Non-Invasive Positive Pressure Ventilation for Pre-Oxygenation of Critically Ill Patients Before Intubation
Abstract
1. Introduction
2. Methods
3. Physiological Basis for NIPPV in Pre-Oxygenation
4. Evidence Base for NIPPV Pre-Oxygenation
5. Comparison with Alternative Techniques
5.1. NIPPV vs. HFNCO
5.2. NIPPV vs. Bag-Valve-Mask
5.3. Combined Approaches
5.4. Special Circumstances
6. Patient Selection and Risk Stratification
6.1. Ideal Candidates for NIPPV Pre-Oxygenation
6.2. Contraindications and Cautions
6.3. Risk-Benefit Assessment in Different Patient Populations
6.4. Predictors of Success/Failure
7. Practical Implementation
7.1. Technical Aspects of NIPPV Delivery for Pre-Oxygenation
7.2. Optimal Settings
7.3. Interface Selection Considerations
7.4. Monitoring During Pre-Oxygenation
7.5. Transitioning from Pre-Oxygenation to Laryngoscopy
8. Limitations and Potential Complications
8.1. Potential Adverse Effects of NIPPV for Pre-Oxygenation
8.2. Gastric Insufflation and Aspiration Risk
8.3. Hemodynamic Effects
8.4. Delays in Securing Definitive Airway
8.5. Resource Considerations
9. Standardized Protocols and Training for Safe NIPPV Implementation
10. Future Directions: The Role of Artificial Intelligence
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Russotto, V.; Myatra, S.N.; Laffey, J.G.; Tassistro, E.; Antolini, L.; Bauer, P.; Lascarrou, J.B.; Szuldrzynski, K.; Camporota, L.; Pelosi, P.; et al. Intubation Practices and Adverse Peri-intubation Events in Critically Ill Patients from 29 Countries. JAMA 2021, 325, 1164. [Google Scholar] [CrossRef] [PubMed]
- De Jong, A.; Rolle, A.; Molinari, N.; Paugam-Burtz, C.; Constantin, J.-M.; Lefrant, J.-Y.; Asehnoune, K.; Jung, B.; Futier, E.; Chanques, G.; et al. Cardiac Arrest and Mortality Related to Intubation Procedure in Critically Ill Adult Patients: A Multicenter Cohort Study. Crit. Care Med. 2018, 46, 532–539. [Google Scholar] [CrossRef]
- Mort, T.C. The incidence and risk factors for cardiac arrest during emergency tracheal intubation: A justification for incorporating the ASA Guidelines in the remote location. J. Clin. Anesth. 2004, 16, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Nimmagadda, U.; Salem, M.R.; Crystal, G.J. Preoxygenation: Physiologic Basis, Benefits, and Potential Risks. Anesth. Analg. 2017, 124, 507–517. [Google Scholar] [CrossRef]
- Tanoubi, I.; Drolet, P.; Donati, F. Optimizing preoxygenation in adults. Can. J. Anesth. Can. Anesth. 2009, 56, 449–466. [Google Scholar] [CrossRef]
- Mosier, J.M.; Hypes, C.D.; Sakles, J.C. Understanding preoxygenation and apneic oxygenation during intubation in the critically ill. Intensive Care Med. 2017, 43, 226–228. [Google Scholar] [CrossRef] [PubMed]
- Pourmand, A.; Robinson, C.; Dorwart, K.; O’Connell, F. Pre-oxygenation: Implications in emergency airway management. Am. J. Emerg. Med. 2017, 35, 1177–1183. [Google Scholar] [CrossRef]
- Karamchandani, K.; Nasa, P.; Jarzebowski, M.; Brewster, D.J.; De Jong, A.; Bauer, P.R.; Berkow, L.; Brown, C.A.; Cabrini, L.; Casey, J.; et al. Tracheal intubation in critically ill adults with a physiologically difficult airway. An international Delphi study. Intensive Care Med. 2024, 50, 1563–1579. [Google Scholar] [CrossRef]
- Jaber, S.; Amraoui, J.; Lefrant, J.-Y.; Arich, C.; Cohendy, R.; Landreau, L.; Calvet, Y.; Capdevila, X.; Mahamat, A.; Eledjam, J.-J. Clinical practice and risk factors for immediate complications of endotracheal intubation in the intensive care unit: A prospective, multiple-center study. Crit. Care Med. 2006, 34, 2355–2361. [Google Scholar] [CrossRef]
- Goldberg, P.; Reissmann, H.; Maltais, F.; Ranieri, M.; Gottfried, S. Efficacy of noninvasive CPAP in COPD with acute respiratory failure. Eur. Respir. J. 1995, 8, 1894–1900. [Google Scholar] [CrossRef]
- Carteaux, G.; Millán-Guilarte, T.; De Prost, N.; Razazi, K.; Abid, S.; Thille, A.W.; Schortgen, F.; Brochard, L.; Brun-Buisson, C.; Dessap, A.M. Failure of Noninvasive Ventilation for De Novo Acute Hypoxemic Respiratory Failure: Role of Tidal Volume. Crit. Care Med. 2016, 44, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Baillard, C.; Fosse, J.-P.; Sebbane, M.; Chanques, G.; Vincent, F.; Courouble, P.; Cohen, Y.; Eledjam, J.-J.; Adnet, F.; Jaber, S. Noninvasive Ventilation Improves Preoxygenation before Intubation of Hypoxic Patients. Am. J. Respir. Crit. Care Med. 2006, 174, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Jaber, S.; Monnin, M.; Girard, M.; Conseil, M.; Cisse, M.; Carr, J.; Mahul, M.; Delay, J.M.; Belafia, F.; Chanques, G.; et al. Apnoeic oxygenation via high-flow nasal cannula oxygen combined with non-invasive ventilation preoxygenation for intubation in hypoxaemic patients in the intensive care unit: The single-centre, blinded, randomised controlled OPTINIV trial. Intensive Care Med. 2016, 42, 1877–1887. [Google Scholar] [CrossRef]
- Fong, K.M.; Au, S.Y.; Ng, G.W.Y. Preoxygenation before intubation in adult patients with acute hypoxemic respiratory failure: A network meta-analysis of randomized trials. Crit. Care 2019, 23, 319. [Google Scholar] [CrossRef] [PubMed]
- Miguel-Montanes, R.; Hajage, D.; Messika, J.; Bertrand, F.; Gaudry, S.; Rafat, C.; Labbé, V.; Dufour, N.; Jean-Baptiste, S.; Bedet, A.; et al. Use of High-Flow Nasal Cannula Oxygen Therapy to Prevent Desaturation During Tracheal Intubation of Intensive Care Patients With Mild-to-Moderate Hypoxemia. Crit. Care Med. 2015, 43, 574–583. [Google Scholar] [CrossRef]
- Papazian, L.; Corley, A.; Hess, D.; Fraser, J.F.; Frat, J.-P.; Guitton, C.; Jaber, S.; Maggiore, S.M.; Nava, S.; Rello, J.; et al. Use of high-flow nasal cannula oxygenation in ICU adults: A narrative review. Intensive Care Med. 2016, 42, 1336–1349. [Google Scholar] [CrossRef]
- Oliveira, J.E.; Silva, L.; Cabrera, D.; Barrionuevo, P.; Johnson, R.L.; Erwin, P.J.; Murad, M.H.; Bellolio, M.F. Effectiveness of Apneic Oxygenation During Intubation: A Systematic Review and Meta-Analysis. Ann. Emerg. Med. 2017, 70, 483–494.e11. [Google Scholar] [CrossRef]
- Frat, J.P.; Ricard, J.D.; Quenot, J.P.; Pichon, N.; Demoule, A.; Forel, J.M.; Mira, J.-P.; Coudroy, R.; Berquier, G.; Voisin, B.; et al. Non-invasive ventilation versus high-flow nasal cannula oxygen therapy with apnoeic oxygenation for preoxygenation before intubation of patients with acute hypoxaemic respiratory failure: A randomised, multicentre, open-label trial. Lancet Respir. Med. 2019, 7, 303–312. [Google Scholar] [CrossRef]
- Frat, J.P.; Coudroy, R.; Thille, A.W. Non-invasive ventilation or high-flow oxygen therapy: When to choose one over the other? Respirology 2019, 24, 724–731. [Google Scholar] [CrossRef]
- Brindley, P.G.; Beed, M.; Law, J.A.; Hung, O.; Levitan, R.; Murphy, M.F.; Duggan, L.V. Airway management outside the operating room: How to better prepare. Can. J. Anesth. Can. Anesth. 2017, 64, 530–539. [Google Scholar] [CrossRef]
- Misseri, G.; Frassanito, L.; Simonte, R.; Rosà, T.; Grieco, D.L.; Piersanti, A.; De Robertis, E.; Gregoretti, C. Personalized Noninvasive Respiratory Support in the Perioperative Setting: State of the Art and Future Perspectives. J. Pers. Med. 2023, 14, 56. [Google Scholar] [CrossRef]
- Masip, J.; Mas, A. Noninvasive ventilation in acute respiratory failure. Int. J. Chronic Obstr. Pulm. Dis. 2014, 9, 837–852. [Google Scholar] [CrossRef]
- Keenan, S.P.; Sinuff, T.; Burns, K.E.A.; Muscedere, J.; Kutsogiannis, J.; Mehta, S.; Cook, D.J.; Ayas, N.; Adhikari, N.K.; Hand, L.; et al. Clinical practice guidelines for the use of noninvasive positive-pressure ventilation and noninvasive continuous positive airway pressure in the acute care setting. Can. Med. Assoc. J. 2011, 183, E195–E214. [Google Scholar] [CrossRef] [PubMed]
- Weingart, S.D.; Levitan, R.M. Preoxygenation and Prevention of Desaturation During Emergency Airway Management. Ann. Emerg. Med. 2012, 59, 165–175.e1. [Google Scholar] [CrossRef] [PubMed]
- Benumof, J.L.; Dagg, R.; Benumof, R. Critical Hemoglobin Desaturation Will Occur before Return to an Unparalyzed State following 1 mg/kg Intravenous Succinylcholine. Anesthesiology 1997, 87, 979–982. [Google Scholar] [CrossRef] [PubMed]
- Baraka, A.S.; Taha, S.K.; Aouad, M.T.; El-Khatib, M.F.; Kawkabani, N.I. Preoxygenation: Comparison of Maximal Breathing and Tidal Volume Breathing Techniques. Anesthesiology 1999, 91, 612. [Google Scholar] [CrossRef]
- Hedenstierna, G.; Edmark, L. Effects of anesthesia on the respiratory system. Best Pract. Res. Clin. Anaesthesiol. 2015, 29, 273–284. [Google Scholar] [CrossRef]
- Mosier, J.M.; Sakles, J.C.; Whitmore, S.P.; Hypes, C.D.; Hallett, D.K.; Hawbaker, K.E.; Snyder, L.S.; Bloom, J.W. Failed noninvasive positive-pressure ventilation is associated with an increased risk of intubation-related complications. Ann. Intensive Care 2015, 5, 4. [Google Scholar] [CrossRef]
- Futier, E.; Constantin, J.-M.; Pelosi, P.; Chanques, G.; Massone, A.; Petit, A.; Kwiatkowski, F.; Bazin, J.-E.; Jaber, S. Noninvasive Ventilation and Alveolar Recruitment Maneuver Improve Respiratory Function during and after Intubation of Morbidly Obese Patients: A Randomized Controlled Study. Anesthesiology 2011, 114, 1354–1363. [Google Scholar] [CrossRef]
- Constantin, J.-M.; Futier, E.; Cherprenet, A.-L.; Chanques, G.; Guerin, R.; Cayot-Constantin, S.; Jabaudon, M.; Perbet, S.; Chartier, C.; Jung, B.; et al. A recruitment maneuver increases oxygenation after intubation of hypoxemic intensive care unit patients: A randomized controlled study. Crit. Care 2010, 14, R76. [Google Scholar] [CrossRef]
- Gattinoni, L.; Caironi, P.; Cressoni, M.; Chiumello, D.; Ranieri, V.M.; Quintel, M.; Russo, S.; Patroniti, N.; Cornejo, R.; Bugedo, G. Lung recruitment in patients with the acute respiratory distress syndrome. N. Engl. J. Med. 2006, 354, 1775–1786. [Google Scholar] [CrossRef]
- Maniaci, A.; La Via, L.; Lechien, J.R.; Sangiorgio, G.; Iannella, G.; Magliulo, G.; Pace, A.; Mat, Q.; Lavalle, S.; Lentini, M. Hearing Loss and Oxidative Stress: A Comprehensive Review. Antioxidants 2024, 13, 842. [Google Scholar] [CrossRef]
- Grieco, D.L.; Menga, L.S.; Cesarano, M.; Rosà, T.; Spadaro, S.; Bitondo, M.M.; Montomoli, J.; Falò, G.; Tonetti, T.; Cutuli, S.L.; et al. Effect of Helmet Noninvasive Ventilation vs. High-Flow Nasal Oxygen on Days Free of Respiratory Support in Patients With COVID-19 and Moderate to Severe Hypoxemic Respiratory Failure: The HENIVOT Randomized Clinical Trial. JAMA 2021, 325, 1731. [Google Scholar] [CrossRef] [PubMed]
- Ricard, J.-D.; Roca, O.; Lemiale, V.; Corley, A.; Braunlich, J.; Jones, P.; Kang, B.J.; Lellouche, F.; Nava, S.; Rittayamai, N.; et al. Use of nasal high flow oxygen during acute respiratory failure. Intensive Care Med. 2020, 46, 2238–2247. [Google Scholar] [CrossRef] [PubMed]
- Parke, R.L.; McGuinness, S.P. Pressures Delivered By Nasal High Flow Oxygen During All Phases of the Respiratory Cycle. Respir. Care 2013, 58, 1621–1624. [Google Scholar] [CrossRef] [PubMed]
- Lyons, C.; Callaghan, M. Apnoeic oxygenation with high-flow nasal oxygen for laryngeal surgery: A case series. Anaesthesia 2017, 72, 1379–1387. [Google Scholar] [CrossRef]
- Sorbello, M.; Antonelli, M.; Guarino, A.; Merli, G.; Petrini, F.; Frova, G.; Società Italiana di Anestesia, Analgesia, Rianimazione, Terapia Intensiva e Iperbarica (SIAARTI) Difficult Airways Study Group. Noninvasive ventilation and intubation of hypoxic patients: ICU versus operating room. Am. J. Respir. Crit. Care Med. 2008, 177, 357–358, author reply 358. [Google Scholar] [CrossRef]
- Vourc’h, M.; Asfar, P.; Volteau, C.; Bachoumas, K.; Clavieras, N.; Egreteau, P.-Y.; Asehnoune, K.; Mercat, A.; Reignier, J.; Jaber, S.; et al. High-flow nasal cannula oxygen during endotracheal intubation in hypoxemic patients: A randomized controlled clinical trial. Intensive Care Med. 2015, 41, 1538–1548. [Google Scholar] [CrossRef]
- Leone, M.; Einav, S.; Chiumello, D.; Constantin, J.-M.; De Robertis, E.; De Abreu, M.G.; Gregoretti, C.; Jaber, S.; Maggiore, S.M.; Pelosi, P.; et al. Noninvasive respiratory support in the hypoxaemic peri-operative/periprocedural patient: A joint ESA/ESICM guideline. Intensive Care Med 2020, 46, 697–713. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, H.; Sun, F.; Lyu, S.; An, Y. High-flow nasal cannula oxygen therapy is superior to conventional oxygen therapy but not to noninvasive mechanical ventilation on intubation rate: A systematic review and meta-analysis. Crit. Care 2017, 21, 184. [Google Scholar] [CrossRef]
- Jaber, S.; Jung, B.; Corne, P.; Sebbane, M.; Muller, L.; Chanques, G.; Verzilli, D.; Jonquet, O.; Eledjam, J.-J.; Lefrant, J.-Y. An intervention to decrease complications related to endotracheal intubation in the intensive care unit: A prospective, multiple-center study. Intensive Care Med. 2010, 36, 248–255. [Google Scholar] [CrossRef]
- Bailly, A.; Ricard, J.-D.; Le Thuaut, A.; Helms, J.; Kamel, T.; Mercier, E.; Lemiale, V.; Colin, G.; Mira, J.-P.; Clere-Jehl, R.; et al. Compared Efficacy of Four Preoxygenation Methods for Intubation in the ICU: Retrospective Analysis of McGrath Mac Videolaryngoscope Versus Macintosh Laryngoscope (MACMAN) Trial Data. Crit. Care Med. 2019, 47, e340–e348. [Google Scholar] [CrossRef] [PubMed]
- Higgs, A.; McGrath, B.A.; Goddard, C.; Rangasami, J.; Suntharalingam, G.; Gale, R.; Cook, T. Guidelines for the management of tracheal intubation in critically ill adults. Br. J. Anaesth. 2018, 120, 323–352. [Google Scholar] [CrossRef] [PubMed]
- Casey, J.D.; Janz, D.R.; Russell, D.W.; Vonderhaar, D.J.; Joffe, A.M.; Dischert, K.M.; Brown, R.M.; Zouk, A.N.; Gulati, S.; Heideman, B.E.; et al. Bag-Mask Ventilation during Tracheal Intubation of Critically Ill Adults. N. Engl. J. Med. 2019, 380, 811–821. [Google Scholar] [CrossRef]
- Rittayamai, N.; Tscheikuna, J.; Rujiwit, P. High-Flow Nasal Cannula Versus Conventional Oxygen Therapy After Endotracheal Extubation: A Randomized Crossover Physiologic Study. Respir. Care 2014, 59, 485–490. [Google Scholar] [CrossRef]
- Besnier, E.; Guernon, K.; Bubenheim, M.; Gouin, P.; Carpentier, D.; Béduneau, G.; Grangé, S.; Declercq, P.-L.; Marchalot, A.; Tamion, F.; et al. Pre-oxygenation with high-flow nasal cannula oxygen therapy and non-invasive ventilation for intubation in the intensive care unit. Intensive Care Med. 2016, 42, 1291–1292. [Google Scholar] [CrossRef]
- Hirsch, J.; Führer, I.; Kuhly, P.; Schaffartzik, W. Preoxygenation: A comparison of three different breathing systems. Br. J. Anaesth. 2001, 87, 928–931. [Google Scholar] [CrossRef]
- Bhagwan, S.D. Levitan’s no desat with nasal cannula for Infants with pyloric stenosis requiring intubation. Pediatr. Anesth. 2013, 23, 297–298. [Google Scholar] [CrossRef]
- Baillard, C.; Prat, G.; Jung, B.; Futier, E.; Lefrant, J.Y.; Vincent, F.; Hamdi, A.; Vicaut, E.; Jaber, S. Effect of preoxygenation using non-invasive ventilation before intubation on subsequent organ failures in hypoxaemic patients: A randomised clinical trial. Br. J. Anaesth. 2018, 120, 361–367. [Google Scholar] [CrossRef]
- De Jong, A.; Jung, B.; Jaber, S. Intubation in the ICU: We could improve our practice. Crit. Care Lond. Engl. 2014, 18, 209. [Google Scholar] [CrossRef]
- Lyons, C.; Wiles, M.D. Rapid sequence induction: A modern-day example of Theseus’ Paradox? Anaesthesia 2025. early view. [Google Scholar] [CrossRef]
- Sorbello, M.; Paternò, D.S.; Zdravkovic, I.; La Via, L. Pharmacological approach to rapid sequence induction/intubation: A contemporary perspective. Curr. Opin. Anaesthesiol. 2025, 38, 369–374. [Google Scholar] [CrossRef]
- Chrimes, N.; Higgs, A.; Law, J.A.; Baker, P.A.; Cooper, R.M.; Greif, R.; Kovacs, G.; Myatra, S.N.; O’SUllivan, E.P.; Rosenblatt, W.H.; et al. Project for Universal Management of Airways—Part 1: Concept and methods. Anaesthesia 2020, 75, 1671–1682. [Google Scholar] [CrossRef]
- Baillard, C.; Depret, F.; Levy, V.; Boubaya, M.; Beloucif, S. Incidence and prediction of inadequate preoxygenation before induction of anaesthesia. Ann. Fr. D'anesthesie Reanim. 2014, 33, e55–e58. [Google Scholar] [CrossRef]
- Chiumello, D.; Brochard, L.; Marini, J.J.; Slutsky, A.S.; Mancebo, J.; Ranieri, V.M.; Thompson, B.T.; Papazian, L.; Schultz, M.J.; Amato, M.; et al. Respiratory support in patients with acute respiratory distress syndrome: An expert opinion. Crit. Care 2017, 21, 240. [Google Scholar] [CrossRef]
- Cabrini, L.; Landoni, G.; Oriani, A.; Plumari, V.P.; Nobile, L.; Greco, M.; Pasin, L.; Beretta, L.; Zangrillo, A. Noninvasive Ventilation and Survival in Acute Care Settings: A Comprehensive Systematic Review and Metaanalysis of Randomized Controlled Trials. Crit. Care Med. 2015, 43, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Rochwerg, B.; Brochard, L.; Elliott, M.W.; Hess, D.; Hill, N.S.; Nava, S.; Navalesi, P.; Antonelli, M.; Brozek, J.; Conti, G.; et al. Official ERS/ATS clinical practice guidelines: Noninvasive ventilation for acute respiratory failure. Eur. Respir. J. 2017, 50, 1602426. [Google Scholar] [CrossRef] [PubMed]
- Scala, R.; Naldi, M.; Archinucci, I.; Coniglio, G.; Nava, S. Noninvasive Positive Pressure Ventilation in Patients With Acute Exacerbations of COPD and Varying Levels of Consciousness. Chest 2005, 128, 1657–1666. [Google Scholar] [CrossRef] [PubMed]
- Baillard, C.; Boussarsar, M.; Fosse, J.-P.; Girou, E.; Le Toumelin, P.; Cracco, C.; Jaber, S.; Cohen, Y.; Brochard, L. Cardiac troponin I in patients with severe exacerbation of chronic obstructive pulmonary disease. Intensive Care Med. 2003, 29, 584–589. [Google Scholar] [CrossRef]
- Nasa, P.; Azoulay, E.; Khanna, A.K.; Jain, R.; Gupta, S.; Javeri, Y.; Juneja, D.; Rangappa, P.; Sundararajan, K.; Alhazzani, W.; et al. Expert consensus statements for the management of COVID-19-related acute respiratory failure using a Delphi method. Crit. Care 2021, 25, 106. [Google Scholar] [CrossRef]
- Bauman, Z.M.; Gassner, M.Y.; Coughlin, M.A.; Mahan, M.; Watras, J. Lung Injury Prediction Score Is Useful in Predicting Acute Respiratory Distress Syndrome and Mortality in Surgical Critical Care Patients. Crit. Care Res. Pract. 2015, 2015, 157408. [Google Scholar] [CrossRef]
- Thille, A.W.; Contou, D.; Fragnoli, C.; Córdoba-Izquierdo, A.; Boissier, F.; Brun-Buisson, C. Non-invasive ventilation for acute hypoxemic respiratory failure: Intubation rate and risk factors. Crit. Care 2013, 17, R269. [Google Scholar] [CrossRef] [PubMed]
- De Jong, A.; Rolle, A.; Pensier, J.; Capdevila, M.; Jaber, S. First-attempt success is associated with fewer complications related to intubation in the intensive care unit. Intensive Care Med. 2020, 46, 1278–1280. [Google Scholar] [CrossRef] [PubMed]
- Ehrmann, S.; Roche-Campo, F.; Sferrazza Papa, G.F.; Isabey, D.; Brochard, L.; Apiou-Sbirlea, G.; REVA Research Network. Aerosol therapy during mechanical ventilation: An international survey. Intensive Care Med. 2013, 39, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
- Brochard, L.; Mancebo, J.; Wysocki, M.; Lofaso, F.; Conti, G.; Rauss, A.; Simonneau, G.; Benito, S.; Gasparetto, A.; Lemaire, F.; et al. Noninvasive Ventilation for Acute Exacerbations of Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 1995, 333, 817–822. [Google Scholar] [CrossRef]
- Mort, T.C.; Waberski, B.H.; Clive, J. Extending the preoxygenation period from 4 to 8 min in critically ill patients undergoing emergency intubation. Crit. Care Med. 2009, 37, 68–71. [Google Scholar] [CrossRef]
- De Jong, A.; Chanques, G.; Jaber, S. Mechanical ventilation in obese ICU patients: From intubation to extubation. Crit. Care 2017, 21, 63. [Google Scholar] [CrossRef]
- Chaudhuri, D.; Jinah, R.; Burns, K.E.A.; Angriman, F.; Ferreyro, B.L.; Munshi, L.; Goligher, E.; Scales, D.; Cook, D.J.; Mauri, T.; et al. Helmet noninvasive ventilation compared to facemask noninvasive ventilation and high-flow nasal cannula in acute respiratory failure: A systematic review and meta-analysis. Eur. Respir. J. 2022, 59, 2101269. [Google Scholar] [CrossRef]
- Chiumello, D.; Pelosi, P.; Carlesso, E.; Severgnini, P.; Aspesi, M.; Gamberoni, C.; Antonelli, M.; Conti, G.; Chiaranda, M.; Gattinoni, L. Noninvasive positive pressure ventilation delivered by helmet vs. standard face mask. Intensive Care Med. 2003, 29, 1671–1679. [Google Scholar] [CrossRef]
- L’Her, E.; Deye, N.; Lellouche, F.; Taille, S.; Demoule, A.; Fraticelli, A.; Mancebo, J.; Brochard, L. Physiologic Effects of Noninvasive Ventilation during Acute Lung Injury. Am. J. Respir. Crit. Care Med. 2005, 172, 1112–1118. [Google Scholar] [CrossRef]
- Mosier, J.M.; Sakles, J.C.; Stolz, U.; Hypes, C.D.; Chopra, H.; Malo, J.; Bloom, J.W. Neuromuscular Blockade Improves First-Attempt Success for Intubation in the Intensive Care Unit. A Propensity Matched Analysis. Ann. Am. Thorac. Soc. 2015, 12, 734–741. [Google Scholar] [CrossRef]
- Lapinsky, S.E. Endotracheal intubation in the ICU. Crit. Care 2015, 19, 258. [Google Scholar] [CrossRef]
- Boyce, J.R.; Ness, T.; Castroman, P.; Gleysteen, J.J. A Preliminary Study of the Optimal Anesthesia Positioning for the Morbidly Obese Patient. Obes. Surg. 2003, 13, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Hayes-Bradley, C.; Lewis, A.; Burns, B.; Miller, M. Efficacy of Nasal Cannula Oxygen as a Preoxygenation Adjunct in Emergency Airway Management. Ann. Emerg. Med. 2016, 68, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, G.A.; Girard, T.D.; Kress, J.P.; Morris, P.E.; Ouellette, D.R.; Alhazzani, W.; Burns, S.M.; Epstein, S.K.; Esteban, A.; Fan, E.; et al. Official Executive Summary of an American Thoracic Society/American College of Chest Physicians Clinical Practice Guideline: Liberation from Mechanical Ventilation in Critically Ill Adults. Am. J. Respir. Crit. Care Med. 2017, 195, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Carron, M.; Freo, U.; BaHammam, A.S.; Dellweg, D.; Guarracino, F.; Cosentini, R.; Feltracco, P.; Vianello, A.; Ori, C.; Esquinas, A. Complications of non-invasive ventilation techniques: A comprehensive qualitative review of randomized trials. Br. J. Anaesth. 2013, 110, 896–914. [Google Scholar] [CrossRef]
- Lemiale, V.; Mokart, D.; Resche-Rigon, M.; Pène, F.; Mayaux, J.; Faucher, E.; Nyunga, M.; Girault, C.; Perez, P.; Guitton, C.; et al. Effect of Noninvasive Ventilation vs. Oxygen Therapy on Mortality Among Immunocompromised Patients With Acute Respiratory Failure: A Randomized Clinical Trial. JAMA 2015, 314, 1711. [Google Scholar] [CrossRef]
- Frat, J.-P.; Thille, A.W.; Mercat, A.; Girault, C.; Ragot, S.; Perbet, S.; Prat, G.; Boulain, T.; Morawiec, E.; Cottereau, A.; et al. High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure. N. Engl. J. Med. 2015, 372, 2185–2196. [Google Scholar] [CrossRef]
- Ricard, J.-D.; Messika, J.; Sztrymf, B.; Gaudry, S. Impact on outcome of delayed intubation with high-flow nasal cannula oxygen: Is the device solely responsible? Intensive Care Med. 2015, 41, 1157–1158. [Google Scholar] [CrossRef]
- Sanfilippo, F.; La Via, L.; Dezio, V.; Santonocito, C.; Amelio, P.; Genoese, G.; Astuto, M.; Noto, A. Assessment of the inferior vena cava collapsibility from subcostal and trans-hepatic imaging using both M-mode or artificial intelligence: A prospective study on healthy volunteers. Intensive Care Med. Exp. 2023, 11, 15. [Google Scholar] [CrossRef]
- Russotto, V.; Tassistro, E.; Myatra, S.N.; Parotto, M.; Antolini, L.; Bauer, P.; Lascarrou, J.B.; Szułdrzyński, K.; Camporota, L.; Putensen, C.; et al. Peri-intubation Cardiovascular Collapse in Patients Who Are Critically Ill: Insights from the INTUBE Study. Am. J. Respir. Crit. Care Med. 2022, 206, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.J.; Koh, Y.; Lim, C.-M.; Huh, J.W.; Baek, S.; Han, M.; Seo, H.-S.; Suh, H.J.; Seo, G.J.; Kim, E.Y.; et al. Failure of high-flow nasal cannula therapy may delay intubation and increase mortality. Intensive Care Med. 2015, 41, 623–632. [Google Scholar] [CrossRef]
- Ehrmann, S.; Li, J.; Ibarra-Estrada, M.; Perez, Y.; Pavlov, I.; McNicholas, B.; Roca, O.; Mirza, S.; Vines, D.; Garcia-Salcido, R.; et al. Awake prone positioning for COVID-19 acute hypoxaemic respiratory failure: A randomised, controlled, multinational, open-label meta-trial. Lancet Respir. Med. 2021, 9, 1387–1395. [Google Scholar] [CrossRef]
- Maniaci, A.; Lavalle, S.; Gagliano, C.; Lentini, M.; Masiello, E.; Parisi, F.; Iannella, G.; Cilia, N.D.; Salerno, V.; Cusumano, G.; et al. The Integration of Radiomics and Artificial Intelligence in Modern Medicine. Life 2024, 14, 1248. [Google Scholar] [CrossRef]
- La Via, L.; Maniaci, A.; Gage, D.; Cuttone, G.; Misseri, G.; Lentini, M.; Paternò, D.S.; Pappalardo, F.; Sorbello, M. Exploring the potential of artificial intelligence in airway management. Trends Anaesth. Crit. Care 2024, 59, 101512. [Google Scholar] [CrossRef]
- Rubulotta, F.; Blanch Torra, L.; Naidoo, K.D.; Aboumarie, H.S.; Mathivha, L.R.; Asiri, A.Y.; Uranga, L.S.; Soussi, S. Mechanical Ventilation, Past, Present, and Future. Anesth. Analg. 2024, 138, 308–325. [Google Scholar] [CrossRef]
- Luckscheiter, A.; Thiel, M.; Zink, W.; Eisenberger, J.; Viergutz, T.; Schneider-Lindner, V. Utilization of non-invasive ventilation before prehospital emergency anesthesia in trauma—A cohort analysis with machine learning. Scand. J. Trauma Resusc. Emerg. Med. 2025, 33, 35. [Google Scholar] [CrossRef]
Study | Design | Population | Intervention | Comparator | Primary Outcomes | Key Findings |
---|---|---|---|---|---|---|
Baillard et al. (2006) [12] | Prospective RCT | 53 hypoxemic ICU patients requiring intubation | NIPPV (PSV 5–15 cmH2O, PEEP 5 cmH2O) | Standard bag-valve-mask | SpO2 after pre-oxygenation and during intubation | NIPPV group: higher mean SpO2 after pre-oxygenation (98 ± 2% vs. 93 ± 6%, p < 0.001); better oxygenation during intubation (93 ± 8% vs. 81 ± 15%, p < 0.001); lower incidence of severe desaturation (7% vs. 46%) |
Jaber et al. (2016) [13] OPTINIV trial | Single-center RCT | 25 hypoxemic ICU patients | NIPPV + HFNCO during laryngoscopy | NIPPV alone | Lowest SpO2 during intubation | Combined approach: higher lowest SpO2 (100% vs. 96%, p = 0.029); reduced incidence of severe hypoxemia (0% vs. 21%) |
Frat et al. (2019) [18] FLORALI-2 trial | Multicenter RCT | 313 patients with acute hypoxemic respiratory failure | NIPPV | HFNCO with apneic oxygenation | Lowest SpO2 during intubation; incidence of severe desaturation | NIPPV: better pre-oxygenation (median SpO2 100% vs. 99%, p < 0.01); reduced incidence of SpO2 < 80% (23% vs. 35%, p = 0.03); most beneficial in severe hypoxemia (PaO2/FiO2 < 200) |
Frat et al. (2019) [19] | RCT | 192 critically ill patients | NIPPV | HFNCO | Median lowest SpO2 during intubation | No significant difference in lowest SpO2 (90% vs. 92%, p = 0.44); better patient comfort with HFNC |
Vourc’h et al. (2015) [38] | Multicenter RCT | 124 patients with acute hypoxemic respiratory failure | NIPPV | HFNCO | Lowest SpO2 during intubation | No significant overall difference; post-hoc analysis showed potential advantage of NIPPV in severely hypoxemic patients (PaO2/FiO2 < 200) |
Futier et al. (2011) [29] | RCT | Morbidly obese surgical patients | NIPPV with recruitment maneuvers | Conventional pre-oxygenation | Oxygenation parameters; safe apnea time | NIPPV significantly improved oxygenation and extended safe apnea time in obese patients |
Casey et al. (2019) [44] | Multicenter RCT | 401 critically ill patients | Bag-mask ventilation | No ventilation between induction and laryngoscopy | Lowest SpO2 during intubation | Bag-mask ventilation: higher lowest SpO2 (96% vs. 93%, p = 0.01); reduced incidence of severe hypoxemia (10.9% vs. 22.8%, p = 0.01) |
Fong et al. (2019) [14] | Network meta-analysis | 25 studies (3232 patients) | Various pre-oxygenation methods | Multiple comparisons | Risk of desaturation events | NIPPV is associated with the lowest risk of desaturation events compared to all other pre-oxygenation methods |
Higgs et al. (2018) [43] | Meta-analysis | 24 RCTs (3521 patients) | NIPPV | Conventional methods | Severe desaturation; ICU length of stay | NIPPV reduced the relative risk of severe desaturation by 30% (RR 0.70, 95% CI 0.59–0.85); reduced ICU length of stay (mean difference −1.8 days, 95% CI −3.1 to −0.5) |
Zhao et al. (2017) [40] | Meta-analysis | 11 RCTs (1472 patients) | NIPPV, HFNCO, conventional oxygen therapy | Multiple comparisons | Risk of severe desaturation | NIPPV significantly reduced risk vs. conventional oxygen (RR 0.43, 95% CI 0.23–0.80); no significant difference between NIPPV and HFNC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Via, L.; Cuttone, G.; Senussi Testa, T.; Duarte-Medrano, G.; Nuno-Lambarri, N.; Deana, C.; Maniaci, A.; Paternò, D.S.; Zdravkovic, I.; Sorbello, M. Non-Invasive Positive Pressure Ventilation for Pre-Oxygenation of Critically Ill Patients Before Intubation. J. Clin. Med. 2025, 14, 5356. https://doi.org/10.3390/jcm14155356
La Via L, Cuttone G, Senussi Testa T, Duarte-Medrano G, Nuno-Lambarri N, Deana C, Maniaci A, Paternò DS, Zdravkovic I, Sorbello M. Non-Invasive Positive Pressure Ventilation for Pre-Oxygenation of Critically Ill Patients Before Intubation. Journal of Clinical Medicine. 2025; 14(15):5356. https://doi.org/10.3390/jcm14155356
Chicago/Turabian StyleLa Via, Luigi, Giuseppe Cuttone, Tarek Senussi Testa, Gilberto Duarte-Medrano, Natalia Nuno-Lambarri, Cristian Deana, Antonino Maniaci, Daniele Salvatore Paternò, Ivana Zdravkovic, and Massimiliano Sorbello. 2025. "Non-Invasive Positive Pressure Ventilation for Pre-Oxygenation of Critically Ill Patients Before Intubation" Journal of Clinical Medicine 14, no. 15: 5356. https://doi.org/10.3390/jcm14155356
APA StyleLa Via, L., Cuttone, G., Senussi Testa, T., Duarte-Medrano, G., Nuno-Lambarri, N., Deana, C., Maniaci, A., Paternò, D. S., Zdravkovic, I., & Sorbello, M. (2025). Non-Invasive Positive Pressure Ventilation for Pre-Oxygenation of Critically Ill Patients Before Intubation. Journal of Clinical Medicine, 14(15), 5356. https://doi.org/10.3390/jcm14155356