The Effect on Quality of Life of Therapeutic Plasmapheresis and Intravenous Immunoglobulins on a Population of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients with Elevated β-Adrenergic and M3-Muscarinic Receptor Antibodies—A Pilot Study
Abstract
:1. Introduction
- Infection-induced: Infection functions as the initial trigger for a B-cell-mediated immune response.
- Vascular and autoantibody-mediated dysfunction: GPCRs targeting antibodies may cause endothelial dysfunction, impaired neurovascular control, and autonomic small nerve fiber involvement. The clinical manifestations of this are impaired venous return, preload failure, and arteriovenous shunting, ultimately contributing to blood flow dysregulation and exertion-induced tissue hypoxia.
- Secondary compensatory mechanisms: This involves compensatory adaptations, including increased sympathetic tone and metabolic shifts aimed at maintaining energy supply. These adaptations further contribute to the clinical presentation and symptomatology of ME/CFS.
- Interfere with the pathological immune response in the following ways [6]:
- B-cell depletion therapy (anti-CD20 antibody) [13];
- Cytotoxic drugs (cyclophosphamide);
- Modulate plasma cell survival factors (Anti-BAFF antibody);
- Plasma cell inhibition (Anti-CD38 antibody, proteasome inhibition);
- Immunoglobulin manipulation (neonatal fragment crystallizable receptor (FcRn) targeting, immunoadsorption, IVIGs). Human immunoglobulins are meant to have an immunomodulatory and immunosuppressive effect, even at a low dosage [14].
- Address vascular dysregulation, including endothelial dysfunction, arteriovenous shunting, impaired autoregulation. One study demonstrated improvement in endothelial dysfunction after plasmapheresis in critically ill patients with disseminated intravascular coagulation (DIC) [15].
2. Materials and Methods
2.1. Study Protocol
2.2. Study Procedure and Data Collection
2.3. Statistical Analyses
3. Results
4. Discussion
4.1. Safety
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
6MWT | 6 min walk test |
ACTH | adrenocorticotropic hormone |
ADRs | adrenergic receptor antibodies |
ADRB2 | adrenergic 2-receptor antibody |
CHRM3 | M3-muscarinic receptor antibody |
CHRM4 | M4-muscarinic receptor antibody |
AT1-R | angiotensin-1 receptor |
CO | carbon monoxide |
CRH | corticotropin-releasing hormone |
CT | computed tomography |
DIC | disseminated intravascular coagulation |
EBV | Epstein–Barr virus |
EQ-5D-5L | European Quality of Life 5 Dimensions 5 Level Version |
ETA-R-AAB | Endothelin-1 type A receptor antibody |
FcRn | neonatal fragment crystallizable receptor |
FSS | Fatigue Severity Scale |
GPCRs | G-protein-coupled receptors |
HADS | Hospital Anxiety and Depression Scale |
IA | immunoadsorption |
IgG | immunoglobulin G |
IGF-1 | Insulin-like growth factor 1 |
IGF-2 | Insulin-like growth factor 2 |
ISI | Insomnia Severity Index |
IVIG | intravenous immunoglobulin |
LMM | linear mixed-effects model |
ME/CFS | myalgic encephalomyelitis/chronic fatigue syndrome |
MLM | multilevel model |
MoCA | Montreal Cognitive Assessment |
PASC | postacute sequelae of SARS-CoV-2 infection |
PCC | long COVID/post-COVID-19 condition |
PE | plasmapheresis/plasma exchange |
PEM | post-exertional malaise |
POTS | postural orthostatic tachycardia syndrome |
SARS-CoV-2 | severe acute respiratory syndrome coronavirus 2 |
SNRIs | serotonin–norepinephrine reuptake inhibitors |
SSRIs | selective serotonin reuptake inhibitors |
alpha1/2-AdR-AAB | adrenergic α1/2-receptor antibody |
References
- Stein, E.; Heindrich, C.; Wittke, K.; Kedor, C.; Kim, L.; Freitag, H.; Krüger, A.; Tölle, M.; Scheibenbogen, C. Observational Study of Repeat Immunoadsorption (RIA) in Post-COVID ME/CFS Patients with Elevated β2-Adrenergic Receptor Autoantibodies—An Interim Report. J. Clin. Med. 2023, 12, 6428. [Google Scholar] [CrossRef]
- Thaweethai, T.; Jolley, S.E.; Karlson, E.W.; Levitan, E.B.; Levy, B.; McComsey, G.A.; McCorkell, L.; Nadkarni, G.N.; Parthasarathy, S.; Singh, U.; et al. Development of a Definition of Postacute Sequelae of SARS-CoV-2 Infection. JAMA 2023, 329, 1934–1946. [Google Scholar] [CrossRef] [PubMed]
- Scheibenbogen, C.; Bellmann-Strobl, J.T.; Heindrich, C.; Wittke, K.; Stein, E.; Franke, C.; Prüss, H.; Preßler, H.; Machule, M.-L.; Audebert, H.; et al. Fighting Post-COVID and ME/CFS—Development of curative therapies. Front. Med. 2023, 10, 1194754. [Google Scholar] [CrossRef]
- Sotzny, F.; Filgueiras, I.S.; Kedor, C.; Freitag, H.; Wittke, K.; Bauer, S.; Sepúlveda, N.; da Fonseca, D.L.M.; Baiocchi, G.C.; Marques, A.H.C.; et al. Dysregulated autoantibodies targeting vaso- and immunoregulatory receptors in Post COVID Syndrome correlate with symptom severity. Front. Immunol. 2022, 13, 981532. [Google Scholar] [CrossRef] [PubMed]
- Sandvik, M.K.; Sørland, K.; Leirgul, E.; Rekeland, I.G.; Stavland, C.S.; Mella, O.; Fluge, Ø. Endothelial dysfunction in ME/CFS patients. PloS ONE 2023, 18, e0280942. [Google Scholar] [CrossRef] [PubMed]
- Fluge, Ø.; Tronstad, K.J.; Mella, O. Pathomechanisms and possible interventions in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). J. Clin. Investig. 2021, 131, e150377. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine. Board on the Health of Select Populations, Committee on the Diagnostic Criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. In Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness; National Academies Press: Washington, DC, USA, 2015. Available online: https://www.ncbi.nlm.nih.gov/books/NBK284898/ (accessed on 11 February 2025).
- Bynke, A.; Julin, P.; Gottfries, C.-G.; Heidecke, H.; Scheibenbogen, C.; Bergquist, J. Autoantibodies to beta-adrenergic and muscarinic cholinergic receptors in Myalgic Encephalomyelitis (ME) patients—A validation study in plasma and cerebrospinal fluid from two Swedish cohorts. Brain Behav. Immun.-Health 2020, 7, 100107. [Google Scholar] [CrossRef]
- Wong, T.L.; Weitzer, D.J. Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)—A Systemic Review and Comparison of Clinical Presentation and Symptomatology. Medicina 2021, 57, 418. [Google Scholar] [CrossRef]
- Morita, S.; Tokumasu, K.; Otsuka, Y.; Honda, H.; Nakano, Y.; Sunada, N.; Sakurada, Y.; Matsuda, Y.; Soejima, Y.; Ueda, K.; et al. Phase-dependent trends in the prevalence of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) related to long COVID: A criteria-based retrospective study in Japan. PloS ONE 2024, 19, e0315385. [Google Scholar] [CrossRef]
- Kiprov, D.D.; Herskowitz, A.; Kim, D.; Lieb, M.; Liu, C.; Watanabe, E.; Hoffman, J.C.; Rohe, R.; Conboy, M.J.; Conboy, I.M. Case Report: Therapeutic and immunomodulatory effects of plasmapheresis in long-haul COVID. F1000Research 2021, 10, 1189. [Google Scholar] [CrossRef]
- Greenhalgh, T.; Sivan, M.; Perlowski, A.; Nikolich, J.Ž. Long COVID: A clinical update. Lancet 2024, 404, 707–724. [Google Scholar] [CrossRef] [PubMed]
- Fluge, Ø.; Risa, K.; Lunde, S.; Alme, K.; Rekeland, I.G.; Sapkota, D.; Kristoffersen, E.K.; Sørland, K.; Bruland, O.; Dahl, O.; et al. B-Lymphocyte Depletion in Myalgic Encephalopathy/Chronic Fatigue Syndrome. An Open-Label Phase II Study with Rituximab Maintenance Treatment. PloS ONE 2015, 10, e0129898. [Google Scholar] [CrossRef]
- Arumugham, V.B.; Rayi, A. Intravenous Immunoglobulin (IVIG). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK554446/ (accessed on 11 February 2025).
- Weng, J.; Chen, M.; Fang, D.; Liu, D.; Guo, R.; Yang, S. Therapeutic Plasma Exchange Protects Patients with Sepsis-Associated Disseminated Intravascular Coagulation by Improving Endothelial Function. Clin. Appl. Thromb. Off. J. Int. Acad. Clin. Appl. Thromb. 2021, 27, 10760296211053313. [Google Scholar] [CrossRef]
- Sanal-Hayes, N.E.M.; Mclaughlin, M.; Hayes, L.D.; Mair, J.L.; Ormerod, J.; Carless, D.; Hilliard, N.; Meach, R.; Ingram, J.; Sculthorpe, N.F. A scoping review of ‘Pacing’ for management of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): Lessons learned for the long COVID pandemic. J. Transl. Med. 2023, 21, 720. [Google Scholar] [CrossRef] [PubMed]
- Fox, T.; Hunt, B.J.; Ariens, R.A.; Towers, G.J.; Lever, R.; Garner, P.; Kuehn, R. Plasmapheresis to remove amyloid fibrin (ogen) particles for treating the post-COVID-19 condition. Cochrane Database Syst. Rev. 2023, 7, CD015775. [Google Scholar] [CrossRef]
- Cervantes, C.E.; Bloch, E.M.; Sperati, C.J. Therapeutic Plasma Exchange: Core Curriculum 2023. Am. J. Kidney Dis. 2023, 81, 475–492. [Google Scholar] [CrossRef]
- Nunes, M.; Vlok, M.; Proal, A.; Kell, D.B.; Pretorius, E. Data-independent LC-MS/MS analysis of ME/CFS plasma reveals a dysregulated coagulation system, endothelial dysfunction, downregulation of complement machinery. Cardiovasc. Diabetol. 2024, 23, 254. [Google Scholar] [CrossRef] [PubMed]
- Herdman, M.; Gudex, C.; Lloyd, A.; Janssen, M.; Kind, P.; Parkin, D.; Bonsel, G.; Badia, X. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual. Life Res. 2011, 20, 1727–1736. [Google Scholar] [CrossRef]
- Morin, C.M.; Chen, S.-J.; Ivers, H.; Beaulieu-Bonneau, S.; Krystal, A.D.; Guay, B.; Bélanger, L.; Cartwright, A.; Simmons, B.; Lamy, M.; et al. Effect of Psychological and Medication Therapies for Insomnia on Daytime Functions: A Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2349638. [Google Scholar] [CrossRef]
- Dieck, A.; Morin, C.M.; Backhaus, J. A German version of the Insomnia Severity Index: Validation and identification of a cut-off to detect insomnia. Somnologie 2018, 22, 27–35. [Google Scholar] [CrossRef]
- Krupp, L.B.; LaRocca, N.G.; Muir-Nash, J.; Steinberg, A.D. The Fatigue Severity Scale: Application to Patients with Multiple Sclerosis and Systemic Lupus Erythematosus. Arch. Neurol. 1989, 46, 1121–1123. [Google Scholar] [CrossRef] [PubMed]
- Valko, P.O.; Bassetti, C.L.; Bloch, K.E.; Held, U.; Baumann, C.R. Validation of the Fatigue Severity Scale in a Swiss Cohort. Sleep 2008, 31, 1601–1607. [Google Scholar] [CrossRef] [PubMed]
- Zigmond, A.S.; Snaith, R.P. The Hospital Anxiety and Depression Scale. Acta Psychiatr. Scand. 1983, 67, 361–370. [Google Scholar] [CrossRef]
- Petermann, F. Hospital Anxiety and Depression Scale, Deutsche Version (HADS-D). Z. Für Psychiatr. Psychol. Psychother. 2011, 59, 251–253. [Google Scholar] [CrossRef]
- Green, P.; MacLeod, C.J. SIMR: An R package for power analysis of generalized linear mixed models by simulation. Methods Ecol. Evol. 2016, 7, 493–498. [Google Scholar] [CrossRef]
- Stein, E.; Heindrich, C.; Wittke, K.; Kedor, C.; Rust, R.; Freitag, H.; Sotzny, F.; Krüger, A.; Tölle, M.; Grabowski, P.; et al. Efficacy of repeated immunoadsorption in patients with post-COVID myalgic encephalomyelitis/chronic fatigue syndrome and elevated β2-adrenergic receptor autoantibodies: A prospective cohort study. Lancet Reg. Health-Eur. 2025, 49, 101161. [Google Scholar] [CrossRef]
- Hendrix, J.; Fanning, L.; Wyns, A.; Ahmed, I.; Patil, M.S.; Richter, E.; Van Campenhout, J.; Ickmans, K.; Mertens, R.; Nijs, J.; et al. Adrenergic dysfunction in patients with myalgic encephalomyelitis/chronic fatigue syndrome and fibromyalgia: A systematic review and meta-analysis. Eur. J. Clin. Investig. 2025, 55, e14318. [Google Scholar] [CrossRef] [PubMed]
- Cocks, K.; Torgerson, D.J. Sample size calculations for pilot randomized trials: A confidence interval approach. J. Clin. Epidemiol. 2013, 66, 197–201. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; p. 201. Available online: https://www.r-project.org/ (accessed on 10 March 2025).
- Templ, M.; Kowarik, A.; Alfons, A.; De Cillia, G.; Rannetbauer, W. VIM: Visualization and Imputation of Missing Values. Version 6.2.2. 2012. Available online: https://doi.org/10.32614/CRAN.package.VIM (accessed on 10 March 2025).
- Buuren, S.V.; Groothuis-Oudshoorn, K. mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef]
- Rubin, D.B.; Schenker, N. Multiple imputation in health-are databases: An overview and some applications. Stat. Med. 1991, 10, 585–598. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using IBM SPSS Statistics, 6th ed.; Sage: Los Angeles, CA, USA; London, UK; New Delhi, India; Singapore; Washington, DC, USA; Melbourne, Australia, 2024. [Google Scholar]
- Bates, D.W.; Saria, S.; Ohno-Machado, L.; Shah, A.; Escobar, G. Big data in health care: Using analytics to identify and manage high-risk and high-cost patients. Health Aff. Proj. Hope 2014, 33, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, R.A. When to use the Bonferroni correction. Ophthalmic Physiol. Opt. 2014, 34, 502–508. [Google Scholar] [CrossRef]
- Warnes, G.R. gplots: Various R Programming Tools for Plotting Data. S. 3.2.0. 30 May 2005. Available online: https://cran.r-project.org/web/packages/gplots/index.html (accessed on 17 May 2025).
- Wickham, H. ggplot2. WIREs Comput. Stat. 2011, 3, 180–185. [Google Scholar] [CrossRef]
- Morton, F.; Nijjar, J.S. eq5d: Methods for Analysing ‘EQ-5D’ Data and Calculating, EQ-5D Index Scores. Version 0.15.6. 2019. Available online: https://doi.org/10.32614/CRAN.package.eq5d (accessed on 11 March 2025).
- Ludwig, K.; Von Der Schulenburg, J.-M.G. Greiner German Value Set for the EQ-5D-5L. PharmacoEconomics 2018, 36, 663–674. [Google Scholar] [CrossRef]
- Achleitner, M.; Steenblock, C.; Dänhardt, J.; Jarzebska, N.; Kardashi, R.; Kanczkowski, W.; Straube, R.; Rodionov, R.N.; Bornstein, N.; Tselmin, S.; et al. Clinical improvement of Long-COVID is associated with reduction in autoantibodies, lipids, and inflammation following therapeutic apheresis. Mol. Psychiatry 2023, 28, 2872–2877. [Google Scholar] [CrossRef] [PubMed]
- Hogeweg, M.; Doevelaar, A.; Rieckmann, S.; Seibert, F.; Scholten, D.; Segelmacher, M.; Stervbo, U.; Babel, N.; Westhoff, T.H. Intravenous immunoglobulins in the treatment of post-COVID: A case–control study. J. Intern. Med. 2023, 293, 656–658. [Google Scholar] [CrossRef]
- Afonso, A.F.B.; João, C.M.P. The Production Processes and Biological Effects of Intravenous Immunoglobulin. Biomolecules 2016, 6, 15. [Google Scholar] [CrossRef]
- Ludwig, R.J.; Vanhoorelbeke, K.; Leypoldt, F.; Kaya, Z.; Bieber, K.; McLachlan, S.M.; Komorowski, L.; Luo, J.; Cabral-Marques, O.; Hammers, C.M.; et al. Mechanisms of Autoantibody-Induced Pathology. Front. Immunol. 2017, 8, 603. [Google Scholar] [CrossRef]
- Xu, C.; Poirier, B.; Van Huyen, J.-P.D.; Lucchiari, N.; Michel, O.; Chevalier, J.; Kaveri, S. Modulation of endothelial cell function by normal polyspecific human intravenous immunoglobulins: A possible mechanism of action in vascular diseases. Am. J. Pathol. 1998, 153, 1257–1266. [Google Scholar] [CrossRef]
- Jaeger, B.R.; Arron, H.E.; Kalka-Moll, W.M.; Seidel, D. The potential of heparin-induced extracorporeal LDL/fibrinogen precipitation (H.E.L.P.)-apheresis for patients with severe acute or chronic COVID-19. Front. Cardiovasc. Med. 2022, 9, 1007636. [Google Scholar] [CrossRef]
- Livieratos, A.; Gogos, C.; Akinosoglou, K. Beyond Antivirals: Alternative Therapies for Long COVID. Viruses 2024, 16, 1795. [Google Scholar] [CrossRef]
- Bramante, C.T.; Beckman, K.B.; Mehta, T.; Karger, A.B.; Odde, D.J.; Tignanelli, C.J.; Buse, J.B.; Johnson, D.M.; Watson, R.H.B.; Daniel, J.J.; et al. Favorable Antiviral Effect of Metformin on SARS-CoV-2 Viral Load in a Randomized, Placebo-Controlled Clinical Trial of COVID-19. Clin. Infect. Dis. 2024, 79, 354–363. [Google Scholar] [CrossRef]
- Isman, A.; Nyquist, A.; Strecker, B.; Harinath, G.; Lee, V.; Zhang, X.; Zalzala, S. Low-dose naltrexone and NAD+ for the treatment of patients with persistent fatigue symptoms after COVID-19. Brain Behav. Immun.-Health 2024, 36, 100733. [Google Scholar] [CrossRef] [PubMed]
- Bonet, D.B.; Vélez, O.A.C.; Jordà, X.D.; Serrano, M.C.; Rivera, M.P.; Admetlló, M.; Blasco, A.H.; Godia, E.C.; Navarro, E.M.; Ezquerra, G.M.; et al. Treatment of COVID-19 during the Acute Phase in Hospitalized Patients Decreases Post-Acute Sequelae of COVID-19. J. Clin. Med. 2023, 12, 4158. [Google Scholar] [CrossRef]
- Loebel, M.; Grabowski, P.; Heidecke, H.; Bauer, S.; Hanitsch, L.G.; Wittke, K.; Meisel, C.; Reinke, P.; Volk, H.-D.; Fluge, Ø.; et al. Antibodies to β adrenergic and muscarinic cholinergic receptors in patients with Chronic Fatigue Syndrome. Brain. Behav. Immun. 2016, 52, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Freitag, H.; Szklarski, M.; Lorenz, S.; Sotzny, F.; Bauer, S.; Philippe, A.; Kedor, C.; Grabowski, P.; Lange, T.; Riemekasten, G.; et al. Autoantibodies to Vasoregulative G-Protein-Coupled Receptors Correlate with Symptom Severity, Autonomic Dysfunction and Disability in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J. Clin. Med. 2021, 10, 3675. [Google Scholar] [CrossRef]
- Warner, D.; Duncan, H.; Gudsoorkar, P.; Anand, M. Indications and complications associated with centrifuge-based therapeutic plasma exchange—A retrospective review. BMC Nephrol. 2025, 26, 87. [Google Scholar] [CrossRef]
- Kaya, E.; Keklik, M.; Şencan, M.; Yilmaz, M.; Keskin, A.; Kiki, I.; Erkurt, M.A.; Şivgin, S.; Korkmaz, S.; Okan, V.; et al. Therapeutic plasma exchange in patients with neurological diseases: Multicenter retrospective analysis. Transfus. Apher. Sci. Off. J. World Apher. Assoc. Off. J. Eur. Soc. Haemapheresis 2013, 48, 349–352. [Google Scholar] [CrossRef]
- Afzali, M.; Oveisgharan, S.; Rajabkhah, S.; Abdi, S. Complications of therapeutic plasma exchange in patients with neurological disorders. Curr. J. Neurol. 2020, 19, 8–12. [Google Scholar] [CrossRef]
- Mokrzycki, M.H.; Kaplan, A.A. Therapeutic plasma exchange: Complications and management. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 1994, 23, 817–827. [Google Scholar] [CrossRef]
- Missailidis, D.; Annesley, S.J.; Fisher, P.R. Pathological Mechanisms Underlying Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Diagnostics 2019, 9, 80. [Google Scholar] [CrossRef] [PubMed]
- Eaton-Fitch, N.; Rudd, P.; Er, T.; Hool, L.; Herrero, L.; Marshall-Gradisnik, S. Immune exhaustion in ME/CFS and long COVID. JCI Insight 2024, 9, e183810. [Google Scholar] [CrossRef] [PubMed]
- Wirth, K.; Scheibenbogen, C. A Unifying Hypothesis of the Pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): Recognitions from the finding of autoantibodies against β2-adrenergic receptors. Autoimmun. Rev. 2020, 19, 102527. [Google Scholar] [CrossRef] [PubMed]
- Fluge, Ø.; Rekeland, I.G.; Lien, K.; Thürmer, H.; Borchgrevink, P.C.; Schäfer, C.; Sørland, K.; Aßmus, J.; Ktoridou-Valen, I.; Herder, I.; et al. B-Lymphocyte Depletion in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial. Ann. Intern. Med. 2019, 170, 585–593. [Google Scholar] [CrossRef]
- Gravelsina, S.; Vilmane, A.; Svirskis, S.; Rasa-Dzelzkaleja, S.; Nora-Krukle, Z.; Vecvagare, K.; Krumina, A.; Leineman, I.; Shoenfeld, Y.; Murovska, M. Biomarkers in the diagnostic algorithm of myalgic encephalomyelitis/chronic fatigue syndrome. Front. Immunol. 2022, 13, 928945. [Google Scholar] [CrossRef]
- Lim, E.-J.; Ahn, Y.-C.; Jang, E.-S.; Lee, S.-W.; Lee, S.-H.; Son, C.-G. Systematic review and meta-analysis of the prevalence of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). J. Transl. Med. 2020, 18, 100. [Google Scholar] [CrossRef]
1. | Outpatient Clinic of Department of Internal Medicine Consultation of Long COVID | Relevant laboratory results: β1-adrenergic receptor antibody, β2-adrenergic receptor antibody, M3-muscarinic acetylcholine-receptor-antibody, M4-muscarinic acetylcholine-receptor-antibody. Standardized tests: Schellong test, 6MWT with Borg Score, echocardiography, pulmonal functional tests, psychiatric evaluation, EQ-5D-5L Health VAS, EQ-5D-5L, HADS Anxiety, HADS Depression, ISI, FSS, IES-R. If the detected antibodies showed a relevant elevation, the non-responder patients to conservative therapy were assigned to the apheresis consultation. |
2. | Apheresis Consultation at Clinic of Nephrology and Transplant Medicine | The patients were informed about all side effects and complications of the plasma exchange and albumin application. |
3. | 1st Plasma Exchange | A clinical visit to Nephrology. |
4. | 2nd Plasma Exchange after 5 Days | A clinical visit to Nephrology. |
5. | Back to Long COVID Consultation within 2 Weeks | A clinical visit to and standardized tests at Internal Medicine. |
6. | 3rd Plasma Exchange after 1 Month | A clinical visit to Nephrology. |
7. | Back to Long COVID Consultation within 8 Weeks | A clinical visit to and standardized tests at Internal Medicine. |
8. | 4th Plasma Exchange after 1–4 Months | A clinical visit to Nephrology. |
9. | Back to Long COVID Consultation within 2 weeks | A clinical visit, laboratory and standardized tests, and follow-up. |
Outcome | Questionnaire/Reference | Score Building/Range/Cut-Off/(Sub)Scale |
---|---|---|
Insomnia | ISI (Insomnia Severity Index)/[21,22] | Sum score 0 to 28/≥15/global |
Fatigue | FSS (Fatigue Severity Scale)/[23,24] | Sum score/9 to 63/≥36/global |
Depression and anxiety | HADS (Hospital Anxiety and Depression Scale)/[25,26] | Sum score/0 to 21/≥8/depression Sum score/0 to 21/≥8/anxiety |
Health-related quality of life | EQ-5D-5L (European Quality of Life 5 Dimensions 5 Level Version)/[20] | Visual analogue scale score/0 to 100/no cut-off/ current health Index score −0.59 to 1/no cut-off/quality of life consisting of five dimensions: mobility, self-care, usual activities, pain/discomfort, anxiety/depression |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oesch-Régeni, B.; Germann, N.; Hafer, G.; Schmid, D.; Arn, N. The Effect on Quality of Life of Therapeutic Plasmapheresis and Intravenous Immunoglobulins on a Population of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients with Elevated β-Adrenergic and M3-Muscarinic Receptor Antibodies—A Pilot Study. J. Clin. Med. 2025, 14, 3802. https://doi.org/10.3390/jcm14113802
Oesch-Régeni B, Germann N, Hafer G, Schmid D, Arn N. The Effect on Quality of Life of Therapeutic Plasmapheresis and Intravenous Immunoglobulins on a Population of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients with Elevated β-Adrenergic and M3-Muscarinic Receptor Antibodies—A Pilot Study. Journal of Clinical Medicine. 2025; 14(11):3802. https://doi.org/10.3390/jcm14113802
Chicago/Turabian StyleOesch-Régeni, Boglárka, Nicolas Germann, Georg Hafer, Dagmar Schmid, and Norbert Arn. 2025. "The Effect on Quality of Life of Therapeutic Plasmapheresis and Intravenous Immunoglobulins on a Population of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients with Elevated β-Adrenergic and M3-Muscarinic Receptor Antibodies—A Pilot Study" Journal of Clinical Medicine 14, no. 11: 3802. https://doi.org/10.3390/jcm14113802
APA StyleOesch-Régeni, B., Germann, N., Hafer, G., Schmid, D., & Arn, N. (2025). The Effect on Quality of Life of Therapeutic Plasmapheresis and Intravenous Immunoglobulins on a Population of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients with Elevated β-Adrenergic and M3-Muscarinic Receptor Antibodies—A Pilot Study. Journal of Clinical Medicine, 14(11), 3802. https://doi.org/10.3390/jcm14113802