C [25.1–26.9] | 99.8%, p < 0.001 | p = 0.5198 | p < 0.001 |
Unilateral | 14 | 3828 | 22.5 °C [21.5–23.6] | 99.9%, p < 0.001 | p = 0.0375 | ||
Stent length | Bilateral | 18 | 852 | 9.99 cm [9.15–10.90] | 100%, p < 0.0001 | p = 0.9145 | p = 0.7431 |
Unilateral | 5 | 200 | 10.25 cm [9.00–11.68] | 100%, p < 0.0001 | - |
Outcome | Group | No. of Studies | No. Total Pts | Estimate [95%CI] | Heterogeneity: I2, p-Value | Egger’s | Group Difference |
---|---|---|---|---|---|---|---|
Bleeding requiring surgical revision | Bilateral | 19 | 1132 | 7.92% [5.14–12.02] | 68.3%, p < 0.0001 | p = 0.0009 | p = 0.1494 |
Unilateral | 11 | 2501 | 4.64% [2.55–8.30] | 76.0%, p < 0.0001 | p = 0.1630 | ||
Dialysis | Bilateral | 15 | 1112 | 12.85% [8.59–18.78] | 78.7%, p < 0.0001 | p = 0.3028 | p = 0.9939 |
Unilateral | 9 | 1955 | 12.82% [9.22–17.55] | 57.1%, p = 0.0168 | - | ||
CVA | Bilateral | 22 | 1389 | 9.30% [6.93–12.38] | 56.5%, p = 0.0006 | p = 0.1377 | p = 0.1932 |
Unilateral | 10 | 2057 | 6.37% [3.85–10.35] | 59.3%, p = 0.0084 | p = 0.3358 | ||
SCI | Bilateral | 25 | 1782 | 2.75% [1.77–4.26] | 37.9%, p = 0.0296 | p = 0.0017 | p = 0.1525 |
Unilateral | 11 | 2136 | 4.34% [2.78–6.72] | 37.6%, p = 0.0987 | p = 0.7471 | ||
Hospital mortality | Bilateral | 27 | 1868 | 9.09% [7.42–11.10] | 31.4%, p = 0.0619 | p = 0.0840 | p = 0.3483 |
Unilateral | 15 | 3872 | 7.87% [6.26–9.84] | 55.0%, p = 0.0053 | p = 0.8609 |
Circulatory Arrest Time | SACP Time | |||
---|---|---|---|---|
Outcome | OR (95%CI) | p-Value | OR (95%CI) | p-Value |
Neurological complications | ||||
Total population | 1.01 (0.99–1.02) | 0.3265 | 1.01 (1.00–1.02) | 0.0157 |
uSACP | 0.99 (0.90–1.08) | 0.7942 | 1.01 (0.99–1.03) | 0.0738 |
bSACP | 1.01 (0.99–1.03) | 0.2615 | 1.01 (0.99–1.02) | 0.0928 |
Mortality | ||||
Total population | 1.00 (0.99–1.01) | 0.5210 | 1.00 (0.99–1.01) | 0.2315 |
uSACP | 1.02 (0.99–1.05) | 0.1491 | 1.01 (1.00–1.02) | 0.0473 |
bSACP | 1.00 (0.99–1.01) | 0.9577 | 0.99 (0.99–1.01) | 0.9067 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baudo, M.; D’Alonzo, M.; Muneretto, C.; Benussi, S.; Di Bacco, L.; Rosati, F. Unilateral vs. Bilateral Selective Cerebral Perfusion for Acute Type A Aortic Dissection with Frozen Elephant Trunk: Systematic Review and Meta-Analysis. J. Clin. Med. 2025, 14, 6392. https://doi.org/10.3390/jcm14186392
Baudo M, D’Alonzo M, Muneretto C, Benussi S, Di Bacco L, Rosati F. Unilateral vs. Bilateral Selective Cerebral Perfusion for Acute Type A Aortic Dissection with Frozen Elephant Trunk: Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2025; 14(18):6392. https://doi.org/10.3390/jcm14186392
Chicago/Turabian StyleBaudo, Massimo, Michele D’Alonzo, Claudio Muneretto, Stefano Benussi, Lorenzo Di Bacco, and Fabrizio Rosati. 2025. "Unilateral vs. Bilateral Selective Cerebral Perfusion for Acute Type A Aortic Dissection with Frozen Elephant Trunk: Systematic Review and Meta-Analysis" Journal of Clinical Medicine 14, no. 18: 6392. https://doi.org/10.3390/jcm14186392
APA StyleBaudo, M., D’Alonzo, M., Muneretto, C., Benussi, S., Di Bacco, L., & Rosati, F. (2025). Unilateral vs. Bilateral Selective Cerebral Perfusion for Acute Type A Aortic Dissection with Frozen Elephant Trunk: Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 14(18), 6392. https://doi.org/10.3390/jcm14186392