Non-Diabetic Hypoglycemia: Evaluation and Management in Adults
Abstract
:1. Introduction
2. Non-Insulin-Mediated Hypoglycemia
2.1. Malnutrition and Starvation
2.2. Alcohol-Related Hypoglycemia
2.3. Critical Illness-Associated Hypoglycemia
2.4. Adrenal Insufficiency
2.5. Glycogen Storage Diseases
2.5.1. Glycogen Storage Disease Type 0
2.5.2. Glycogen Storage Disease Type Ia and Ib
2.5.3. Glycogen Storage Disease Type III
2.5.4. Glycogen Storage Disease Type VI
2.5.5. Recent Updates in Management
2.6. Non-Islet Cell Tumor Hypoglycemia
3. Insulin-Mediated Hypoglycemia
3.1. Post-Bariatric Hypoglycemia
3.2. Insulin Autoimmune Syndrome
3.3. Insulin Secretagogue and Exogenous Insulin
3.4. Insulinoma
3.5. Noninsulinoma Pancreatogenous Hypoglycemic Syndrome
4. Non-Diabetic Medications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BG | Blood glucose |
CGM | Continuous glucose monitor |
FDA | Food and Drug Administration |
ISO | International Organization for Standardization |
NAD+ | Nicotinamide adenine dinucleotide (oxidized form) |
NADH | Nicotinamide adenine dinucleotide (reduced form) |
ATP | Adenosine triphosphate |
CKD | Chronic kidney disease |
AI | Adrenal insufficiency |
GSD | Glycogen storage disease |
DNA | Deoxyribonucleic acid |
AST | Aspartate aminotransferase |
ALT | Alanine aminotransferase |
CK | Creatine kinase |
G6P | Glucose-6-phosphate |
GDE | Glycogen debranching enzyme |
MCT | medium chain triglyceride |
NICTH | Non-islet cell tumor hypoglycemia |
IGF | Insulin-like growth factor |
IGFBP | IGF binding protein |
SSTR | Somatostatin receptor |
PI3K | Phosphoinositide 3-kinase |
AKT | Protein kinase B |
GLUT4 | Glucose transporter 4 |
HIV | Human Immunodeficiency Virus |
PBH | Post-bariatric hypoglycemia |
RYGB | Roux-en-Y gastric bypass |
GLP-1 | Glucagon-like peptide-1 |
GLP-1RA | Glucagon-like peptide-1 receptor agonist |
SGLT-1i | Sodium-glucose cotransporter-1 inhibitor |
IAS | Insulin autoimmune syndrome |
HLA | Human Leukocyte Antigen |
IAA | Insulin autoantibodies |
MEN1 | Multiple endocrine neoplasia type 1 |
mTOR | Mammalian target of rapamycin |
PET | Positron emission tomography |
SPECT | Single-photon emission computed tomography |
RFA | Radiofrequency ablation |
PRRT | Peptide receptor radionuclide therapy |
NIPHS | Noninsulinoma pancreatogenous hypoglycemic syndrome |
SACST | Selective arterial calcium stimulation testing |
T1DM | Type 1 diabetes mellitus |
NSAID | Nonsteroidal anti-inflammatory drug |
PDA | Patent ductus arteriosus |
MCPA | Methylene cyclopropyl acetic acid |
References
- Cryer, P.E.; Axelrod, L.; Grossman, A.B.; Heller, S.R.; Montori, V.M.; Seaquist, E.R.; Service, F.J. Evaluation and Management of Adult Hypoglycemic Disorders: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2009, 94, 709–728. [Google Scholar] [CrossRef] [PubMed]
- Vihonen, H.; Kuisma, M.; Nurmi, J. Hypoglycaemia without Diabetes Encountered by Emergency Medical Services: A Retrospective Cohort Study. Scand. J. Trauma. Resusc. Emerg. Med. 2018, 26, 12. [Google Scholar] [CrossRef] [PubMed]
- Palani, G.; Stortz, E.; Moheet, A. Clinical Presentation and Diagnostic Approach to Hypoglycemia in Adults Without Diabetes Mellitus. Endocr. Pract. 2023, 29, 286–294. [Google Scholar] [CrossRef]
- Sacks, D.B.; Arnold, M.; Bakris, G.L.; Bruns, D.E.; Horvath, A.R.; Lernmark, Å.; Metzger, B.E.; Nathan, D.M.; Kirkman, M.S. Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus. Diabetes Care 2023, 46, e151–e199. [Google Scholar] [CrossRef]
- Ekhlaspour, L.; Mondesir, D.; Lautsch, N.; Balliro, C.; Hillard, M.; Magyar, K.; Radocchia, L.G.; Esmaeili, A.; Sinha, M.; Russell, S.J. Comparative Accuracy of 17 Point-of-Care Glucose Meters. J. Diabetes Sci. Technol. 2017, 11, 558–566. [Google Scholar] [CrossRef]
- Mensh, B.D.; Wisniewski, N.A.; Neil, B.M.; Burnett, D.R. Susceptibility of Interstitial Continuous Glucose Monitor Performance to Sleeping Position. J. Diabetes Sci. Technol. 2013, 7, 863–870. [Google Scholar] [CrossRef]
- Herrod, S.S.; Liversedge, G.; Vaidya, B.; Walker, N. Continuous Glucose Monitoring for Diabetes: Potential Pitfalls for the General Physician. Clin. Med. 2022, 22, 482–484. [Google Scholar] [CrossRef]
- Crichton, M.; Craven, D.; Mackay, H.; Marx, W.; De Van Der Schueren, M.; Marshall, S. A Systematic Review, Meta-Analysis and Meta-Regression of the Prevalence of Protein-Energy Malnutrition: Associations with Geographical Region and Sex. Age Ageing 2018, 48, 38–48. [Google Scholar] [CrossRef]
- Cederholm, T.; Bosaeus, I. Malnutrition in Adults. N. Engl. J. Med. 2024, 391, 155–165. [Google Scholar] [CrossRef]
- Kimura, Y.; Kimura, N.; Akazawa, M. Nutrition-related Risk and Severe Hypoglycemia in Older Adult Outpatients with and without Diabetes. Clin. Case Rep. 2022, 10, e05317. [Google Scholar] [CrossRef]
- Leibovitz, E.; Adler, H.; Giryes, S.; Ditch, M.; Burg, N.F.; Boaz, M. Malnutrition Risk Is Associated with Hypoglycemia among General Population Admitted to Internal Medicine Units. Results from the MENU Study. Eur. J. Clin. Nutr. 2018, 72, 888–893. [Google Scholar] [CrossRef] [PubMed]
- Ellingwood, S.S.; Cheng, A. Biochemical and Clinical Aspects of Glycogen Storage Diseases. J. Endocrinol. 2018, 238, R131–R141. [Google Scholar] [CrossRef]
- Soriano, S.; Gonzalez, A.; Marroquí, L.; Tudurí, E.; Vieira, E.; Amaral, A.G.; Batista, T.M.; Rafacho, A.; Boschero, A.C.; Nadal, A.; et al. Reduced Insulin Secretion in Protein Malnourished Mice Is Associated with Multiple Changes in the β-Cell Stimulus-Secretion Coupling. Endocrinology 2010, 151, 3543–3554. [Google Scholar] [CrossRef]
- Gács, G. The Mechanism of Hypoglycemia Due to Semistarvation in the Rat. J. Nutr. 1976, 106, 1557–1561. [Google Scholar] [CrossRef]
- Williams, H.E. Alcoholic Hypoglycemia and Ketoacidosis. Med. Clin. North. Am. 1984, 68, 33–38. [Google Scholar] [CrossRef]
- Palmer, B.F.; Clegg, D.J. Electrolyte Disturbances in Patients with Chronic Alcohol-Use Disorder. N. Engl. J. Med. 2017, 377, 1368–1377. [Google Scholar] [CrossRef]
- Sporer, K.A.; Ernst, A.A.; Conte, R.; Nick, T.G. The Incidence of Ethanol-Induced Hypoglycemia. Am. J. Emerg. Med. 1992, 10, 403–405. [Google Scholar] [CrossRef]
- Kalaria, T.; Ko, Y.L.; Issuree, K.K.J. Literature Review: Drug and Alcohol-Induced Hypoglycaemia. J. Lab. Precis. Med. 2021, 6, 21. [Google Scholar] [CrossRef]
- Siler, S.Q.; Neese, R.A.; Christiansen, M.P.; Hellerstein, M.K. The Inhibition of Gluconeogenesis Following Alcohol in Humans. Am. J. Physiol. Endocrinol. Metab. 1998, 275, E897–E907. [Google Scholar] [CrossRef]
- Kerr, D.; Macdonald, I.A.; Heller, S.R.; Tattersall, R.B. Alcohol Causes Hypoglycaemic Unawareness in Healthy Volunteers and Patients with Type 1 (Insulin-Dependent) Diabetes. Diabetologia 1990, 33, 216–221. [Google Scholar] [CrossRef]
- Ravert, R.D. Alcohol Management Strategies of College Students with Diabetes. Patient Educ. Couns. 2009, 77, 97–102. [Google Scholar] [CrossRef]
- Bagshaw, S.M.; Bellomo, R.; Jacka, M.J.; Egi, M.; Hart, G.K.; George, C.; ANZICS CORE Management Committee. The Impact of Early Hypoglycemia and Blood Glucose Variability on Outcome in Critical Illness. Crit. Care 2009, 13, R91. [Google Scholar] [CrossRef]
- Matsumoto, H.; Ogura, H.; Shimizu, K.; Ikeda, M.; Hirose, T.; Matsuura, H.; Kang, S.; Takahashi, K.; Tanaka, T.; Shimazu, T. The Clinical Importance of a Cytokine Network in the Acute Phase of Sepsis. Sci. Rep. 2018, 8, 13995. [Google Scholar] [CrossRef]
- Metzger, S.; Nusair, S.; Planer, D.; Barash, V.; Pappo, O.; Shilyansky, J.; Chajek-Shaul, T. Inhibition of Hepatic Gluconeogenesis and Enhanced Glucose Uptake Contribute to the Development of Hypoglycemia in Mice Bearing Interleukin-1beta-Secreting Tumor. Endocrinology 2004, 145, 5150–5156. [Google Scholar] [CrossRef]
- Jubina, L.E.; Locke, A.; Fedder, K.R.; Slone, S.A.; Soper, M.K.; Kalema, A.G.; Montgomery-Yates, A.A.; Mayer, K.P. Nutrition in the Intensive Care Unit and Early Recovery Influence Functional Outcomes for Survivors of Critical Illness: A Prospective Cohort Study. JPEN J. Parenter. Enter. Nutr. 2023, 47, 888–895. [Google Scholar] [CrossRef]
- Legouis, D.; Faivre, A.; Cippà, P.E.; De Seigneux, S. Renal Gluconeogenesis: An Underestimated Role of the Kidney in Systemic Glucose Metabolism. Nephrol. Dial. Transplant. 2022, 37, 1417–1425. [Google Scholar] [CrossRef]
- Girling, B.J.; Channon, S.W.; Haines, R.W.; Prowle, J.R. Acute Kidney Injury and Adverse Outcomes of Critical Illness: Correlation or Causation? Clin. Kidney J. 2020, 13, 133–141. [Google Scholar] [CrossRef]
- Faivre, A.; Verissimo, T.; Auwerx, H.; Legouis, D.; De Seigneux, S. Tubular Cell Glucose Metabolism Shift During Acute and Chronic Injuries. Front. Med. 2021, 8, 742072. [Google Scholar] [CrossRef]
- Moen, M.F.; Zhan, M.; Hsu, V.D.; Walker, L.D.; Einhorn, L.M.; Seliger, S.L.; Fink, J.C. Frequency of Hypoglycemia and Its Significance in Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2009, 4, 1121–1127. [Google Scholar] [CrossRef]
- Ngaosuwan, K.; Johnston, D.G.; Godsland, I.F.; Cox, J.; Majeed, A.; Quint, J.K.; Oliver, N.; Robinson, S. Increased Mortality Risk in Patients With Primary and Secondary Adrenal Insufficiency. J. Clin. Endocrinol. Metab. 2021, 106, e2759–e2768. [Google Scholar] [CrossRef]
- Kawahara, T.; Tsuji, M.; Tominaga, N.; Toyama, N.; Toda, M. Frequency of Adrenal Insufficiency in Patients With Hypoglycemia in an Emergency Department: A Cross-Sectional Study. J. Endocr. Soc. 2022, 6, bvac119. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.C.; Baranowski, E.S.; Sakremath, R.; Saraff, V.; Mohamed, Z. Hypoglycaemia in Adrenal Insufficiency. Front. Endocrinol. 2023, 14, 1198519. [Google Scholar] [CrossRef]
- Meyer, G.; Hackemann, A.; Reusch, J.; Badenhoop, K. Nocturnal Hypoglycemia Identified by a Continuous Glucose Monitoring System in Patients with Primary Adrenal Insufficiency (Addison’s Disease). Diabetes Technol. Ther. 2012, 14, 386–388. [Google Scholar] [CrossRef]
- Christiansen, J.J.; Djurhuus, C.B.; Gravholt, C.H.; Iversen, P.; Christiansen, J.S.; Schmitz, O.; Weeke, J.; Jørgensen, J.O.L.; Møller, N. Effects of Cortisol on Carbohydrate, Lipid, and Protein Metabolism: Studies of Acute Cortisol Withdrawal in Adrenocortical Failure. J. Clin. Endocrinol. Metab. 2007, 92, 3553–3559. [Google Scholar] [CrossRef]
- Kanungo, S.; Wells, K.; Tribett, T.; El-Gharbawy, A. Glycogen Metabolism and Glycogen Storage Disorders. Ann. Transl. Med. 2018, 6, 474. [Google Scholar] [CrossRef]
- Gümüş, E.; Özen, H. Glycogen Storage Diseases: An Update. World J. Gastroenterol. 2023, 29, 3932–3963. [Google Scholar] [CrossRef]
- Massimino, E.; Amoroso, A.P.; Lupoli, R.; Rossi, A.; Capaldo, B. Nutritional Management of Glycogen Storage Disease Type III: A Case Report and a Critical Appraisal of the Literature. Front. Nutr. 2023, 10, 1178348. [Google Scholar] [CrossRef]
- Kalkan Uçar, S.; Elek, A.; Yazıcı, H.; Atik Altınok, Y.; Yüksel Yanbolu, A.; Erdem, F.; Yoldaş Çelik, M.; Aykut, A.; Durmaz, A.; Canda, E.; et al. Nutritional Management and Geno-Phenotyping of Clinical Nutrition in Patients with Glycogen Storage Diseases Type VI and IX. Eur. J. Clin. Nutr. 2025. [Google Scholar] [CrossRef]
- Subih, H.S.; Qudah, R.A.; Janakat, S.; Rimawi, H.; Elsahoryi, N.A.; Alyahya, L. Medium-Chain Triglyceride Oil and Dietary Intervention Improved Body Composition and Metabolic Parameters in Children with Glycogen Storage Disease Type 1 in Jordan: A Clinical Trial. Foods 2024, 13, 1091. [Google Scholar] [CrossRef]
- Weinstein, D.A.; Derks, T.G.; Rodriguez-Buritica, D.F.; Ahmad, A.; Couce, M.; Mitchell, J.J.; Riba-Wolman, R.; Mount, M.; Sallago, J.B.; Ross, K.M.; et al. Safety and Efficacy of DTX401, an AAV8 -Mediated Liver-Directed Gene Therapy, in Adults With Glycogen Storage Disease Type I a (GSDIa). J. Inher Metab. Disea 2025, 48, e70014. [Google Scholar] [CrossRef]
- Hofland, J.; Refardt, J.C.; Feelders, R.A.; Christ, E.; De Herder, W.W. Approach to the Patient: Insulinoma. J. Clin. Endocrinol. Metab. 2024, 109, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- Schovanek, J.; Cibickova, L.; Ctvrtlik, F.; Tudos, Z.; Karasek, D.; Iacobone, M.; Frysak, Z. Hypoglycemia as a Symptom of Neoplastic Disease, with a Focus on Insulin-like Growth Factors Producing Tumors. J. Cancer 2019, 10, 6475–6480. [Google Scholar] [CrossRef] [PubMed]
- De Groot, J.W.B.; Rikhof, B.; Van Doorn, J.; Bilo, H.J.G.; Alleman, M.A.; Honkoop, A.H.; Van Der Graaf, W.T.A. Non-Islet Cell Tumour-Induced Hypoglycaemia: A Review of the Literature Including Two New Cases. Endocr. Relat. Cancer 2007, 14, 979–993. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.C.W.; Tong, P.C.Y.; Chan, J.C.N.; Cockram, C.S.; Chan, M.H.M. A 67-Year-Old Woman with Recurrent Hypoglycemia: Non-Islet Cell Tumour Hypoglycemia. CMAJ 2005, 173, 359–361. [Google Scholar] [CrossRef]
- Fukuda, I.; Hizuka, N.; Ishikawa, Y.; Yasumoto, K.; Murakami, Y.; Sata, A.; Morita, J.; Kurimoto, M.; Okubo, Y.; Takano, K. Clinical Features of Insulin-like Growth Factor-II Producing Non-Islet-Cell Tumor Hypoglycemia. Growth Horm. IGF Res. 2006, 16, 211–216. [Google Scholar] [CrossRef]
- Ata, F.; Choudry, H.; Khan, A.A.; Anum; Khamees, I.; Al-Sadi, A.; Mohamed, A.; Malkawi, L.; Aljaloudi, E. A Systematic Review of Literature on Insulin-like Growth Factor-2-Mediated Hypoglycaemia in Non-Islet Cell Tumours. Endocrinol. Diabetes Metab. 2024, 7, e00471. [Google Scholar] [CrossRef]
- Alkaissi, H.R.; Mostel, Z.; McFarlane, S.I. Duplication of AKT2 Gene in Ovarian Cancer: A Potentially Novel Mechanism for Tumor-Induced Hypoglycemia. Cureus 2022, 14, e25813. [Google Scholar] [CrossRef]
- Huang, X.; Liu, G.; Guo, J.; Su, Z. The PI3K/AKT Pathway in Obesity and Type 2 Diabetes. Int. J. Biol. Sci. 2018, 14, 1483–1496. [Google Scholar] [CrossRef]
- Salehi, M.; Vella, A.; McLaughlin, T.; Patti, M.-E. Hypoglycemia After Gastric Bypass Surgery: Current Concepts and Controversies. J. Clin. Endocrinol. Metab. 2018, 103, 2815–2826. [Google Scholar] [CrossRef]
- Suhl, E.; Anderson-Haynes, S.-E.; Mulla, C.; Patti, M.-E. Medical Nutrition Therapy for Post-Bariatric Hypoglycemia: Practical Insights. Surg. Obes. Relat. Dis. 2017, 13, 888–896. [Google Scholar] [CrossRef]
- Chegeni, M.; Hayes, A.M.R.; Gonzalez, T.D.; Manderfeld, M.M.; Lim, J.; Menon, R.S.; Holschuh, N.M.; Hedges, M.E.; Hamaker, B.R. Activation of Gastrointestinal Ileal Brake Response with Dietary Slowly Digestible Carbohydrates, with No Observed Effect on Subjective Appetite, in an Acute Randomized, Double-Blind, Crossover Trial. Eur. J. Nutr. 2022, 61, 1965–1980. [Google Scholar] [CrossRef] [PubMed]
- Bonner, C.; Kerr-Conte, J.; Gmyr, V.; Queniat, G.; Moerman, E.; Thévenet, J.; Beaucamps, C.; Delalleau, N.; Popescu, I.; Malaisse, W.J.; et al. Inhibition of the Glucose Transporter SGLT2 with Dapagliflozin in Pancreatic Alpha Cells Triggers Glucagon Secretion. Nat. Med. 2015, 21, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Salehi, M.; Gastaldelli, A.; D’Alessio, D.A. Altered Islet Function and Insulin Clearance Cause Hyperinsulinemia in Gastric Bypass Patients with Symptoms of Postprandial Hypoglycemia. J. Clin. Endocrinol. Metab. 2014, 99, 2008–2017. [Google Scholar] [CrossRef]
- Ferraz-Bannitz, R.; Ozturk, B.; Cummings, C.; Efthymiou, V.; Casanova Querol, P.; Poulos, L.; Wang, H.; Navarrete, V.; Saeed, H.; Mulla, C.M.; et al. Postprandial Metabolomics Analysis Reveals Disordered Serotonin Metabolism in Post-Bariatric Hypoglycemia. J. Clin. Investig. 2024, 134, e180157. [Google Scholar] [CrossRef]
- Dieterle, M.P.; Husari, A.; Prozmann, S.N.; Wiethoff, H.; Stenzinger, A.; Röhrich, M.; Pfeiffer, U.; Kießling, W.R.; Engel, H.; Sourij, H.; et al. Diffuse, Adult-Onset Nesidioblastosis/Non-Insulinoma Pancreatogenous Hypoglycemia Syndrome (NIPHS): Review of the Literature of a Rare Cause of Hyperinsulinemic Hypoglycemia. Biomedicines 2023, 11, 1732. [Google Scholar] [CrossRef]
- Lembo, E.; Lupoli, R.; Ciciola, P.; Creanza, A.; Silvestri, E.; Saldalamacchia, G.; Capaldo, B. Implementation of Low Glycemic Index Diet Together with Cornstarch in Post-Gastric Bypass Hypoglycemia: Two Case Reports. Nutrients 2018, 10, 670. [Google Scholar] [CrossRef]
- Valderas, J.P.; Ahuad, J.; Rubio, L.; Escalona, M.; Pollak, F.; Maiz, A. Acarbose Improves Hypoglycaemia Following Gastric Bypass Surgery Without Increasing Glucagon-Like Peptide 1 Levels. Obes. Surg. 2012, 22, 582–586. [Google Scholar] [CrossRef]
- Llewellyn, D.C.; Logan Ellis, H.; Aylwin, S.J.B.; Oštarijaš, E.; Green, S.; Sheridan, W.; Chew, N.W.S.; Le Roux, C.W.; Miras, A.D.; Patel, A.G.; et al. The Efficacy of GLP-1RAs for the Management of Postprandial Hypoglycemia Following Bariatric Surgery: A Systematic Review. Obesity 2023, 31, 20–30. [Google Scholar] [CrossRef]
- De Heide, L.J.M.; Wouda, S.H.T.; Peters, V.J.T.; Oosterwerff-Suiker, M.; Gerdes, V.A.; Emous, M.; Van Beek, A.P. Medical and Surgical Treatment of Postbariatric Hypoglycaemia: Retrospective Data from Daily Practice. Diabetes Obes. Metab. 2023, 25, 735–747. [Google Scholar] [CrossRef]
- Myint, K.S.; Greenfield, J.R.; Farooqi, I.S.; Henning, E.; Holst, J.J.; Finer, N. Prolonged Successful Therapy for Hyperinsulinaemic Hypoglycaemia after Gastric Bypass: The Pathophysiological Role of GLP1 and Its Response to a Somatostatin Analogue. Eur. J. Endocrinol. 2012, 166, 951–955. [Google Scholar] [CrossRef]
- Øhrstrøm, C.C.; Worm, D.; Højager, A.; Andersen, D.; Holst, J.J.; Kielgast, U.L.; Hansen, D.L. Postprandial Hypoglycaemia after Roux-en-Y Gastric Bypass and the Effects of Acarbose, Sitagliptin, Verapamil, Liraglutide and Pasireotide. Diabetes Obes. Metab. 2019, 21, 2142–2151. [Google Scholar] [CrossRef] [PubMed]
- Margaret Lawler, H.; McLaughlin, T.L.; Shakeri, S.; Frederick Stortz, E.; Gupta, A.; Singh, V.; Turk, N.; Walker, S.; Cheatham, B.; Wilkison, W. FRI605 Inhibition Of Intestinal SGLT1 With Mizagliflozin For The Treatment Of Post-Bariatric Hypoglycemia. J. Endocr. Soc. 2023, 7, bvad114.829. [Google Scholar] [CrossRef]
- Vogenx, Inc. Vogenx Announces Positive Results from Second Phase 2 Study of Mizagliflozin in Post-Bariatric Hypoglycemia; Vogenx, Inc.: Durham, NC, USA, 2024. [Google Scholar]
- Mudaliar, S.; Polidori, D.; Zambrowicz, B.; Henry, R.R. Sodium–Glucose Cotransporter Inhibitors: Effects on Renal and Intestinal Glucose Transport. Diabetes Care 2015, 38, 2344–2353. [Google Scholar] [CrossRef]
- Lobato, C.B.; Winding, C.T.; Bojsen-Møller, K.N.; Martinussen, C.; Veedfald, S.; Holst, J.J.; Madsbad, S.; Jørgensen, N.B.; Dirksen, C. Canagliflozin or Acarbose versus Placebo to Ameliorate Post-Bariatric Hypoglycaemia—The HypoBar I Randomized Clinical Trial Protocol. Diabet. Med. 2024, 41, e15320. [Google Scholar] [CrossRef]
- Craig, C.M.; Lawler, H.M.; Lee, C.J.E.; Tan, M.; Davis, D.B.; Tong, J.; Glodowski, M.; Rogowitz, E.; Karaman, R.; McLaughlin, T.L.; et al. PREVENT: A Randomized, Placebo-Controlled Crossover Trial of Avexitide for Treatment of Postbariatric Hypoglycemia. J. Clin. Endocrinol. Metab. 2021, 106, e3235–e3248. [Google Scholar] [CrossRef]
- Amylyx. Amylyx Pharmaceuticals Announces Pivotal Phase 3 LUCIDITY Trial Design for GLP-1 Receptor Antagonist (Avexitide) in Post-Bariatric Hypoglycemia; Amylyx: Cambridge, MA, USA, 2024. [Google Scholar]
- McLaughlin, T.; Peck, M.; Holst, J.; Deacon, C. Reversible Hyperinsulinemic Hypoglycemia after Gastric Bypass: A Consequence of Altered Nutrient Delivery. J. Clin. Endocrinol. Metab. 2010, 95, 1851–1855. [Google Scholar] [CrossRef]
- Craig, C.M.; Lamendola, C.; Holst, J.J.; Deacon, C.F.; McLaughlin, T.L. The Use of Gastrostomy Tube for the Long-Term Remission of Hyperinsulinemic Hypoglycemia After Roux-En-y Gastric Bypass: A Case Report. AACE Clin. Case Rep. 2015, 1, e84–e87. [Google Scholar] [CrossRef]
- Z’graggen, K.; Guweidhi, A.; Steffen, R.; Potoczna, N.; Biral, R.; Walther, F.; Komminoth, P.; Horber, F. Severe Recurrent Hypoglycemia after Gastric Bypass Surgery. Obes. Surg. 2008, 18, 981–988. [Google Scholar] [CrossRef]
- Mala, T. Postprandial Hyperinsulinemic Hypoglycemia after Gastric Bypass Surgical Treatment. Surg. Obes. Relat. Dis. 2014, 10, 1220–1225. [Google Scholar] [CrossRef]
- Uchigata, Y.; Hirata, Y.; Omori, Y.; Iwamoto, Y.; Tokunaga, K. Worldwide Differences in the Incidence of Insulin Autoimmune Syndrome (Hirata Disease) with Respect to the Evolution of HLA-DR4 Alleles. Human. Immunol. 2000, 61, 154–157. [Google Scholar] [CrossRef]
- Cappellani, D.; Macchia, E.; Falorni, A.; Marchetti, P. Insulin Autoimmune Syndrome (Hirata Disease): A Comprehensive Review Fifty Years After Its First Description. Diabetes Metab. Syndr. Obes. 2020, 13, 963–978. [Google Scholar] [CrossRef]
- Uchigata, Y.; Eguchi, Y.; Takayama-Hasumi, S.; Omori, Y. Insulin Autoimmune Syndrome (Hirata Disease): Clinical Features and Epidemiology in Japan. Diabetes Res. Clin. Pract. 1994, 22, 89–94. [Google Scholar] [CrossRef]
- Gullo, D.; Evans, J.L.; Sortino, G.; Goldfine, I.D.; Vigneri, R. Insulin Autoimmune Syndrome (Hirata Disease) in European Caucasians Taking α-Lipoic Acid. Clin. Endocrinol. 2014, 81, 204–209. [Google Scholar] [CrossRef]
- Wong, S.L.; Priestman, A.; Holmes, D.T. Recurrent Hypoglycemia from Insulin Autoimmune Syndrome. J. Gen. Intern. Med. 2014, 29, 250–254. [Google Scholar] [CrossRef]
- Deguchi, A.; Okauchi, Y.; Suehara, S.; Mineo, I. Insulin Autoimmune Syndrome in a Health Supplement User: The Effectiveness of Cornstarch Therapy for Treating Hypoglycemia. Intern. Med. 2013, 52, 369–372. [Google Scholar] [CrossRef]
- Askeland, F.B.; Frøen, H.M.; Bolstad, N.; Thorsby, P.M.; Schjesvold, F.; Wammer, A.C.P.; Følling, I.; Tjønnfjord, G.E. Monoclonal Insulin Autoimmune Syndrome Successfully Treated with Plasma Cell Directed Therapy. Clin. Lymphoma Myeloma Leuk. 2025, 25, e127–e130. [Google Scholar] [CrossRef]
- Yukina, M.; Katsobashvili, I.; Platonova, N.; Troshina, E.; Mel’nichenko, G. Munchausen Syndrome with Factitious Hypoglycemia Due to Deliberate Insulin Analog Administration and Factitious Hyperglycemia in a Patient with Hypothyroidism. Clin. Diabetes Endocrinol. 2022, 8, 8. [Google Scholar] [CrossRef]
- Anderson, L.J.; Tamayose, J.M.; Garcia, J.M. Use of Growth Hormone, IGF-I, and Insulin for Anabolic Purpose: Pharmacological Basis, Methods of Detection, and Adverse Effects. Mol. Cell Endocrinol. 2018, 464, 65–74. [Google Scholar] [CrossRef]
- Liu, R.K.; Green, J.; Newton, R. A Scoping Review of Treatment for Factitious Disorder (Imposed on Self). Psychiatry Res. Commun. 2025, 5, 100216. [Google Scholar] [CrossRef]
- Grunberger, G.; Weiner, J.L.; Silverman, R.; Taylor, S.; Gorden, P. Factitious Hypoglycemia Due to Surreptitious Administration of Insulin: Diagnosis, Treatment, and Long-Term Follow-Up. Ann. Intern. Med. 1988, 108, 252–257. [Google Scholar] [CrossRef]
- Perren, A.; Wiesli, P.; Schmid, S.; Montani, M.; Schmitt, A.; Schmid, C.; Moch, H.; Komminoth, P. Pancreatic Endocrine Tumors Are a Rare Manifestation of the Neurofibromatosis Type 1 Phenotype: Molecular Analysis of a Malignant Insulinoma in a NF-1 Patient. Am. J. Surg. Pathol. 2006, 30, 1047–1051. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.Y.; Yeoh, J.; Pondicherry, A.; Rahman, H.; Dissanayake, A. Insulinoma and Tuberous Sclerosis: A Possible Mechanistic Target of Rapamycin (mTOR) Pathway Abnormality? J. Endocr. Soc. 2017, 1, 1120–1123. [Google Scholar] [CrossRef]
- Zhan, H.; Cong, L.; Zhao, Y.; Zhang, T.; Chen, G.; Zhou, L.; Guo, J. Activated mTOR/P70S6K Signaling Pathway Is Involved in Insulinoma Tumorigenesis. J. Surg. Oncol. 2012, 106, 972–980. [Google Scholar] [CrossRef]
- Bahou, K.; Achour, Y.; Ilahiane, M.; Sekkat, H.; Bakali, Y.; Mhamdi Alaoui, M.; Raiss, M.; Sabbah, F.; Hrora, A. Diagnosis and Management of Benign Secreting Pancreatic Insulinoma: What’s New? 4 Case Report. Rare Tumors 2025, 17, 20363613241313409. [Google Scholar] [CrossRef]
- Hirshberg, B.; Livi, A.; Bartlett, D.L.; Libutti, S.K.; Alexander, H.R.; Doppman, J.L.; Skarulis, M.C.; Gorden, P. Forty-Eight-Hour Fast: The Diagnostic Test for Insulinoma. J. Clin. Endocrinol. Metab. 2000, 85, 3222–3226. [Google Scholar] [CrossRef]
- Service, F.J.; Natt, N. The Prolonged Fast. J. Clin. Endocrinol. Metab. 2000, 85, 3973–3974. [Google Scholar] [CrossRef]
- Okabayashi, T.; Shima, Y.; Sumiyoshi, T.; Kozuki, A.; Ito, S.; Ogawa, Y.; Kobayashi, M.; Hanazaki, K. Diagnosis and Management of Insulinoma. World J. Gastroenterol. 2013, 19, 829–837. [Google Scholar] [CrossRef]
- George, P.; McCrimmon, R. Diazoxide. Pract. Diabetes 2012, 29, 36–37. [Google Scholar] [CrossRef]
- Gill, G.V.; Rauf, O.; MacFarlane, I.A. Diazoxide Treatment for Insulinoma: A National UK Survey. Postgrad. Med. J. 1997, 73, 640–641. [Google Scholar] [CrossRef]
- Howarth, S.; Ho, T.; Wimbury, J.; Casey, R. Managing Hypoglycaemia in Patients With Insulinoma—A Tertiary Centre Experience and Review of the Literature. Clin. Endocrinol. 2025, 102, 344–354. [Google Scholar] [CrossRef]
- Cives, M.; Kunz, P.L.; Morse, B.; Coppola, D.; Schell, M.J.; Campos, T.; Nguyen, P.T.; Nandoskar, P.; Khandelwal, V.; Strosberg, J.R. Phase II Clinical Trial of Pasireotide Long-Acting Repeatable in Patients with Metastatic Neuroendocrine Tumors. Endocr. Relat. Cancer 2015, 22, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; et al. Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. N. Engl. J. Med. 2017, 376, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Friebe, L.; Freitag, M.T.; Braun, M.; Nicolas, G.; Bauman, A.; Bushnell, D.; Christ, E.; Wild, D. Peptide Receptor Radionuclide Therapy Is Effective for Clinical Control of Symptomatic Metastatic Insulinoma: A Long-Term Retrospective Analysis. J. Nucl. Med. 2024, 65, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, C.; Han, J.; Luan, Y.; Cui, Y.; Shen, R.; Sha, D.; Cong, L.; Zhang, Z.; Wang, W. Therapeutic Effect of Sunitinib Malate and Its Influence on Blood Glucose Concentrations in a Patient with Metastatic Insulinoma. Expert. Rev. Anticancer. Ther. 2013, 13, 737–743. [Google Scholar] [CrossRef]
- Lutz, S.Z.; Ullrich, A.; Häring, H.-U.; Ullrich, S.; Gerst, F. Sunitinib Specifically Augments Glucose-Induced Insulin Secretion. Cell. Signal. 2017, 36, 91–97. [Google Scholar] [CrossRef]
- Thijs, A.M.J.; Tack, C.J.; Van Der Graaf, W.T.A.; Rongen, G.A.; Van Herpen, C.M.L. The Early Effect of Sunitinib on Insulin Clearance in Patients with Metastatic Renal Cell Carcinoma. Brit J. Clin. Pharma 2016, 81, 768–772. [Google Scholar] [CrossRef]
- Anlauf, M.; Wieben, D.; Perren, A.; Sipos, B.; Komminoth, P.; Raffel, A.; Kruse, M.L.; Fottner, C.; Knoefel, W.T.; Mönig, H.; et al. Persistent Hyperinsulinemic Hypoglycemia in 15 Adults With Diffuse Nesidioblastosis: Diagnostic Criteria, Incidence, and Characterization of β-Cell Changes. Am. J. Surg. Pathol. 2005, 29, 524–533. [Google Scholar] [CrossRef]
- Demartin, S.; Goffette, P.; Christ, E.; Freitag, M.T.; Maiter, D.; Maria Furnica, R. Adult-Onset Nesidioblastosis: A Challenging Diagnosis Revealed by Glucagon-like-Peptide-1 Receptor Imaging. Endocrinol. Diabetes Metab. Case Rep. 2022, 2022, 1–6. [Google Scholar] [CrossRef]
- Boss, M.; Bos, D.; Frielink, C.; Sandker, G.; Bronkhorst, P.; Van Lith, S.A.M.; Brom, M.; Buitinga, M.; Gotthardt, M. Receptor-Targeted Photodynamic Therapy of Glucagon-Like Peptide 1 Receptor–Positive Lesions. J. Nucl. Med. 2020, 61, 1588–1593. [Google Scholar] [CrossRef]
- Murad, M.H.; Coto-Yglesias, F.; Wang, A.T.; Sheidaee, N.; Mullan, R.J.; Elamin, M.B.; Erwin, P.J.; Montori, V.M. Drug-Induced Hypoglycemia: A Systematic Review. J. Clin. Endocrinol. Metab. 2009, 94, 741–745. [Google Scholar] [CrossRef]
- Lilien, L.D.; Srinivasan, G.; Yeh, T.F.; Pildes, R.S. Decreased Plasma Glucose Following Indomethacin Therapy in Premature Infants with Patent Ductus Arteriosus. Pediatr. Pharmacol. 1985, 5, 73–77. [Google Scholar]
- Pereira Arias, A.M.; Romijn, J.A.; Corssmit, E.P.M.; Ackermans, M.T.; Nijpels, G.; Endert, E.; Sauerwein, H.P. Indomethacin Decreases Insulin Secretion in Patients with Type 2 Diabetes Mellitus. Metabolism 2000, 49, 839–844. [Google Scholar] [CrossRef]
- Bito, M.; Tomita, T.; Komori, M.; Taogoshi, T.; Kimura, Y.; Kihira, K. The Mechanisms of Insulin Secretion and Calcium Signaling in Pancreatic β-Cells Exposed to Fluoroquinolones. Biol. Pharm. Bull. 2013, 36, 31–35. [Google Scholar] [CrossRef]
- Balwan, A.; Nicolau, D.P.; Wungwattana, M.; Zuckerman, J.B.; Waters, V. Clinafloxacin for Treatment of Burkholderia Cenocepacia Infection in a Cystic Fibrosis Patient. Antimicrob. Agents Chemother. 2016, 60, 1–5. [Google Scholar] [CrossRef]
- Lexchin, J. Information about a Discontinued Drug. Can. Med. Assoc. J. 2008, 178, 730. [Google Scholar] [CrossRef]
- Stahl-Bayliss, C.M.; Kalman, C.M.; Laskin, O.L. Pentamidine-Induced Hypoglycemia in Patients with the Acquired Immune Deficiency Syndrome. Clin. Pharmacol. Ther. 1986, 39, 271–275. [Google Scholar] [CrossRef]
- Assan, R.; Perronne, C.; Assan, D.; Chotard, L.; Mayaud, C.; Matheron, S.; Zucman, D. Pentamidine-Induced Derangements of Glucose Homeostasis: Determinant Roles of Renal Failure and Drug Accumulation: A Study of 128 Patients. Diabetes Care 1995, 18, 47–55. [Google Scholar] [CrossRef]
- Xiong, F.-R.; Zhu, J.-J.; Zhu, X.-R.; Lu, J.; Yang, J.-K. Low-Dose Quinine Targets KCNH6 to Potentiate Glucose-Induced Insulin Secretion. J. Mol. Cell Biol. 2025, 16, mjae051. [Google Scholar] [CrossRef]
- Ogetii, G.N.; Akech, S.; Jemutai, J.; Boga, M.; Kivaya, E.; Fegan, G.; Maitland, K. Hypoglycaemia in Severe Malaria, Clinical Associations and Relationship to Quinine Dosage. BMC Infect. Dis. 2010, 10, 334. [Google Scholar] [CrossRef]
- Takada, M.; Fujita, S.; Katayama, Y.; Harano, Y.; Shibakawa, M. The Relationship between Risk of Hypoglycemia and Use of Cibenzoline and Disopyramide. Eur. J. Clin. Pharmacol. 2000, 56, 335–342. [Google Scholar] [CrossRef]
- Hashimoto, T.; Adachi, K.; Ishimura, N.; Hirakawa, K.; Katsube, T.; Kurotani, A.; Hattori, S.; Kinoshita, Y. Safety and Efficacy of Glucagon as a Premedication for Upper Gastrointestinal Endoscopy—A Comparative Study with Butyl Scopolamine Bromide. Aliment. Pharmacol. Ther. 2002, 16, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Katibi, O.S.; Olaosebikan, R.; Abdulkadir, M.B.; Ogunkunle, T.O.; Ibraheem, R.M.; Murtala, R. Ackee Fruit Poisoning in Eight Siblings: Implications for Public Health Awareness. Am. J. Trop. Med. Hyg. 2015, 93, 1122–1123. [Google Scholar] [CrossRef]
Neurogenic | Neuroglycopenic |
---|---|
|
|
Insulin-Mediated Hypoglycemia | Non-Insulin-Mediated Hypoglycemia |
---|---|
Exogenous Exogenous insulin (including surreptitious use) | Critical illness |
Adrenal insufficiency | |
Endogenous Insulin secretagogues (sulfonylureas, meglitinides) Insulinoma Noninsulinoma pancreatogenous hypoglycemic syndrome Post-bariatric hypoglycemia Insulin autoimmune syndrome Non-diabetic medications | Nutritional and metabolic disorders Malnutrition and starvation Alcohol Glycogen storage diseases |
Non-islet cell tumors | |
Non-diabetic medications Unripe ackee fruit |
Etiology (Gene) | Pathogenesis | Clinical Features | Management | |
---|---|---|---|---|
GSD Type 0 | Type 0a: glycogen synthase 1 deficiency (GYS1) Type 0b: glycogen synthase 2 deficiency (GYS2) | Inability to convert glucose into glycogen. Gluconeogenesis preserved. | Fasting ketotic hypoglycemia Postprandial hyperglycemia Type 0a: Exercise intolerance Cardiomyopathy | Avoid fasting Frequent high protein meals Uncooked cornstarch |
GSD Type I | Type Ia: Glucose-6-phosphatase α deficiency (G6PC) Type 1b: Glucose-6-phosphate transporter deficiency (SLC37A4) | Inability to catalyze final step of glycogenolysis and gluconeogenesis. Gluconeogenesis not preserved. | Doll-like facies Fasting ketotic hypoglycemia Hepatomegaly High triglycerides Lactic acidosis Hyperuricemia Type 1b: Neutropenia Recurrent infections Inflammatory bowel disease | Continuous enteral nutrition Uncooked cornstarch |
GSD Type III | Glycogen debranching enzyme deficiency (AGL) | Inability to hydrolyze α-1,6-glycosidic bonds, causing abnormal glycogen accumulation. Gluconeogenesis preserved. | Fasting ketotic hypoglycemia Hepatomegaly High cholesterol High AST, ALT, CK * | Avoid fasting Frequent high protein meals Uncooked cornstarch |
GSD Type VI | Hepatic glycogen phosphorylase deficiency (PYGL) | Inability to hydrolyze glycogen. Gluconeogenesis preserved. | Fasting ketotic hypoglycemia Hepatomegaly High cholesterol Normal CK | Treatment often not needed, as improves with age |
Medication Class | Hypoglycemic Mechanism | Notes | |
---|---|---|---|
Indomethacin | NSAID * | Unclear | Seen in premature infants treated with IV indomethacin for PDA * [103]. Not usually seen in adults, and may even cause hyperglycemia [104] |
Clinafloxacin and Gatifloxacin | Fluroquinolone | β-cell KATP channel inhibition [105]. | Unavailable for systemic use in the United States [106,107] |
Pentamidine | Anti-protozoal used for Pneumocystis jiroveci prophylaxis and treatment [108] | β-cell toxicity and death, leading to release of preformed insulin [109] | Hypoglycemia tends to occur within the first few days of administration followed by hyperglycemia in the subsequent 1–3 months [109] |
Quinine | Anti-malarial | β-cell KATP channel inhibition Voltage-dependent K channels inhibition, prolonging β-cell membrane depolarization [110] | Seen when used to treat patients with severe malaria, who are already at higher risk for hypoglycemia due to severe illness and depletion of hepatic glycogen stores by the parasite [111] |
Cibenzoline | Class Ia antiarrhythmic | β-cell KATP channel inhibition [112] | FDA approved but mostly used in Japan [112] |
Glucagon | Anti-motility during endoscopy | Induces hyperglycemia, which stimulates insulin secretion [113] | May occur 90–120 min after administration [113] |
Unripe ackee fruit | Tropical fruit native to West Africa | Hypoglycin A and B are metabolized into MCPA *, which inhibits fatty acid oxidation and impairs gluconeogenesis [114] | Jamaican vomiting sickness/toxic hypoglycemic syndrome, characterized by hypoglycemia, acidemia, liver injury, and severe vomiting. In severe cases, it has led to seizures, coma, or death [114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Looi, E.; Lawler, H.M. Non-Diabetic Hypoglycemia: Evaluation and Management in Adults. J. Clin. Med. 2025, 14, 4393. https://doi.org/10.3390/jcm14134393
Looi E, Lawler HM. Non-Diabetic Hypoglycemia: Evaluation and Management in Adults. Journal of Clinical Medicine. 2025; 14(13):4393. https://doi.org/10.3390/jcm14134393
Chicago/Turabian StyleLooi, Eugene, and Helen M. Lawler. 2025. "Non-Diabetic Hypoglycemia: Evaluation and Management in Adults" Journal of Clinical Medicine 14, no. 13: 4393. https://doi.org/10.3390/jcm14134393
APA StyleLooi, E., & Lawler, H. M. (2025). Non-Diabetic Hypoglycemia: Evaluation and Management in Adults. Journal of Clinical Medicine, 14(13), 4393. https://doi.org/10.3390/jcm14134393