A New High Penetrant Intronic Pathogenic Variant Related to Long QT Syndrome Type 2
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
- Patients under clinical follow-up in the Principality of Asturias.
- Carriers of pathogenic variants in the KCNH2 gene.
- Informative families, with at least 5 carriers evaluated.
- Patients referred from other regions only for genetic testing without clinical follow-up in the Principality of Asturias.
- Variants identified in fewer than six carriers within the cohort.
- Variants of uncertain significance or benign variants in KCNH2.
2.2. Phenotypic Evaluation
2.3. Genetic Testing Procedure
2.4. Statistical Analysis
3. Results
3.1. Carriers of the Pathogenic Variant KCNH2 p.Ser261fs
3.2. Carriers of the Pathogenic Variant KCNH2 c.77-2 del
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LQT2 | Long QT Syndrome type 2 |
SCD | Sudden cardiac death |
NGS | Next-generation sequencing |
References
- Kong, M.H.; Fonarow, G.C.; Peterson, E.D.; Curtis, A.B.; Hernandez, A.F.; Sanders, G.D.; Thomas, K.L.; Hayes, D.L.; Al-Khatib, S.M. Systematic review of the incidence of sudden cardiac death in the United States. J. Am. Coll. Cardiol. 2011, 57, 794–801. [Google Scholar] [CrossRef]
- Wilde, A.A.M.; Semsarian, C.; Marquez, M.F.; Shamloo, A.S.; Ackerman, M.J.; Ashley, E.A.; Sternick, E.B.; Barajas-Martinez, H.; Behr, E.R.; Bezzina, C.R.; et al. HRS/EHRA/APHRS/LAHRS expert consensus statement on the state of genetic testing for cardiac diseases. Heart Rhythm. 2022, 19, e1–e60. [Google Scholar] [CrossRef]
- Schwartz, P.J.; Brignole, M.; Moya, A.; de Lange, F.J.; Deharo, J.-C.; Elliott, P.M.; Fanciulli, A.; Fedorowski, A.; Furlan, R.; Kenny, R.A.; et al. 2018 ESC guidelines for the diagnosis and management of syncope. Eur. Heart J. 2018, 39, 1883–1948. [Google Scholar]
- Adler, A.; Novelli, V.; Amin, A.S. Arrhythmic risk stratification in Long QT Syndrome. Circ. Arrhythmia Electrophysiol. 2020, 13, e007662. [Google Scholar]
- Shimizu, W. The genetic basis for arrhythmogenic disorders associated with QT prolongation: An update. J. Arrhythmia 2021, 37, 471–479. [Google Scholar]
- Moss, A.J.; Zareba, W.; Benhorin, J.; Locati, E.H.; Hall, W.J.; Robinson, J.L.; Schwartz, P.J.; Towbin, J.A.; Vincent, B.M.; Legmann, M.H.; et al. Risk stratification in the long QT syndrome. N. Engl. J. Med. 2019, 380, 2148–2158. [Google Scholar]
- Tester, D.J.; Ackerman, M.J. Sudden cardiac death in the young: Molecular autopsy and the role of genetic testing. J. Am. Coll. Cardiol. 2019, 74, 2560–2572. [Google Scholar]
- Schwartz, P.J. Predicting the outcome of asymptomatic LQT2 mutation carriers: A new paradigm. Eur. Heart J. 2020, 41, 1404–1411. [Google Scholar]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–423. [Google Scholar] [CrossRef]
- Lorca, R.; Junco-Vicente, A.; Pérez-Pérez, A.; Pascual, I.; Persia-Paulino, Y.R.; González-Urbistondo, F.; Cuesta-Llavona, E.; Fernández-Barrio, B.C.; Morís, C.; Rubín, J.M.; et al. KCNH2 p.Gly262AlafsTer98: A New Threatening Variant Associated with Long QT Syndrome in a Spanish Cohort. Life 2022, 12, 556. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baralle, D.; Baralle, M. Splicing in action: Assessing disease causing sequence changes. J. Med. Genet. 2005, 42, 737–748. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Splawski, I.; Shen, J.; Timothy, K.W.; Lehmann, M.H.; Priori, S.; Robinson, J.L.; Moss, A.J.; Schwartz, P.J.; Towbin, J.A.; Vincent, G.M.; et al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 2000, 102, 1178–1185. [Google Scholar] [CrossRef] [PubMed]
- Hedley, P.L.; Jørgensen, P.; Schlamowitz, S.; Wangari, R.; Moolman-Smook, J.; Brink, P.A.; Kanters, J.K.; Corfield, V.A.; Christiansen, M. The genetic basis of long QT and short QT syndromes: A mutation update. Hum. Mutat. 2009, 30, 1486–1511. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, I.; Bradley, J.; Moss, A.; McNitt, S.; Polonsky, S.; Robinson, J.L.; Andrews, M.; Zareba, W. International LQTS Registry Investigators Beta-blocker efficacy in high-risk patients with the congenital long-QT syndrome types 1 and 2: Implications for patient management. J. Cardiovasc. Electrophysiol. 2010, 21, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Al-Khatib, S.M.; Stevenson, W.G.; Ackerman, M.J.; Bryant, W.J.; Callans, D.J.; Curtis, A.B.; Deal, B.J.; Dickfeld, T.; Field, M.E.; Fonarow, G.C.; et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 2018, 72, e91–e220. [Google Scholar] [PubMed]
- Priori, S.G.; Blomström-Lundqvist, C.; Mazzanti, A.; Blom, N.; Borggrefe, M.; Camm, J.; Elliott, P.M.; Fitzsimons, D.; Hatala, R.; Hindricks, G.; et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur. Heart J. 2015, 36, 2793–2867. [Google Scholar]
- Zeppenfeld, K.; Tfelt-Hansen, J.; de Riva, M.; Winkel, B.G.; Behr, E.R.; Blom, N.A.; Charron, P.; Corrado, D.; Dagres, N.; de Chillou, C.; et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: Developed by the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC) Endorsed by the Association for European Paediatric and Congenital Cardiology (AEPC). Eur. Heart J. 2022, 43, 3997–4126. [Google Scholar] [CrossRef]
- Schwartz, P.J.; Priori, S.G.; Locati, E.H.; Napolitano, C.; Cantù, F.; Towbin, J.A.; Keating, M.T.; Hammoude, H.; Brown, A.M.; Chen, L.S.; et al. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy. Circulation 1995, 92, 3381–3386. [Google Scholar] [CrossRef]
- Bos, J.M.; Crotti, L.; Rohatgi, R.K.; Castelletti, S.; Dagradi, F.; Schwartz, P.J.; Ackerman, M.J. Mexiletine Shortens the QT Interval in Patients With Potassium Channel-Mediated Type 2 Long QT Syndrome. Circ. Arrhythm. Electrophysiol. 2019, 12, e007280. [Google Scholar] [CrossRef]
- Dusi, V.; Pugliese, L.; De, F.G.M.; Odero, A.; Crotti, L.; Dagradi, F.; Castelletti, S.; Vicentini, A.; Rordorf, R.; Li, C.; et al. Left Cardiac Sympathetic Denervation for Long QT Syndrome. JACC Clin. Electrophysiol. 2022, 8, 281–294. [Google Scholar] [CrossRef]
- Schwartz, P.J.; Priori, S.G.; Cerrone, M.; Spazzolini, C.; Odero, A.; Napolitano, C.; Bloise, R.; De Ferrari, G.M.; Klersy, C.; Moss, A.J.; et al. Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome. Circulation 2004, 109, 1826–1833. [Google Scholar] [CrossRef]
- Gnecchi, M.; Sala, L.; Schwartz, P.J. Precision Medicine and cardiac channelopathies: When dreams meet reality. Eur. Heart J. 2021, 42, 1661–1675. [Google Scholar] [CrossRef]
- Duan, C.; Rong, S.; Buerer, L.; Neil, C.R.; Zhong, Y.; Lyu, Z.; Savatt, J.M.; Strande, N.T.; Fairbrother, W.G. Single Antisense Oligonucleotides Correct Diverse Splicing Mutations in Hotspot Exons. Proc. Natl. Acad. Sci. USA 2025, 122, e2425659122. [Google Scholar] [CrossRef] [PubMed]
- Havens, M.A.; Hastings, M.L. Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res. 2016, 44, 6549–6563. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Takeshima, Y. Expansion of Splice-Switching Therapy with Antisense Oligonucleotides. Int. J. Mol. Sci. 2025, 26, 2270. [Google Scholar] [CrossRef]
- Schmok, J.C.; Yeo, G.W. Strategies for programmable manipulation of alternative splicing. Curr. Opin. Genet. Dev. 2024, 89, 102272. [Google Scholar] [CrossRef] [PubMed]
- Aung-Htut, M.T.; McIntosh, C.S.; Ham, K.A.; Pitout, I.L.; Flynn, L.L.; Greer, K.; Fletcher, S.; Wilton, S.D. Systematic Approach to Developing Splice Modulating Antisense Oligonucleotides. Int. J. Mol. Sci. 2019, 20, 5030. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zheng, Z.; Song, Y. When HERG-caused LQT2 encounters antisense oligonucleotide: Is exon 6 skipping therapy plausible? Front. Pharmacol. 2025, 16, 1535259. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gotthardt, M.; Badillo-Lisakowski, V.; Parikh, V.N.; Ashley, E.; Furtado, M.; Carmo-Fonseca, M.; Schudy, S.; Meder, B.; Grosch, M.; Steinmetz, L.; et al. Cardiac splicing as a diagnostic and therapeutic target. Nat. Rev. Cardiol. 2023, 20, 517–530. [Google Scholar] [CrossRef]
- Rogalska, M.E.; Vivori, C.; Valcárcel, J. Regulation of pre-mRNA splicing: Roles in physiology and disease, and therapeutic prospects. Nat. Rev. Genet. 2023, 24, 251–269. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, P.J.; Ackerman, M.J.; Antzelevitch, C.; Bezzina, C.R.; Borggrefe, M.; Cuneo, B.F.; Wilde, A.A.M. Inherited cardiac arrhythmias. Nat. Rev. Dis. Primer 2020, 6, 58. [Google Scholar] [CrossRef]
- Smith, J.L.; Anderson, C.L.; Burgess, D.E.; Elayi, C.S.; January, C.T.; Delisle, B.P. Molecular pathogenesis of long QT syndrome type 2. J. Arrhythmia 2016, 32, 373–380. [Google Scholar] [CrossRef]
- Ono, M.; Burgess, D.E.; Schroder, E.A.; Elayi, C.S.; Anderson, C.L.; January, C.T.; Sun, B.; Immadisetty, K.; Kekenes-Huskey, P.M.; Delisle, B.P. Long QT Syndrome Type 2: Emerging Strategies for Correcting Class 2 KCNH2 (hERG) Mutations and Identifying New Patients. Biomolecules 2020, 10, 1144. [Google Scholar] [CrossRef]
- Gong, Q.; Zhang, L.; Vincent, G.M.; Horne, B.D.; Zhou, Z. Nonsense mutations in hERG cause a decrease in mutant mRNA transcripts by nonsense-mediated mRNA decay in human long-QT syndrome. Circulation 2007, 116, 17–24. [Google Scholar] [CrossRef]
- Locati, E.T. QT interval duration remains a major risk factor in long QT syndrome patients. J. Am. Coll. Cardiol. 2006, 48, 1053–1055. [Google Scholar] [CrossRef]
- Schwartz, P.J.; Priori, S.G.; Spazzolini, C.; Moss, A.J.; Vincent, G.M.; Napolitano, C.; Denjoy, I.; Guicheney, P.; Breithardt, G.; Keating, M.T.; et al. Genotype-phenotype correlation in the long-QT syndrome: Gene-specific triggers for life-threatening arrhythmias. Circulation 2001, 103, 89–95. [Google Scholar] [CrossRef]
- Mazzanti, A.; Maragna, R.; Vacanti, G.; Monteforte, N.; Bloise, R.; Marino, M.; Braghieri, L.; Gambelli, P.; Memmi, M.; Pagan, E.; et al. Interplay Between Genetic Substrate, QTc Duration, and Arrhythmia Risk in Patients with Long QT Syndrome. J. Am. Coll. Cardiol. 2018, 71, 1663–1671. [Google Scholar] [CrossRef]
- Schwartz, P.J.; Crotti, L.; Insolia, R. Long-QT syndrome: From genetics to management. Circ. Arrhythm. Electrophysiol. 2012, 5, 868–877. [Google Scholar] [CrossRef]
- Writing Committee Members; Shah, M.J.; Silka, M.J.; Silva, J.N.A.; Balaji, S.; Beach, C.M.; Benjamin, M.N.; Berul, C.I.; Cannon, B.; Cecchin, F.; et al. 2021 PACES Expert Consensus Statement on the Indications and Management of Cardiovascular Implantable Electronic Devices in Pediatric Patients. Heart Rhythm. 2021, 18, 1888–1924. [Google Scholar]
- Lorca, R.; Junco-Vicente, A.; Martin-Fernandez, M.; Pascual, I.; Aparicio, A.; Barja, N.; Cuesta-LLavona, E.; Roces, L.; Avanzas, P.; Moris, C.; et al. Clinical Implications and Gender Differences of KCNQ1 p.Gly168Arg Pathogenic Variant in Long QT Syndrome. J. Clin. Med. 2020, 9, 3846. [Google Scholar] [CrossRef]
- Lahrouchi, N.; Tadros, R.; Crotti, L.; Mizusawa, Y.; Postema, P.G.; Beekman, L.; Walsh, R.; Hasegawa, K.; Barc, J.; Ernsting, M.; et al. Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome. Circulation 2020, 142, 324–338. [Google Scholar] [CrossRef]
- Shimizu, W.; Moss, A.J.; Wilde, A.A.M.; Towbin, J.A.; Ackerman, M.J.; January, C.T.; Tester, D.J.; Zareba, W.; Robinson, J.L.; Qi, M.; et al. Genotype-phenotype aspects of type 2 long QT syndrome. J. Am. Coll. Cardiol. 2009, 54, 2052–2062. [Google Scholar] [CrossRef]
- Tsuji, K.; Akao, M.; Ishii, T.M.; Ohno, S.; Makiyama, T.; Takenaka, K.; Doi, T.; Haruna, Y.; Yoshida, H.; Nakashima, T.; et al. Mechanistic basis for the pathogenesis of long QT syndrome associated with a common splicing mutation in KCNQ1 gene. J. Mol. Cell. Cardiol. 2007, 42, 662–669. [Google Scholar] [CrossRef]
- Li, H.; Chen, Q.; Moss, A.J.; Robinson, J.; Goytia, V.; Perry, J.C.; Vincent, G.M.; Priori, S.G.; Lehmann, M.H.; Denfield, S.W.; et al. New mutations in the KVLQT1 potassium channel that cause long-QT syndrome. Circulation 1998, 97, 1264–1269. [Google Scholar] [CrossRef]
- Murray, A.; Donger, C.; Fenske, C.; Spillman, I.; Richard, P.; Dong, Y.B.; Neyroud, N.; Chevalier, P.; Denjoy, I.; Carter, N.; et al. Splicing mutations in KCNQ1: A mutation hot spot at codon 344 that produces in frame transcripts. Circulation 1999, 100, 1077–1084. [Google Scholar] [CrossRef]
- Horie, M.; Wakisaka, K.; Akao, M.; Ishii, T.M.; Ashihara, T.; Makiyama, T.; Ohno, S.; Nishiuchi, S.; Chen, J.; Kohjitani, H.; et al. Complex aberrant splicing in the induced pluripotent stem cell–derived cardiomyocytes from a patient carrying the KCNQ1-A344Aspl mutation. Heart Rhythm. 2018, 15, S47. [Google Scholar] [CrossRef]
- Kapplinger, J.D.; Tester, D.J.; Salisbury, B.A.; Carr, J.L.; Harris-Kerr, C.; Pollevick, G.D.; Wilde, A.A.; Ackerman, M.J. Spectrum and prevalence of mutations from the first 2500 consecutive unrelated patients referred for the FAMILION long QT syndrome genetic test. Heart Rhythm. 2009, 6, 1297–1303. [Google Scholar] [CrossRef]
- Stump, M.R.; Gong, Q.; Zhou, Z. Multiple splicing defects caused by hERG splice site mutation 2592+1G>A associated with long QT syndrome. Am. J. Physiol.–Heart Circ. Physiol. 2011, 300, H312–H318. [Google Scholar] [CrossRef]
- Kapplinger, J.D.; Erickson, A.; Asuri, S.; Tester, D.J.; McIntosh, S.; Kerr, C.; Morrison, J.; Tang, A.; Sanatani, S.; Arbour, L.; et al. KCNQ1 p.L353L affects splicing and modifies the phenotype in a founder population with long QT syndrome type 1. J. Med. Genet. 2017, 54, 390–397. [Google Scholar] [CrossRef]
- Bukaeva, A.; Ershova, A.; Kharlap, M.; Kiseleva, A.; Kutsenko, V.; Sotnikova, E.; Divashuk, M.; Pokrovskaya, M.; Garbuzova, E.; Blokhina, A.; et al. The Yield of Genetic Testing and Putative Genetic Factors of Disease Heterogeneity in Long QT Syndrome Patients. Int. J. Mol. Sci. 2024, 25, 11976. [Google Scholar] [CrossRef]
- Chai, S.; Wan, X.; Ramirez-Navarro, A.; Tesar, P.J.; Kaufman, E.S.; Ficker, E.; George ALJr Deschênes, I. Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. J. Clin. Investig. 2018, 128, 1043–1056. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Napolitano, C.; Novelli, V.; Francis, M.D.; Priori, S.G. Genetic modulators of the phenotype in the long QT syndrome: State of the art and clinical impact. Curr. Opin. Genet. Dev. 2015, 33, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-K.; Sala, L.; Mura, M.; Rocchetti, M.; Pedrazzini, M.; Ran, X.; Mak, T.S.H.; Crotti, L.; Sham, P.C.; Torre, E.; et al. MTMR4 SNVs modulate ion channel degradation and clinical severity in congenital long QT syndrome: Insights in the mechanism of action of protective modifier genes. Cardiovasc. Res. 2021, 117, 767–779. [Google Scholar] [CrossRef]
- Peñarroya, A.; Lorca, R.; Rodríguez Reguero, J.J.; Gómez, J.; Avanzas, P.; Tejedor, J.R.; Fernandez, A.F.; Fraga, M.F. Epigenetic Study of Cohort of Monozygotic Twins With Hypertrophic Cardiomyopathy Due to MYBPC3 (Cardiac Myosin-Binding Protein C). J. Am. Heart Assoc. 2024, 13, e035777. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giudicessi, J.R.; Ackerman, M.J. Determinants of incomplete penetrance and variable expressivity in heritable cardiac arrhythmia syndromes. Transl. Res. 2013, 161, 1–14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wilde, A.A.M.; Amin, A.S.; Postema, P.G. Diagnosis, management and therapeutic strategies for congenital long QT syndrome. Heart 2022, 108, 332–338. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Code | ACMG/AMP Criterion | Given Strength | Justification |
---|---|---|---|
PVS1 | Null variant (canonical ± 1 or 2 splice sites) in a gene where a loss of function is a known mechanism of disease | Moderate | The c.77-2del variant affects the canonical splice acceptor site of exon 2. Splicing prediction tools (e.g., BDGP, SpliceAI) suggest exon skipping that would likely result in a frameshift and premature termination codon. However, since no RNA studies are available to confirm aberrant splicing, PVS1 is conservatively applied at moderate strength (PVS1_Moderate) according to ClinGen SVI guidance. |
PM2 | Absent from population databases | Moderate | The variant is absent from large population databases, supporting its rarity and potential pathogenicity. |
PP1 | Co-segregation with disease in multiple affected family members | Strong | The variant segregates with disease in at least 10 informative meioses across a multigenerational family, including siblings, cousins, and one affected descendant, supporting PP1_Strong based on ACMG thresholds. |
PP3 | Multiple lines of computational evidence support a deleterious effect | Supporting | In silico tools consistently predict that the variant disrupts the canonical splice acceptor site, leading to abnormal splicing (e.g., BDGP, SpliceAI), fulfilling PP3. |
Gene | c.DNA | Protein Change | Allele Frequency (gnomAD) | Molecular Consequence | Interpretation (Number of Submissions) |
---|---|---|---|---|---|
KCNH2 | c.80del | p.Arg27fs | Absent | Frameshift | LP (1) |
KCNH2 | c.80G > A | p.Arg27His | 0.000001 | Missense | VUS (2); LP (1) |
KCNH2 | c.80G > C | p.Arg27Pro | Absent | Missense | - |
KCNH2 | c.77G > T | p.Ser26Ile | Absent | Missense | - |
KCNH2 | c.77-1G > T | - | Absent | splice acceptor | LP (1) |
KCNH2 | c.77-1G > A | - | Absent | splice acceptor | LP (2) |
KCNH2 | c.77-3_77-2dup | - | Absent | splice acceptor | VUS (1) |
KCNH2 | c.77-3T > C | - | Absent | Intron variant | LB (1) |
KCNH2 | c.77-3del | - | Absent | Intron variant | VUS (1) |
KCNH2 | c.77-4C > G | - | 0.0000007 | Intron variant | VUS (1) |
KCNH2 | c.77-4C > T | - | 0.000005 | Intron variant | LB (3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Junquera, M.; Alén, A.; González-Urbistondo, F.; Rodríguez-Reguero, J.J.; Fernández, B.; Álvarez-Velasco, R.; Vazquez-Coto, D.; Vega-Prado, L.M.; Avanzas, P.; Coto, E.; et al. A New High Penetrant Intronic Pathogenic Variant Related to Long QT Syndrome Type 2. J. Clin. Med. 2025, 14, 4646. https://doi.org/10.3390/jcm14134646
Rodríguez-Junquera M, Alén A, González-Urbistondo F, Rodríguez-Reguero JJ, Fernández B, Álvarez-Velasco R, Vazquez-Coto D, Vega-Prado LM, Avanzas P, Coto E, et al. A New High Penetrant Intronic Pathogenic Variant Related to Long QT Syndrome Type 2. Journal of Clinical Medicine. 2025; 14(13):4646. https://doi.org/10.3390/jcm14134646
Chicago/Turabian StyleRodríguez-Junquera, Manuel, Alberto Alén, Francisco González-Urbistondo, José Julián Rodríguez-Reguero, Bárbara Fernández, Rut Álvarez-Velasco, Daniel Vazquez-Coto, Lorena M. Vega-Prado, Pablo Avanzas, Eliecer Coto, and et al. 2025. "A New High Penetrant Intronic Pathogenic Variant Related to Long QT Syndrome Type 2" Journal of Clinical Medicine 14, no. 13: 4646. https://doi.org/10.3390/jcm14134646
APA StyleRodríguez-Junquera, M., Alén, A., González-Urbistondo, F., Rodríguez-Reguero, J. J., Fernández, B., Álvarez-Velasco, R., Vazquez-Coto, D., Vega-Prado, L. M., Avanzas, P., Coto, E., Gómez, J., & Lorca, R. (2025). A New High Penetrant Intronic Pathogenic Variant Related to Long QT Syndrome Type 2. Journal of Clinical Medicine, 14(13), 4646. https://doi.org/10.3390/jcm14134646