The Influence of Reactive Oxygen Species in the Development of Contrast-Induced Nephropathy After Coronary Angiography
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection of the Study Group and Collection of Blood Samples
2.2. Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) Analysis
2.3. Statistical Analysis
3. Results
3.1. Clinical Features of Patients
3.2. Evaluation of Changes in the Inflammation-Related Gene Levels
3.3. Association of ROS-Related Gene Levels with CIN in the Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AKI | Acute kidney injury |
BMI | Body Mass Index |
CIN | Contrast-induced nephropathy |
eGFR | Estimated Glomerular Filtration Rate |
FOXO | Forkhead box gene |
HO-1 | Heme oxygenase-1 |
NF-Κb | Nuclear factor kappa B |
NRF2 | Nuclear factor erythroid-2-related factor 2 |
p-PCI | Primary percutaneous coronary intervention |
ROC | Receiver Operating Characteristic |
ROS | Reactive oxygen species |
RT-PCR | Reverse Transcriptase-Polymerase Chain Reaction |
References
- Mehran, R.; Nikolsky, E. Contrast-Induced Nephropathy: Definition, Epidemiology, and Patients at Risk. Kidney Int. Suppl. 2006, 69, S11–S15. [Google Scholar] [CrossRef] [PubMed]
- Lameire, N.; Kellum, J.A.; KDIGO AKI Guideline Work Group. Contrast-Induced Acute Kidney Injury and Renal Support for Acute Kidney Injury: A KDIGO Summary (Part 2). Crit. Care 2013, 17, 205. [Google Scholar] [CrossRef] [PubMed]
- Mehran, R.; Dangas, G.D.; Weisbord, S.D. Contrast-Associated Acute Kidney Injury. N. Engl. J. Med. 2019, 380, 2146–2155. [Google Scholar] [CrossRef] [PubMed]
- Kusirisin, P.; Chattipakorn, S.C.; Chattipakorn, N. Contrast-Induced Nephropathy and Oxidative Stress: Mechanistic Insights for Better Interventional Approaches. J. Transl. Med. 2020, 18, 400. [Google Scholar] [CrossRef]
- Heyman, S.N.; Rosen, S.; Khamaisi, M.; Idée, J.-M.; Rosenberger, C. Reactive Oxygen Species and the Pathogenesis of Radiocontrast-Induced Nephropathy. Investig. Radiol. 2010, 45, 188–195. [Google Scholar] [CrossRef]
- Ren, Z.; He, H.; Zuo, Z.; Xu, Z.; Wei, Z.; Deng, J. The Role of Different SIRT1-Mediated Signaling Pathways in Toxic Injury. Cell Mol. Biol. Lett. 2019, 24, 36. [Google Scholar] [CrossRef]
- Joe, Y.; Zheng, M.; Kim, H.J.; Kim, S.; Uddin, M.J.; Park, C.; Ryu, D.G.; Kang, S.S.; Ryoo, S.; Ryter, S.W.; et al. Salvianolic Acid B Exerts Vasoprotective Effects through the Modulation of Heme Oxygenase-1 and Arginase Activities. J. Pharmacol. Exp. Ther. 2012, 341, 850–858. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, M.; Zhu, P.; Huang, H.; Zhuang, Q.; Shen, J.; Cai, Y.; Zhao, M.; He, Q. New Insights into the Nrf-2/HO-1 Signaling Axis and Its Application in Pediatric Respiratory Diseases. Oxid. Med. Cell Longev. 2019, 2019, 3214196. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, J.; Yang, J.; Wang, S.; Yang, L. Role of TLR4/MyD88/NF-κB Signaling in the Contrast-Induced Injury of Renal Tubular Epithelial Cells. Exp. Ther. Med. 2020, 20, 115. [Google Scholar] [CrossRef]
- Fu, Y.; Cao, J.; Wei, X.; Ge, Y.; Su, Z.; Yu, D. Klotho Alleviates Contrast-Induced Acute Kidney Injury by Suppressing Oxidative Stress, Inflammation, and NF-KappaB/NLRP3-Mediated Pyroptosis. Int. Immunopharmacol. 2023, 118, 110105. [Google Scholar] [CrossRef]
- Pistolesi, V.; Regolisti, G.; Morabito, S.; Gandolfini, I.; Corrado, S.; Piotti, G.; Fiaccadori, E. Contrast Medium Induced Acute Kidney Injury: A Narrative Review. J. Nephrol. 2018, 31, 797–812. [Google Scholar] [CrossRef] [PubMed]
- Kassan, M.; Choi, S.-K.; Galán, M.; Bishop, A.; Umezawa, K.; Trebak, M.; Belmadani, S.; Matrougui, K. Enhanced NF-κB Activity Impairs Vascular Function through PARP-1-, SP-1-, and COX-2-Dependent Mechanisms in Type 2 Diabetes. Diabetes 2013, 62, 2078–2087. [Google Scholar] [CrossRef] [PubMed]
- Yaribeygi, H.; Atkin, S.L.; Simental-Mendía, L.E.; Barreto, G.E.; Sahebkar, A. Anti-Inflammatory Effects of Resolvins in Diabetic Nephropathy: Mechanistic Pathways. J. Cell Physiol. 2019, 234, 14873–14882. [Google Scholar] [CrossRef]
- Danilewicz, M.; Wągrowska-Danilewicz, M. Tubular NF-κB Is Overexpressed in Proteinuric Patients with IgA Nephropathy. Folia Histochem. Cytobiol. 2012, 50, 93–98. [Google Scholar] [CrossRef]
- Silva, G.E.B.; Costa, R.S.; Ravinal, R.C.; Ramalho, L.Z.; Dos Reis, M.A.; Coimbra, T.M.; Dantas, M. NF-kB Expression in IgA Nephropathy Outcome. Dis. Markers 2011, 31, 9–15. [Google Scholar] [CrossRef]
- Ageena, S.A.; Bakr, A.G.; Mokhlis, H.A.; Abd-Ellah, M.F. Renoprotective Effects of Apocynin And/or Umbelliferone against Acrylamide-Induced Acute Kidney Injury in Rats: Role of the NLRP3 Inflammasome and Nrf-2/HO-1 Signaling Pathways. Naunyn Schmiedebergs Arch. Pharmacol. 2025, 398, 569–580. [Google Scholar] [CrossRef]
- Zoja, C.; Benigni, A.; Remuzzi, G. The Nrf2 Pathway in the Progression of Renal Disease. Nephrol. Dial. Transplant. 2014, 29 (Suppl. S1), i19–i24. [Google Scholar] [CrossRef]
- Liu, M.; Grigoryev, D.N.; Crow, M.T.; Haas, M.; Yamamoto, M.; Reddy, S.P.; Rabb, H. Transcription Factor Nrf2 Is Protective during Ischemic and Nephrotoxic Acute Kidney Injury in Mice. Kidney Int. 2009, 76, 277–285. [Google Scholar] [CrossRef]
- Koyasu, S. The Role of PI3K in Immune Cells. Nat. Immunol. 2003, 4, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Ouyang, G.; Bao, S. The Activation of Akt/PKB Signaling Pathway and Cell Survival. J. Cell Mol. Med. 2005, 9, 59–71. [Google Scholar] [CrossRef]
- Xu, Z.; Qian, L.; Niu, R.; Wang, Y.; Yang, Y.; Liu, C.; Lin, X. Mechanism of L. in the Treatment of Contrast-Induced Nephropathy on the Basis of Network Pharmacology Analysis. Front. Nephrol. 2022, 2, 834513. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Su, Y.; Huo, Y. Forkhead Box Protein O1 (FoxO1) /SERPINB1 Ameliorates ROS Production in Diabetic Nephropathy. Food Sci. Nutr. 2021, 9, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.A.; Bae, S.Y.; Ahn, S.Y.; Kim, J.; Kwon, Y.J.; Jung, W.Y.; Ko, G.J. Resveratrol Ameliorates Contrast Induced Nephropathy Through the Activation of SIRT1-PGC-1α-Foxo1 Signaling in Mice. Kidney Blood Press. Res. 2017, 42, 641–653. [Google Scholar] [CrossRef] [PubMed]
- Hershkovitz, I.; Moskona, D.; Arensburg, B.; Kobyliansky, E. Directional Dental Asymmetry in South Sinai Bedouin Isolates. Anthropol. Anz. 1987, 45, 269–274. [Google Scholar] [CrossRef]
- Ji, J.; Tao, P.; Wang, Q.; Li, L.; Xu, Y. SIRT1: Mechanism and Protective Effect in Diabetic Nephropathy. Endocr. Metab. Immune Disord. Drug Targets 2021, 21, 835–842. [Google Scholar]
All Patients n = 48 | Group 2 n = 25 | Group 1 n = 23 | p-Value | |
---|---|---|---|---|
Age, years | 63 ± 7 | 62 ± 6 | 63 ± 7 | 0.478 |
Male sex, n (%) | 33 (68.8%) | 17 (68%) | 16 (69.6%) | 0.907 |
Body Mass Index, kg/m2 | 28.86 ± 5.36 | 28.87 ± 6.41 | 28.85 ± 4.07 | 0.990 |
Smoking status, n (%) | ||||
Yes | 22 (45.8%) | 11 (44%) | 11 (47.8%) | 0.756 |
No | 17 (35.4%) | 10 (40%) | 7 (30.4%) | |
Alcohol use, n (%) | ||||
Yes | 4 (8.30%) | 3 (12%) | 1 (4.30%) | 0.583 |
No | 37 (77.1%) | 19 (76%) | 18 (78.3%) | |
Comorbidities, n (%) | ||||
Diabetes mellitus | 36 (75%) | 16 (64%) | 20 (87%) | 0.670 |
Hypertension | 20 (41.7%) | 8 (32%) | 12 (52.2%) | 0.157 |
Coronary artery disease | 24 (50%) | 15 (60%) | 9 (39.1%) | 0.149 |
Heart failure | 9 (18.8%) | 3 (12%) | 6 (26.1%) | 0.279 |
Hyperlipidemia | 25 (52.1%) | 10 (40%) | 15 (62.2%) | 0.081 |
Number of comorbidities, n (%) | ||||
0 | 8 (16.7%) | 6 (24%) | 2 (8.7%) | 0.122 |
1 | 9 (18.8%) | 6 (24%) | 3 (13%) | |
2 | 3 (6.3%) | 2 (8%) | 1 (4.3%) | |
3 | 13 (27.1%) | 8 (32%) | 5 (21.7%) | |
4 | 9 (18.8%) | 2 (8%) | 7 (30.4%) | |
5 | 3 (6.3%) | 1 (4%) | 2 (8.7%) | |
<3 | 33 (68.8%) | 22 (88%) | 11(47.8%) | 0.03 |
3≥ | 15 (31.3%) | 3 (12%) | 12 (52.2%) |
All Patients n = 48 | Group 2 n = 25 | Group 1 n = 23 | p-Value | |
---|---|---|---|---|
Baseline | ||||
Serum Urea, mg/dL | 35 (27–49) | 30 (25–36) | 43 (30–77) | 0.001 |
Serum Uric acid, mg/dL | 6 ± 1.8 | 5.1 ± 1.3 | 6.9 ± 1.8 | 0.004 |
Serum Creatinine, mg/dL | 0.80 ± 0.17 | 0.76 ± 0.17 | 0.84 ± 0.16 | 0.139 |
eGFR, mL/min/1.73 m2 | 95.96 ± 15.31 | 98.17 ± 12.84 | 93.56 ± 17.60 | 0.303 |
Serum Sodium, mEq/L | 137 ± 3 | 138 ± 3 | 136 ± 4 | 0.216 |
Serum Potassium, mmol/L | 4.4 ± 0.4 | 4.3 ± 0.3 | 4.4 ± 0.5 | 0.245 |
Serum Calcium, mg/dL | 9.2 ± 0.5 | 9.2 ± 0.5 | 9.1 ± 0.6 | 0.562 |
Serum Albumin, g/L | 3.7 ± 0.4 | 3.9 ± 0.3 | 3.6 ± 0.4 | 0.005 |
72nd hour | ||||
Serum Urea, mg/dL | 62 ± 44 | 32 ± 10 | 95 ± 44 | <0.001 |
Serum Uric acid, mg/dL | 6.7 ± 2.6 | 5.3 ± 1.3 | 8.5 ± 2.8 | <0.001 |
Serum Creatinine, mg/dL | 1.1 (0.84–2.05) | 0.87 (0.71–0.99) | 2.06 (1.52–3.07) | <0.001 |
eGFR, mL/min/1.73 m2 | 63.26 ± 34.48 | 92.79 ± 13.94 | 31.16 ± 16.09 | <0.001 |
Serum Sodium, mEq/L | 137 ± 4 | 139 ± 2 | 135 ± 5 | 0.002 |
Serum Potassium, mmol/L | 4.3 (4.1–4.8) | 4.4 (4.3–4.8) | 4.2 (3.8–4.4) | 0.017 |
Serum Calcium, mg/dL | 9.2 (8.5–9.6) | 9.6 (9.3–9.9) | 8.5 (7.9–8.8) | <0.001 |
Serum Albumin, g/L | 3.6 (3.3–4.2) | 4.1 (3.9–4.2) | 3.2 (3.1–3.6) | <0.001 |
Group 1 n = 23 | Baseline | 72nd hour | p-Value |
---|---|---|---|
Serum Urea, mg/dL | 43 (30–77) | 94 (60–122) | <0.001 |
Serum Uric acid, mg/dL | 6.9 ± 1.8 | 8.5 ± 2.8 | 0.162 |
Serum Creatinine, mg/dL | 0.81 (0.76–0.95) | 2.06 (1.52–3.07) | <0.001 |
eGFR, mL/min/1.73 m2 | 93.56 ± 17.60 | 31.16 ±16.09 | <0.001 |
Serum Sodium, mEq/L | 136 ± 4 | 135 ± 5 | 0.076 |
Serum Potassium, mmol/L | 4.4 (4.1–4.8) | 4.2 (3.8–4.4) | 0.384 |
Serum Calcium, mg/dL | 9.2 (8.8–9.6) | 8.5 (7.9–8.8) | 0.011 |
Serum Albumin, g/L | 3.6 (3.4–3.7) | 3.2 (3.1–3.6) | 0.036 |
All Patients N = 48 | Group 2 N = 25 | Group 1 N = 23 | p-Value | |
---|---|---|---|---|
NFKB1 | 0.78 (0.21–5.62) | 0.24 (0.11–0.41) | 5.7 (3.08–8.54) | <0.001 |
SIRT1 | 0.89 (0.56–1.78) | 1.76 (0.66–3.24) | 0.76 (0.5–0.92) | 0.002 |
NFE2L2 | 0.79 (0.19–6.64) | 0.2 (0.1–0.32) | 6.8 (2.88–10.16) | <0.001 |
FOXO1 | 0.81 (0.18–4.94) | 0.18 (0.1–0.24) | 4.97 (3.04–8.84) | <0.001 |
Univariate Analysis | ||
---|---|---|
Variable | Odds Ratio (95% CI) | p-Value |
NFE2L2 (>1.34-fold) | 26.32 (3.731–166.667) | <0.001 |
NFKB1 (>0.78-fold) | 11.5 (3.043–43.461) | <0.001 |
FOXO1 (>1.32-fold) | (NA-NA) | <0.001 |
SIRT1 (<0.88-fold) | 2.36 (1.216–4.587) | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dheir, H.; Guney Eskiler, G.; Tocoğlu, A.; Kurt, R.; Gonullu, E.; Nalbant, A.; Gunduz, H.; Tamer, A. The Influence of Reactive Oxygen Species in the Development of Contrast-Induced Nephropathy After Coronary Angiography. J. Clin. Med. 2025, 14, 4649. https://doi.org/10.3390/jcm14134649
Dheir H, Guney Eskiler G, Tocoğlu A, Kurt R, Gonullu E, Nalbant A, Gunduz H, Tamer A. The Influence of Reactive Oxygen Species in the Development of Contrast-Induced Nephropathy After Coronary Angiography. Journal of Clinical Medicine. 2025; 14(13):4649. https://doi.org/10.3390/jcm14134649
Chicago/Turabian StyleDheir, Hamad, Gamze Guney Eskiler, Aysel Tocoğlu, Rumeysa Kurt, Emel Gonullu, Ahmet Nalbant, Huseyin Gunduz, and Ali Tamer. 2025. "The Influence of Reactive Oxygen Species in the Development of Contrast-Induced Nephropathy After Coronary Angiography" Journal of Clinical Medicine 14, no. 13: 4649. https://doi.org/10.3390/jcm14134649
APA StyleDheir, H., Guney Eskiler, G., Tocoğlu, A., Kurt, R., Gonullu, E., Nalbant, A., Gunduz, H., & Tamer, A. (2025). The Influence of Reactive Oxygen Species in the Development of Contrast-Induced Nephropathy After Coronary Angiography. Journal of Clinical Medicine, 14(13), 4649. https://doi.org/10.3390/jcm14134649