The Sonographic Evaluation of Abductor Injury After Intramedullary Nailing for the Hip Fractures
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethics Approval
2.3. Patient Characteristics
2.4. Surgical Intervention
2.5. Ultrasound
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loggers, S.A.I.; Van Lieshout, E.M.M.; Joosse, P.; Verhofstad, M.H.J.; Willems, H.C. Prognosis of nonoperative treatment in elderly patients with a hip fracture: A systematic review and meta-analysis. Injury 2020, 51, 2407–2413. [Google Scholar] [CrossRef]
- Jiang, H.X.; Majumdar, S.R.; Dick, D.A.; Moreau, M.; Raso, J.; Otto, D.D.; Johnston, D.W. Development and initial validation of a risk score for predicting in-hospital and 1-year mortality in patients with hip fractures. J. Bone Miner. Res. 2005, 20, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Schnell, S.; Friedman, S.M.; Mendelson, D.A.; Bingham, K.W.; Kates, S.L. The 1-year mortality of patients treated in a hip fracture program for elders. Geriatr. Orthop. Surg. Rehabil. 2010, 1, 6–14. [Google Scholar] [CrossRef]
- Ibrahim, Y.B.; Mohamed, A.Y.; Ibrahim, H.S.; Mohamed, A.H.; Cici, H.; Mohamed, Y.G.; Yasin, N.A.; May, H. Risk factors, classification, and operative choices of femur fractures at a Tertiary Hospital: First report from Somalia. Sci. Rep. 2023, 13, 12847. [Google Scholar] [CrossRef]
- Joglekar, S.B.; Lindvall, E.M.; Martirosian, A. Contemporary management of subtrochanteric fractures. Orthop. Clin. N. Am. 2015, 46, 21–35. [Google Scholar] [CrossRef]
- Panteli, M.; Mauffrey, C.; Giannoudis, P.V. Subtrochanteric fractures: Issues and challenges. Injury 2017, 48, 2023–2026. [Google Scholar] [CrossRef]
- Çölbe, S.A.; Çiftdemir, M.; Ustabaşıoğlu, F.E.; Özgür, C. Iatrogenic gluteus medius muscle insertion injury while trochanteric entry nailing due to trochanteric fractures: A comparative study in forty patients with gray-scale ultrasound and shear-wave elastography. Int. Orthop. 2021, 45, 3253–3261. [Google Scholar] [CrossRef]
- Noda, M.; Saegusa, Y.; Takahashi, M.; Takada, Y.; Fujita, M.; Shinohara, I. Decreased postoperative gluteus medius muscle cross-sectional area measured by computed tomography scan in patients with intertrochanteric fractures nailing. J. Orthop. Surg. 2017, 25, 2309499017727943. [Google Scholar] [CrossRef]
- Noda, M.; Takahara, S.; Inui, A.; Oe, K.; Osawa, S.; Matsushita, T. Comparative study of different entry spots on postoperative gluteus medius muscle cross-sectional area in patients with intertrochanteric fractures nailing. Cureus 2023, 15, e36103. [Google Scholar] [CrossRef] [PubMed]
- Ozsoy, M.H.; Basarir, K.; Bayramoglu, A.; Erdemli, B.; Tuccar, E.; Eksioglu, M.F. Risk of superior gluteal nerve and gluteus medius muscle injury during femoral nail insertion. J. Bone Jt. Surg. 2007, 89, 829–834. [Google Scholar] [CrossRef]
- McConnell, T.; Tornetta Iii, P.; Benson, E.; Manuel, J. Gluteus medius tendon injury during reaming for gamma nail insertion. Clin. Orthop. Relat. Res. 2003, 407, 199–202. [Google Scholar] [CrossRef]
- Flack, N.A.; Nicholson, H.D.; Woodley, S.J. A review of the anatomy of the hip abductor muscles, gluteus medius, gluteus minimus, and tensor fascia lata. Clin. Anat. 2012, 25, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, D.F.; Smith, J. Sonoanatomy and pathology of the posterior band of the gluteus medius tendon. J. Ultrasound Med. 2017, 36, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, D.F.; Sellon, J.L.; Moore, B.J.; Smith, J. Sonoanatomy and pathology of the gluteus minimus tendon. J. Ultrasound Med. 2020, 39, 647–657. [Google Scholar] [CrossRef]
- Ahedi, H.; Aitken, D.; Scott, D.; Blizzard, L.; Cicuttini, F.; Jones, G. The association between hip muscle cross-sectional area, muscle strength, and bone mineral density. Calcif. Tissue Int. 2014, 95, 64–72. [Google Scholar] [CrossRef]
- Pumarejo Gomez, L.; Li, D.; Childress, J.M. Greater Trochanteric Pain Syndrome (Greater Trochanteric Bursitis). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Kameda, M.; Tanimae, H.; Kihara, A.; Matsumoto, F. Does low back pain or leg pain in gluteus medius syndrome contribute to lumbar degenerative disease and hip osteoarthritis and vice versa? A literature review. J. Phys. Ther. Sci. 2020, 32, 173–191. [Google Scholar] [CrossRef]
- Disantis, A.; Andrade, A.J.; Baillou, A.; Bonin, N.; Byrd, T.; Campbell, A.; Domb, B.; Doyle, H.; Enseki, K.; Getz, B.; et al. The 2022 International Society for Hip Preservation (ISHA) physiotherapy agreement on assessment and treatment of greater trochanteric pain syndrome (GTPS): An international consensus statement. J. Hip Preserv. Surg. 2023, 10, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Santullo, P.; Stogicza, A.R. Hip Joint and Trochanteric Bursa Injection. In Regional Nerve Blocks in Anesthesia and Pain Therapy: Imaging-Guided and Traditional Techniques; Jankovic, D., Peng, P., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 811–822. [Google Scholar]
- Rhim, H.C.; Shin, J.; Beling, A.; Guo, R.; Pan, X.; Afunugo, W.; Ruiz, J.; Andrew, M.N.; Kim, J.; Tenforde, A.S. Extracorporeal Shockwave Therapy for Greater Trochanteric Pain Syndrome: A Systematic Review with Meta-Analysis of Randomized Clinical Trials. JBJS Rev. 2024, 12, e24.00091. [Google Scholar] [CrossRef]
- Heaver, C.; Pinches, M.; Kuiper, J.H.; Thomas, G.; Lewthwaite, S.; Burston, B.J.; Banerjee, R.D. Greater trochanteric pain syndrome: Focused shockwave therapy versus an ultrasound guided injection: A randomised control trial. Hip Int. 2023, 33, 490–499. [Google Scholar] [CrossRef]
- Barratt, P.A.; Brookes, N.; Newson, A. Conservative treatments for greater trochanteric pain syndrome: A systematic review. Br. J. Sports Med. 2017, 51, 97–104. [Google Scholar] [CrossRef]
- Wahezi, S.E.; Patel, A.; Yerra, S.; Naeimi, T.; Sayed, D.; Oakes, D.; Ortiz, N.; Yee, M.; Yih, C.; Sitapara, K. Percutaneous ultrasound-guided tenotomy of the iliotibial band for trochanteric pain syndrome: A longitudinal observational study with one-year durability results. Pain Physician 2023, 26, 393. [Google Scholar] [CrossRef]
- Speers, C.J.; Bhogal, G.S. Greater trochanteric pain syndrome: A review of diagnosis and management in general practice. Br. J. Gen. Pract. 2017, 67, 479–480. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Lodhia, P.; Gui, C.; Vemula, S.P.; Martin, T.J.; Domb, B.G. Outcomes of Open Versus Endoscopic Repair of Abductor Muscle Tears of the Hip: A Systematic Review. Arthroscopy 2015, 31, 2057–2067.e2. [Google Scholar] [CrossRef] [PubMed]
- Atilano, L.; Martin, N.; Iglesias, G.; Martin, J.I.; Mendiola, J.; Aiyegbusi, A.; Bully, P.; Rodriguez-Palomo, M.; Andia, I. Sonographic pathoanatomy of greater trochanteric pain syndrome. J. Ultrasound 2023, 27, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Ruta, S.; Quiroz, C.; Marin, J.; Catay, E.; Rosa, J.; García-Monaco, R.; Soriano, E.R. Ultrasound evaluation of the greater trochanter pain syndrome: Bursitis or tendinopathy? JCR J. Clin. Rheumatol. 2015, 21, 99–101. [Google Scholar] [CrossRef]
- Tull, F.; Borrelli, J., Jr. Soft-tissue injury associated with closed fractures: Evaluation and management. J. Am. Acad. Orthop. Surg. 2003, 11, 431–438. [Google Scholar] [CrossRef]
- Norris, B.L.; Kellam, J.F. Soft-Tissue Injuries Associated With High-Energy Extremity Trauma: Principles of Management. JAAOS-J. Am. Acad. Orthop. Surg. 1997, 5, 37–46. [Google Scholar] [CrossRef]
- Kazley, J.M.; Banerjee, S.; Abousayed, M.M.; Rosenbaum, A.J. Classifications in Brief: Garden Classification of Femoral Neck Fractures. Clin. Orthop. Relat. Res. 2018, 476, 441–445. [Google Scholar] [CrossRef]
- Pervez, H.; Parker, M.J.; Pryor, G.A.; Lutchman, L.; Chirodian, N. Classification of trochanteric fracture of the proximal femur: A study of the reliability of current systems. Injury 2002, 33, 713–715. [Google Scholar] [CrossRef]
- Loizou, C.L.; McNamara, I.; Ahmed, K.; Pryor, G.A.; Parker, M.J. Classification of subtrochanteric femoral fractures. Injury 2010, 41, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Jo, W.L.; Park, B.K.; Go, J.J.; Han, M.; Chun, S.; Lee, Y.K. Reliability of the 2018 Revised Version of AO/OTA Classification for Femoral Shaft Fractures. Clin. Orthop. Surg. 2024, 16, 688–693. [Google Scholar] [CrossRef]
- Kuroki, Y.; Imamura, R.; Inoue, H.; Inoue, T.; Ebihara, T.; Nakamura, K.; Izumi, T.; Hamada, T.; Inokuchi, A.; Arizono, T. Gluteal Compartment Syndrome After Femoral Nail Extraction: A Case Report. Cureus 2023, 15, e37289. [Google Scholar] [CrossRef]
- Firat, A.; Tecimel, O.; Deveci, A.; Ocguder, A.; Bozkurt, M. Surgical technique: Supine patient position with the contralateral leg elevated for femoral intramedullary nailing. Clin. Orthop. Relat. Res. 2013, 471, 640–648. [Google Scholar] [CrossRef]
- Vig, K.S.; Adams, C.; Young, J.R.; Perloff, E.; O’Connor, C.M.; Czajka, C.M. Patient Positioning for Proximal Femur Fracture Fixation: A Review of Best Practices. Curr. Rev. Musculoskelet. Med. 2021, 14, 272–281. [Google Scholar] [CrossRef]
- Paulsson, M.; Ekholm, C.; Tranberg, R.; Rolfson, O.; Geijer, M. Using a Traction Table for Fracture Reduction during Minimally Invasive Plate Osteosynthesis (MIPO) of Distal Femoral Fractures Provides Anatomical Alignment. J. Clin. Med. 2023, 12, 4044. [Google Scholar] [CrossRef]
- Baad, M.; Lu, Z.F.; Reiser, I.; Paushter, D. Clinical Significance of US Artifacts. Radiographics 2017, 37, 1408–1423. [Google Scholar] [CrossRef]
- Lee, H.-W.; Kim, J.Y.; Park, C.-W.; Haotian, B.; Lee, G.W.; Noh, K.-C. Comparison of extracorporeal shock wave therapy and ultrasound-guided shoulder injection therapy in patients with supraspinatus tendinitis. Clin. Orthop. Surg. 2022, 14, 585. [Google Scholar] [CrossRef] [PubMed]
- Albano, D.; Coppola, A.; Gitto, S.; Rapisarda, S.; Messina, C.; Sconfienza, L.M. Imaging of calcific tendinopathy around the shoulder: Usual and unusual presentations and common pitfalls. Radiol. Med. 2021, 126, 608–619. [Google Scholar] [CrossRef] [PubMed]
- Cocco, G.; Ricci, V.; Villani, M.; Delli Pizzi, A.; Izzi, J.; Mastandrea, M.; Boccatonda, A.; Naňka, O.; Corvino, A.; Caulo, M.; et al. Ultrasound imaging of bone fractures. Insights Imaging 2022, 13, 189. [Google Scholar] [CrossRef] [PubMed]
- Kolasiński, W.; Pomorski, L. Does the use of chlorhexidine gel reduce the frequency of surgical site infections? Pol. Przegl Chir. 2020, 92, 26–31. [Google Scholar] [CrossRef]
- Okere, P.; Iloanusi, N.; Itanyi, U.; Ezea, M. Low-cost antimicrobial fortification of ultrasound coupling gel: An ergonomic innovation to combat sonology-acquired nosocomial infections. Malawi Med. J. 2019, 31, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Geneletti, S.; Richardson, S.; Best, N. Adjusting for selection bias in retrospective, case-control studies. Biostatistics 2009, 10, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Yao, Y.; Yan, H.; Wang, J.; Dai, L.; Qu, X.; Fang, Z.; Feng, F.; Zhou, Y. Iatrogenic fracture during shoulder dislocation reduction: Characteristics, management and outcomes. Eur. J. Med. Res. 2021, 26, 73. [Google Scholar] [CrossRef] [PubMed]
- Furuya, H.; Naito, K.; Sugiyama, Y.; Goto, K.; Nagura, N.; Shimamura, Y.; Iwase, Y.; Kaneko, K. Index extensor digitorum communis tendon entrapment in a growth plate injury of distal radius. Trauma Case Rep. 2019, 22, 100209. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Huang, Q.; He, J.; Wang, Y.; Wu, L.; Yu, B.; Zhang, D. Does isolated greater trochanter implication affect hip abducent strength and functions in intertrochanteric fracture? BMC Musculoskelet. Disord. 2019, 20, 79. [Google Scholar] [CrossRef] [PubMed]
- Maenhout, A.G.; Palmans, T.; De Muynck, M.; De Wilde, L.F.; Cools, A.M. The impact of rotator cuff tendinopathy on proprioception, measuring force sensation. J. Shoulder Elb. Surg. 2012, 21, 1080–1086. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.; Ferreira, J.; Silva, D.; Rodrigues, E.; Bessa, I.M.; Ribeiro, F. Impact of Patellar Tendinopathy on Knee Proprioception: A Cross-Sectional Study. Clin. J. Sport. Med. 2017, 27, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Röijezon, U.; Clark, N.C.; Treleaven, J. Proprioception in musculoskeletal rehabilitation. Part 1: Basic science and principles of assessment and clinical interventions. Man. Ther. 2015, 20, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Melton, L.J., 3rd; Wahner, H.W.; Richelson, L.S.; O’Fallon, W.M.; Riggs, B.L. Osteoporosis and the risk of hip fracture. Am. J. Epidemiol. 1986, 124, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Luo, K.; Xu, J.; Huang, W.; Yin, W.; Xiao, M.; Wang, Y.; Ding, M.; Huang, X. Sarcopenia as a Risk Factor for Future Hip Fracture: A Meta-Analysis of Prospective Cohort Studies. J. Nutr. Health Aging 2021, 25, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Granacher, U.; Muehlbauer, T.; Zahner, L.; Gollhofer, A.; Kressig, R.W. Comparison of traditional and recent approaches in the promotion of balance and strength in older adults. Sports Med. 2011, 41, 377–400. [Google Scholar] [CrossRef] [PubMed]
- González-Ravé, J.M.; Sánchez-Gómez, A.; Santos-García, D.J. Efficacy of two different stretch training programs (passive vs. proprioceptive neuromuscular facilitation) on shoulder and hip range of motion in older people. J. Strength. Cond. Res. 2012, 26, 1045–1051. [Google Scholar] [CrossRef]
- Song, H.S.; Park, S.D.; Kim, J.Y. The effects of proprioceptive neuromuscular facilitation integration pattern exercise program on the fall efficacy and gait ability of the elders with experienced fall. J. Exerc. Rehabil. 2014, 10, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.M.Y.; Chong, K.C.; Law, S.W.; Ho, W.T.; Li, J.; Chui, C.S.; Chow, S.K.H.; Cheung, W.H. The effectiveness of exercises on fall and fracture prevention amongst community elderlies: A systematic review and meta-analysis. J. Orthop. Transl. 2020, 24, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-T.; Wang, T.-G. Ultrasonographic Examination of the Adult Hip. J. Med. Ultrasound 2012, 20, 201–209. [Google Scholar] [CrossRef]
- Backhaus, M.; Burmester, G.-R.; Gerber, T.; Grassi, W.; Machold, K.P.; Swen, W.A.; Wakefield, R.J.; Manger, B. Guidelines for musculoskeletal ultrasound in rheumatology. Ann. Rheum. Dis. 2001, 60, 641–649. [Google Scholar] [CrossRef]
- Connell, D.A.; Bass, C.; Sykes, C.J.; Young, D.; Edwards, E. Sonographic evaluation of gluteus medius and minimus tendinopathy. Eur. Radiol. 2003, 13, 1339–1347. [Google Scholar] [CrossRef] [PubMed]
- Hilligsøe, M.; Rathleff, M.S.; Olesen, J.L. Ultrasound definitions and findings in greater trochanteric pain syndrome: A systematic review. Ultrasound Med. Biol. 2020, 46, 1584–1598. [Google Scholar] [CrossRef]
Characteristics | Patients, No. (%) (N = 61) |
---|---|
Age, mean (SD), y | 79 (12) |
Gender | |
Female | 46 (75%) |
Male | 15 (25%) |
Diagnosis †,a | |
Trochanteric fracture | 48 (79%) |
Mid-shaft fracture | 5 (8%) |
Subtrochanteric fracture | 4 (7%) |
Femur neck stress fracture | 1 (2%) |
Proximal shaft fracture | 1 (2%) |
Mid-shaft peri-implant fracture | 1 (2%) |
IM nail removal | 1 (2%) |
Type of Lesion | Unaffected Side (N = 61) a | Affected Side (N = 61) b |
---|---|---|
Normal | 5 (8%) | 0 (0%) |
Tendon tear | 0 (0%) | 35 (57%) |
Tendinosis | 39 (64%) | 10 (16%) |
Calcification | 30 (49%) | 7 (11%) |
Fracture | 0 (0%) | 48 (79%) |
Type of Lesion | Location of Lesion | |
---|---|---|
Gmi (N = 61) a | Gme (N = 61) b | |
Unaffected side | ||
Normal | 24 (39%) | 6 (10%) |
Tendinosis | 23 (38%) | 37 (61%) |
Calcification | 17 (28%) | 28 (46%) |
Tendon tear | 0 (0%) | 0 (0%) |
Fracture | 0 (0%) | 0 (0%) |
Affected side | ||
Normal | 33 (54%) | 0 (0%) |
Tendinosis | 10 (16%) | 4 (7%) |
Calcification | 2 (3%) | 6 (10%) |
Tendon tear | 13 (21%) | 31 (51%) |
Fracture | 7 (11%) | 47 (77%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, Y.; Lee, H.; Lam, K.H.S.; Lee, M.; Lee, J.; Hwang, J. The Sonographic Evaluation of Abductor Injury After Intramedullary Nailing for the Hip Fractures. J. Clin. Med. 2025, 14, 5498. https://doi.org/10.3390/jcm14155498
Yoon Y, Lee H, Lam KHS, Lee M, Lee J, Hwang J. The Sonographic Evaluation of Abductor Injury After Intramedullary Nailing for the Hip Fractures. Journal of Clinical Medicine. 2025; 14(15):5498. https://doi.org/10.3390/jcm14155498
Chicago/Turabian StyleYoon, Yonghyun, Howon Lee, King Hei Stanley Lam, Minjae Lee, Jonghyeok Lee, and Jihyo Hwang. 2025. "The Sonographic Evaluation of Abductor Injury After Intramedullary Nailing for the Hip Fractures" Journal of Clinical Medicine 14, no. 15: 5498. https://doi.org/10.3390/jcm14155498
APA StyleYoon, Y., Lee, H., Lam, K. H. S., Lee, M., Lee, J., & Hwang, J. (2025). The Sonographic Evaluation of Abductor Injury After Intramedullary Nailing for the Hip Fractures. Journal of Clinical Medicine, 14(15), 5498. https://doi.org/10.3390/jcm14155498