Prevalence, Severity, Concomitant Factors, and Natural Trajectory of Insomnia in Patients with Long COVID
Abstract
1. Introduction
1.1. Long COVID
1.2. Insomnia in the Context of Long COVID
1.3. Infection Severity and Long COVID Symptoms
1.4. Risk Factors for Insomnia in Long COVID
1.5. Natural Trajectory of Insomnia in Long COVID
1.6. Current Study
2. Materials and Methods
2.1. Patients
2.2. Measures
2.3. Comprehensive Questionnaire Battery
2.4. Comprehensive Cognitive Battery
2.5. Statistical Analyses
3. Results
3.1. Prevalence and Severity of Insomnia at Time 1 Evaluation
3.2. Severity of Acute COVID-19 Infection and Insomnia Severity
3.3. Concomitant Factors
3.4. Insomnia Trajectory
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. COVID-19 Cases|WHO COVID-19 Dashboard. Datadot. 2025. Available online: https://data.who.int/dashboards/covid19/cases (accessed on 11 May 2025).
- Hastie, C.E.; Lowe, D.J.; McAuley, A.; Mills, N.L.; Winter, A.J.; Black, C.; Scott, J.T.; O’Donnell, C.A.; Blane, D.N.; Browne, S.; et al. True prevalence of long-COVID in a nationwide, population cohort study. Nat. Commun. 2023, 14, 7892. [Google Scholar] [CrossRef]
- Thaweethai, T.; Jolley, S.E.; Karlson, E.W.; Levitan, E.B.; Levy, B.; McComsey, G.A.; McCorkell, L.; Nadkarni, G.N.; Parthasarathy, S.; Singh, U.; et al. Development of a Definition of Postacute Sequelae of SARS-CoV-2 Infection. JAMA 2023, 329, 1934–1946. [Google Scholar] [CrossRef]
- World Health Organization. Post COVID-19 Condition (Long COVID). 2022. Available online: https://www.who.int/europe/news-room/fact-sheets/item/post-covid-19-condition (accessed on 2 February 2025).
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing Long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 2021, 38, 101019. [Google Scholar] [CrossRef] [PubMed]
- McNamara, S.; Spurling, B.C.; Bollu, P.C. Chronic Insomnia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK526136/ (accessed on 15 May 2025).
- Morin, C.M.; LeBlanc, M.; Daley, M.; Gregoire, J.P.; Mérette, C. Epidemiology of insomnia: Prevalence, self-help treatments, consultations, and determinants of help-seeking behaviors. Sleep Med. 2006, 7, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.J.; Lichstein, K.L.; Durrence, H.H. Insomnia as a health risk factor. Behav. Sleep Med. 2003, 1, 227–247. [Google Scholar] [CrossRef]
- Wardle-Pinkston, S.; Slavish, D.C.; Taylor, D.J. Insomnia and cognitive performance: A systematic review and meta-analysis. Sleep Med. Rev. 2019, 48, 101205. [Google Scholar] [CrossRef] [PubMed]
- AlRasheed, M.M.; Fekih-Romdhane, F.; Jahrami, H.; Pires, G.N.; Saif, Z.; Alenezi, A.F.; Humood, A.; Chen, W.; Dai, H.; Bragazzi, N.; et al. The prevalence and severity of insomnia symptoms during COVID-19: A global systematic review and individual participant data meta-analysis. Sleep Med. 2022, 100, 7–23. [Google Scholar] [CrossRef]
- Salfi, F.; Amicucci, G.; Corigliano, D.; Viselli, L.; D’Atri, A.; Tempesta, D.; Ferrara, M. Poor sleep quality, insomnia, and short sleep duration before infection predict long-term symptoms after COVID-19. Brain Behav. Immun. 2023, 112, 140–151. [Google Scholar] [CrossRef]
- Chen, S.-J.; Morin, C.M.; Ivers, H.; Wing, Y.K.; Partinen, M.; Merikanto, I.; Holzinger, B.; Espie, C.A.; De Gennaro, L.; Dauvilliers, Y.; et al. The association of insomnia with Long COVID: An international collaborative study (ICOSS-II). Sleep Med. 2023, 112, 216–222. [Google Scholar] [CrossRef]
- Krishnan, K.; Lin, Y.; Prewitt, K.-R.M.; Potter, D.A. Multidisciplinary Approach to Brain Fog and Related Persisting Symptoms Post COVID-19. J. Health Serv. Psychol. 2022, 48, 31–38. [Google Scholar] [CrossRef]
- Merikanto, I.; Dauvilliers, Y.; Chung, F.; Wing, Y.K.; De Gennaro, L.; Holzinger, B.; Bjorvatn, B.; Morin, C.M.; Penzel, T.; Benedict, C.; et al. Sleep symptoms are essential features of long-COVID—Comparing healthy controls with COVID-19 cases of different severity in the international COVID sleep study (ICOSS-II). J. Sleep Res. 2023, 32, e13754. [Google Scholar] [CrossRef]
- Premraj, L.; Kannapadi, N.V.; Briggs, J.; Seal, S.M.; Battaglini, D.; Fanning, J.; Suen, J.; Robba, C.; Fraser, J.; Cho, S.-M. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: A meta-analysis. J. Neurol. Sci. 2022, 434, 120162. [Google Scholar] [CrossRef]
- World Health Organization. Clinical Management of COVID-19: Interim Guidance, 27 May 2020; World Health Organization: Geneva, Switzerland, 2020; Available online: https://iris.who.int/handle/10665/332196 (accessed on 5 May 2025).
- Marchi, M.; Grenzi, P.; Serafini, V.; Capoccia, F.; Rossi, F.; Marrino, P.; Pingani, L.; Galeazzi, G.M.; Ferrari, S. Psychiatric symptoms in Long-COVID patients: A systematic review. Front. Psychiatry 2023, 14, 1138389. [Google Scholar] [CrossRef]
- Kadl, A.; Davis, E.M.; Oliver, S.F.; Lazoff, S.A.; Popovich, J.; Atya, A.A.E.; Enfield, K.B.; Quigg, M. Prevalence and associations of insomnia after COVID-19 infection. J. Clin. Sleep Med. JCSM Off. Publ. Am. Acad. Sleep Med. 2025, 21, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Gong, K.; Garneau, J.; Grenier, S.; Vasiliadis, H.-M.; Dang-Vu, T.T.; Dialahy, I.Z.; Gouin, J.-P. Insomnia symptoms among older adults during the first year of the COVID-19 pandemic: A longitudinal study. Sleep Health J. Natl. Sleep Found. 2023, 9, 560–566. [Google Scholar] [CrossRef]
- Rouen, A.; Taïeb, J.; Caetano, G.; Pitron, V.; Elbaz, M.; Salmon, D.; Leger, D. Polysomnographic parameters in long-COVID chronic insomnia patients. Dialogues Clin. Neurosci. 2023, 25, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Li, S.; He, R.; Zhong, T.; Yang, H.; Chen, L.; Gao, H.; Jia, Y. Efficacy of cognitive behavioral therapy for insomnia (CBT-I) in older adults with insomnia: A systematic review and meta-analysis. Australas. Psychiatry 2022, 30, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.J.; Pruiksma, K.E. Cognitive and behavioural therapy for insomnia (CBT-I) in psychiatric populations: A systematic review. Int. Rev. Psychiatry 2014, 26, 205–213. [Google Scholar] [CrossRef]
- Bastien, C.H.; Vallières, A.; Morin, C.M. Validation of the Insomnia Severity Index as an outcome measure for insomnia research. Sleep Med. 2001, 2, 297–307. [Google Scholar] [CrossRef]
- Morin, C.M. Insomnia Severity Index (ISI) [Database Record]; APA PsycTests: Washington, DC, USA, 1993. [Google Scholar] [CrossRef]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.W.; Löwe, B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef]
- Kroenke, K.; Strine, T.W.; Spitzer, R.L.; Williams, J.B.W.; Berry, J.T.; Mokdad, A.H. The PHQ-8 as a measure of current depression in the general population. J. Affect. Disord. 2009, 114, 163–173. [Google Scholar] [CrossRef]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A global measure of perceived stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; deGruy, F.V.; Swindle, R. 15-Item Patient Health Questionnaire (PHQ-15) [Database Record]; APA PsycTests: Washington, DC, USA, 1998. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The PHQ-15: Validity of a new measure for evaluating the severity of somatic symptoms. Psychosom. Med. 2002, 64, 258–266. [Google Scholar] [CrossRef]
- Broadbent, D.E.; Cooper, P.F.; FitzGerald, P.; Parkes, K.R. The Cognitive Failures Questionnaire (CFQ) and its correlates. Br. J. Clin. Psychol. 1982, 21, 1–16. [Google Scholar] [CrossRef]
- Wallace, J.C.; Kass, S.J.; Stanny, C.J. The cognitive failures questionnaire revisited: Dimensions and correlates. J. Gen. Psychol. 2002, 129, 238–256. [Google Scholar] [CrossRef]
- Chalder, T.; Berelowitz, G.; Pawlikowska, T.; Watts, L.; Wessely, S.; Wright, D.; Wallace, E.P. Development of a fatigue scale. J. Psychosom. Res. 1993, 37, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Cudney, L.E.; Frey, B.N.; McCabe, R.E.; Green, S.M. Investigating the relationship between objective measures of sleep and self-report sleep quality in healthy adults: A review. J. Clin. Sleep Med. JCSM Off. Publ. Am. Acad. Sleep Med. 2022, 18, 927–936. [Google Scholar] [CrossRef] [PubMed]
- U.S. Census Bureau. Retrieved from Census Reporter Profile Page for Birmingham, AL. 2023. Available online: http://censusreporter.org/profiles/16000US0107000-birmingham-al/ (accessed on 12 July 2025).
- Henry, B.V.; Chen, H.; Edwards, M.A.; Faber, L.; Freischlag, J.A. A new look at an old problem: Improving diversity, equity, and inclusion in scientific research. Am. Surg. 2021, 87, 1722–1726. [Google Scholar] [CrossRef]
- Holler, E.; Campbell, N.L.; Boustani, M.; Dexter, P.; Miled, Z.B.; Owora, A. Racial disparities in the pharmacological treatment of insomnia: A time-to-event analysis using real-world data. Sleep Health 2023, 9, 128–135. [Google Scholar] [CrossRef]
- Chen, J.; Vargas-Bustamante, A.; Mortensen, K.; Ortega, A.N. Racial and ethnic disparities in health care access and utilization under the Affordable Care Act. Med. Care 2016, 54, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Yearby, R. Racial disparities in health status and access to healthcare: The continuation of inequality in the United States due to structural racism. Am. J. Econ. Sociol. 2018, 77, 1113–1152. [Google Scholar] [CrossRef]
- Bartsch, S.M.; Chin, K.L.; Strych, U.; John, D.C.; Shah, T.D.; Bottazzi, M.E.; O’Shea, K.J.; Robertson, M.; Weatherwax, C.; Heneghan, J.; et al. The Current and Future Burden of Long COVID in the United States. J. Infect. Dis. 2025, 231, 1581–1590. [Google Scholar] [CrossRef]
- Roth, A.; Chan, P.S.; Jonas, W. Addressing the Long COVID crisis: Integrative health and Long COVID. Glob. Adv. Health Med. 2021, 10, 21649561211056597. [Google Scholar] [CrossRef]
- O’Brien, K.K.; Brown, D.A.; McDuff, K.; Clair-Sullivan, N.S.; Solomon, P.; Carusone, S.C.; McCorkell, L.; Wei, H.; Goulding, S.; O’Hara, M.; et al. Conceptualizing the episodic nature of disability among adults living with Long COVID: A qualitative study. BMJ Glob. Health 2023, 8, e011276. [Google Scholar] [CrossRef]
- O’Brien, K.K.; Brown, D.A.; McDuff, K.; St Clair-Sullivan, N.; Chan Carusone, S.; Thomson, C.; McCorkell, L.; Wei, H.; Goulding, S.; O’Hara, M.; et al. Episodic disability framework in the context of Long COVID: Findings from a community-engaged international qualitative study. PLoS ONE 2025, 20, e0305187. [Google Scholar] [CrossRef]
- Bezerra MLde, S.; Rodrigues, R.N.D.; Souza, R.O. The hypothalamic-pituitary-adrenal axis and the central monoaminergic systems: A pathophysiological link to insomnia with clinical implications. Sleep Sci. 2023, 15, 128–135. [Google Scholar] [CrossRef]
- Camici, M.; Del Duca, G.; Brita, A.C.; Antinori, A. Connecting dots of Long COVID-19 pathogenesis: A vagus nerve- hypothalamic-pituitary- adrenal-mitochondrial axis dysfunction. Front. Cell. Infect. Microbiol. 2024, 14, 1501949. [Google Scholar] [CrossRef]
- Cox, R.C.; Olatunji, B.O. Sleep in a pandemic: Implications of COVID-19 for sleep through the lens of the 3P model of insomnia. Am. Psychol. 2021, 76, 1159–1171. [Google Scholar] [CrossRef] [PubMed]
- Spielman, A.J.; Caruso, L.S.; Glovinsky, P.B. A Behavioral Perspective on Insomnia Treatment. Psychiatr. Clin. N. Am. 1987, 10, 541–553. [Google Scholar] [CrossRef]
- Alimoradi, Z.; Jafari, E.; Broström, A.; Ohayon, M.M.; Lin, C.-Y.; Griffiths, M.D.; Blom, K.; Jernelöv, S.; Kaldo, V.; Pakpour, A.H. Effects of cognitive behavioral therapy for insomnia (CBT-I) on quality of life: A systematic review and meta-analysis. Sleep Med. Rev. 2022, 64, 101646. [Google Scholar] [CrossRef] [PubMed]
- Redeker, N.S.; Yaggi, H.K.; Jacoby, D.; Hollenbeak, C.S.; Breazeale, S.; Conley, S.; Hwang, Y.; Iennaco, J.; Linsky, S.; Nwanaji-Enwerem, U.; et al. Cognitive behavioral therapy for insomnia has sustained effects on insomnia, fatigue, and function among people with chronic heart failure and insomnia: The HeartSleep Study. Sleep 2022, 45, zsab252. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.J.; Dunn, K.M.; Chaffee, T. Sleep Disturbance and Cognitive Dysfunction in Multiple Sclerosis: A Systematic Review. Curr. Neurol. Neurosci. Rep. 2018, 18, 2. [Google Scholar] [CrossRef]
- Hartescu, I.; Morgan, K.; Stevinson, C.D. Increased physical activity improves sleep and mood outcomes in inactive people with insomnia: A randomized controlled trial. J. Sleep Res. 2015, 24, 526–534. [Google Scholar] [CrossRef] [PubMed]
Demographic Characteristic | Time 1 N = 172 | Time 2 N = 89 | ||
---|---|---|---|---|
n | % | n | % | |
Age | ||||
M (SD) | 49 (10.18) | 51 (9.99) | ||
Education | ||||
M (SD) | 15 (2.61) | 15 (2.49) | ||
Gender | ||||
Female | 121 | 70 | 61 | 69 |
Male | 51 | 30 | 28 | 32 |
Race | ||||
White/Caucasian | 133 | 78 | 68 | 77 |
Black/African American | 36 | 21 | 19 | 22 |
Other | 2 | 1 | 1 | 1 |
ISI Categories | ||||
No insomnia | 33 | 19 | 24 | 27 |
Subthreshold | 51 | 30 | 27 | 30 |
Moderate | 51 | 30 | 23 | 26 |
Severe | 31 | 18 | 11 | 12 |
No data | 6 | 3 | 4 | 5 |
Cognitive Domain | Neuropsychological Assessment | Brief Description |
---|---|---|
Effort and Validity | WAIS-IV Embedded Reliable Digit Span | Calculated from WAIS-IV Digit Span Forward and Backward trials. |
CVLT-3 Forced Choice | Total number correct in the forced-choice trial of CVLT-3. | |
Cognitive Status | MoCA | Measures global cognitive function at time of assessment. |
Intelligence/Premorbid | WTAR | Provides an estimate of overall premorbid IQ |
Functioning | using a word reading list. | |
Attention and | WAIS-IV Digit Span | The examinee listens to a series of numbers and either repeats or manipulates the numbers in their mind to |
Concentration | correctly respond. | |
Processing Speed | OSDMT | The examinee verbally names the number that matches each unique symbol as quickly as they can. |
OTMT Part A | The examinee counts from 1 to 25 as quickly as they can. | |
D-KEFS Color Naming and Word Reading | The examinee names colors and reads words as quickly as they can. | |
COWAT FAS | The examinee lists as many words as they can that begin with a single letter in 60 s. | |
Executive Function | OTMT Part B | The examinee switches between counting and listing the letters of the alphabet in order as quickly as they can. |
D-KEFS Inhibition and Inhibition/Switching | The examinee inhibits reading a word to name the color the word is printed in or switches between reading the word and naming the color it is printed in. | |
Language | COWAT Animals | The examinee lists as many animals as they can in 60 s for a measure of semantic verbal fluency. |
Visuospatial Construction | RBANS Figure Copy | The examinee copies a complex figure as accurately as they can. |
Semantic Memory | CVLT-3 Standard Form | The examinee listens to a word list and repeats back as many words as they can from the list after 5 learning trials, a brief delay, and a long delay. |
Episodic Memory | RBANS Story Memory Immediate and Delayed | The examinee listens to a short story and repeats the story back immediately and after a delay. |
Visuospatial Memory | RBANS Figure Recall | The examinee recalls the previously drawn complex figure from the RBANS Figure Copy subtest. |
Infection Severity | N = 164 | % |
---|---|---|
Asymptomatic | 2 | 1 |
Mild | 48 | 28 |
Moderate | 64 | 37 |
Severe | 35 | 20 |
Critical | 15 | 8 |
1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | 13. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Gender | -- | ||||||||||||
2. Age | −0.07 | -- | |||||||||||
3. Race | 0.08 | −0.10 | -- | ||||||||||
4. Education | −0.03 | 0.02 | −0.11 | -- | |||||||||
5. MoCA | 0.2 | −0.06 | −0.14 | 0.37 ** | - | ||||||||
6. DKEFS Inhibition/Switching | −0.04 | 0.12 | −0.17 * | 0.29 ** | 0.32 ** | - | |||||||
7. GAD-7 | 0.08 | −0.23 ** | 0.15 * | −0.13 | −0.25 ** | −0.26 ** | - | ||||||
8. PHQ-8 | 0.13 | −0.18 * | 0.11 | −0.11 | −0.22 ** | −0.29 ** | 0.71 ** | - | |||||
9. PSS | 0.17 * | −0.24 ** | 0.14 | −0.12 | −0.19 * | −0.28 ** | 0.75 ** | 0.73 ** | - | ||||
10. PHQ-15 | 0.22 ** | −0.16 * | 0.03 | −0.12 | −0.21 ** | −0.19 * | 0.43 ** | 0.54 ** | 0.47 ** | - | |||
11. ISI | 0.03 | −0.14 | 0.24 ** | −0.07 | −0.21 ** | −0.17 * | 0.41 ** | 0.52 ** | 0.38 ** | 0.51 ** | - | ||
12. CFQ | 0.23 ** | −0.19 * | 0.13 | −0.26 ** | −0.23 ** | −0.28 ** | 0.54 ** | 0.61 ** | 0.69 ** | 0.46 ** | 0.41 ** | - | |
13. CFS | −0.18 * | 0.06 | −0.001 | 0.10 | 0.09 | 0.21 ** | −0.44 ** | −0.64 ** | −0.48 ** | −0.59 ** | −0.46 ** | −0.55 ** | - |
Score | N | Mean (SD) | t | p-Value |
---|---|---|---|---|
ISI | ||||
Baseline | 84 | 14 (6.48) | ||
Time 2 | 84 | 12 (7.17) | 3.04 | 0.003 ** |
MOCA | ||||
Baseline | 90 | 25 (3.18) | ||
Time 2 | 90 | 26 (2.68) | −3.54 | <0.001 ** |
DKEFS Inhibition/Switching | ||||
Baseline | 87 | 95 (19.3) | ||
Time 2 | 87 | 99 (18.21) | −1.94 | 0.055 |
GAD-7 | ||||
Baseline | 86 | 9 (6.12) | ||
Time 2 | 86 | 7 (5.94) | 3.93 | <0.001 ** |
PHQ-8 | ||||
Baseline | 86 | 13 (5.62) | ||
Time 2 | 86 | 11 (6.03) | 4.20 | <0.001 ** |
PSS | ||||
Baseline | 85 | 22 (8.28) | ||
Time 2 | 85 | 19 (8.76) | 4.06 | <0.001 ** |
PHQ-15 | ||||
Baseline | 84 | 13 (5.35) | ||
Time 2 | 84 | 12 (5.76) | 3.70 | <0.001 ** |
CFQ | ||||
Base line | 84 | 50 (19.21) | ||
Time 2 | 84 | 46 (19.59) | 2.72 | 0.008 ** |
CFS | ||||
Baseline | 85 | 64 (18.53) | ||
Time 2 | 85 | 74 (24.43) | −4.99 | <0.001 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hansel Robinson, J.; Bakir, H.; James, A.S.; Brooks, M.S.; Thomas, S.J.; Lokken, K.L. Prevalence, Severity, Concomitant Factors, and Natural Trajectory of Insomnia in Patients with Long COVID. J. Clin. Med. 2025, 14, 6114. https://doi.org/10.3390/jcm14176114
Hansel Robinson J, Bakir H, James AS, Brooks MS, Thomas SJ, Lokken KL. Prevalence, Severity, Concomitant Factors, and Natural Trajectory of Insomnia in Patients with Long COVID. Journal of Clinical Medicine. 2025; 14(17):6114. https://doi.org/10.3390/jcm14176114
Chicago/Turabian StyleHansel Robinson, Jamie, Halle Bakir, Alicia Shanti James, Marquita S. Brooks, Stephen J. Thomas, and Kristine L. Lokken. 2025. "Prevalence, Severity, Concomitant Factors, and Natural Trajectory of Insomnia in Patients with Long COVID" Journal of Clinical Medicine 14, no. 17: 6114. https://doi.org/10.3390/jcm14176114
APA StyleHansel Robinson, J., Bakir, H., James, A. S., Brooks, M. S., Thomas, S. J., & Lokken, K. L. (2025). Prevalence, Severity, Concomitant Factors, and Natural Trajectory of Insomnia in Patients with Long COVID. Journal of Clinical Medicine, 14(17), 6114. https://doi.org/10.3390/jcm14176114