Assessment of Behavioral Risk Factors in Chronic Obstructive Airway Diseases of the Lung Associated with Metabolic Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
- Abdominal obesity defined by waist circumference:≥102 cm for men;≥88 cm for women.
- Hypertriglyceridemia defined by triglyceride levels:≥150 mg/dL or hypotriglyceridemic medication.
- Low HDL cholesterol:<40 mg/dL for men or medication for reduced HDL cholesterol;<50 mg/dL for women or medication for reduced HDL cholesterol.
- Increased blood pressure (BP):
- -
- systolic BP (SBP) ≥130 mmHg and/or diastolic BP (DBP) ≥85 mmHg or antihypertensive medication.
- Hyperglycemia:
- -
- fasting glucose ≥100 mg/dL or antidiabetic medication.
2.2. Statistical Analysis
3. Results
3.1. Metabolic Syndrome Risk Assessment
- -
- For risk score 0: a total of two patients, a female patient aged 48 and a male patient aged 63. Both patients are of normal weight.
- -
- Spirometry results for SCOR 0 (0 risk criteria fulfilled): moderate DVO for both patients.
- -
- For risk score 1: a total number of five patients, all male, average age 57 years, four normal weight patients, one slightly overweight.
- -
- SCOR 1 spirometry results (1 risk criterion fulfilled): DVO—moderate one patient, moderate-severe DVM one patient, and very severe DVM three patients (60%).
- -
- For risk score 2: a total number of 15 patients, 4 women and 11 men, average age of 57.26 years, 1 underweight patient, 8 normal weight patients, 6 overweight or obese patients.
- -
- Spirometry results for SCOR 2 (2 risk criteria met): normal two patients, DVO—moderate one patient, moderate-severe DVO one patient, mild DVM one patient, severe DVM three patients, and very severe DVM three patients; DVM type (mixed ventilatory dysfunction) predominates in 11 patients, i.e., 73.33%.
- -
- For risk score 3: a total number of 12 patients, 6 women and 6 men, average age of 63.25 years, 1 underweight patient, 7 normal weight patients, 4 obese patients.
- -
- Spirometry results for SCOR 3 (3 risk criteria fulfilled): normal two patients, DVO—moderate one patient, moderate DVM one patient, moderate-severe DVM one patient, severe DVM three patients, very severe DVM three patients, mild DVR one patient; DVM type (mixed ventilatory dysfunction) predominates in eight patients, i.e., 66.66%.
- -
- For risk score 4: a total number of 12 patients, 3 women and 9 men, average age of 63.25 years, 2 normal weight patients, 6 overweight patients and 4 obese patients.
- -
- Spirometry results for SCOR 4 (4 risk criteria fulfilled): normal one patient, DVO—mild one patient, moderate-severe DVM two patients, severe DVM three patients, very severe DVM three patients, moderate DVR one patient, severe DVR one patient; DVM type (mixed ventilatory dysfunction) predominates in eight patients, i.e., 66.66%.
- -
- For risk score 5: a total number of 24 patients, 10 women and 14 men, average age of 66.54 years, 11 overweight patients and 13 obese patients.
- -
- Spirometry results for SCOR 5 (5 risk criteria fulfilled): normal two patients, DVO—mild two patients, DVM moderate two patients, DVM moderate-severe three patients, DVM severe five patients, DVM very severe three patients, DVR mild one patient, DVR moderate three patients, DVR moderate-severe two patients, DVR severe one patient; DVM type (mixed ventilatory dysfunction) predominates in 13 patients, i.e., 54.16%.
3.2. Analysis of Behavioral Risk Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cukic, V.; Lovre, V.; Dragisic, D.; Ustamujic, A. Asthma and Chronic Obstructive Pulmonary Disease (COPD)—Differences and Similarities. Mater. Sociomed. 2012, 24, 100–105. [Google Scholar] [CrossRef] [PubMed]
- May, S.M.; Li, J.T. Burden of chronic obstructive pulmonary disease: Healthcare costs and beyond. Allergy Asthma Proc. 2015, 36, 4–10. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Chronic Obstructive Pulmonary Disease (COPD). 16 March 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd) (accessed on 7 December 2023).
- Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for Prevention, Diagnosis and Management of COPD: 2023 Report. Available online: https://goldcopd.org/2023-gold-report-2/ (accessed on 7 December 2023).
- Wang, Z.; Li, Y.; Lin, J.; Huang, J.; Zhang, Q.; Wang, F.; Tan, L.; Liu, S.; Gao, Y.; Peng, S.; et al. Prevalence, risk factors, and mortality of COPD in young people in the USA: Results from a population-based retrospective cohort. BMJ Open Respir. Res. 2023, 10, e001550. [Google Scholar] [CrossRef]
- World Health Organization. Asthma. 4 May 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/asthma (accessed on 7 December 2023).
- Castillo, J.R.; Peters, S.P.; Busse, W.W. Asthma Exacerbations: Pathogenesis, Prevention, and Treatment. J. Allergy Clin. Immunol. Pract. 2017, 5, 918–927. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, K.; Reddel, H.K.; Pitrez, P.M.; Bateman, E.D. Asthma management in low and middle income countries: Case for change. Eur. Respir. J. 2022, 60, 2103179. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, M.; Rogliani, P.; Ora, J.; Calzetta, L.; Matera, M.G. Asthma and comorbidities: Recent advances. Pol. Arch. Intern. Med. 2022, 132, 16250. [Google Scholar] [CrossRef]
- Burke, H.; Wilkinson, T.M.A. Unravelling the mechanisms driving multimorbidity in COPD to develop holistic approaches to patient-centred care. Eur. Respir. Rev. 2021, 30, 210041. [Google Scholar] [CrossRef]
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2023 GINA Main Report. Available online: https://ginasthma.org/2023-gina-main-report/ (accessed on 7 December 2023).
- Ranasinghe, P.; Mathangasinghe, Y.; Jayawardena, R.; Hills, A.P.; Misra, A. Prevalence and trends of metabolic syndrome among adults in the asia-pacific region: A systematic review. BMC Public Health 2017, 17, 101. [Google Scholar] [CrossRef]
- Cornier, M.A.; Dabelea, D.; Hernandez, T.L.; Lindstrom, R.C.; Steig, A.J.; Stob, N.R.; Van Pelt, R.E.; Wang, H.; Eckel, R.H. The metabolic syndrome. Endocr. Rev. 2008, 29, 777–822. [Google Scholar] [CrossRef]
- Peters, U.; Dixon, A.E.; Forno, E. Obesity and asthma. J. Allergy Clin. Immunol. 2018, 141, 1169–1179. [Google Scholar] [CrossRef]
- Shore, S.A. Obesity and asthma: Possible mechanisms. J. Allergy Clin. Immunol. 2008, 121, 1087–1093. [Google Scholar] [CrossRef]
- Wu, T.D. Diabetes, insulin resistance, and asthma: A review of potential links. Curr. Opin. Pulm. Med. 2021, 27, 29–36. [Google Scholar] [CrossRef]
- Naik, D.; Joshi, A.; Paul, T.V.; Thomas, N. Chronic obstructive pulmonary disease and the metabolic syndrome: Consequences of a dual threat. Indian J. Endocrinol. Metab. 2014, 18, 608–616. [Google Scholar]
- Ioniță-Mîndrican, C.-B.; Mititelu, M.; Musuc, A.M.; Oprea, E.; Ziani, K.; Neacșu, S.M.; Grigore, N.D.; Negrei, C.; Dumitrescu, D.-E.; Mireșan, H.; et al. Honey and Other Beekeeping Products Intake among the Romanian Population and Their Thera-peutic Use. Appl. Sci. 2022, 12, 9649. [Google Scholar] [CrossRef]
- Matran, I.M.; Martin-Hadmaș, R.M.; Niculaș, C.; Muntean, D.L.; Tarcea, M. Dietary and pharmaco-therapy in skin diseases. Farmacia 2022, 70, 177–183. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Popa, S.; Moţa, M.; Popa, A.; Moţa, E.; Serafinceanu, C.; Guja, C.; Catrinoiu, D.; Hâncu, N.; Lichiardopol, R.; Bala, C.; et al. Prevalence of overweight/obesity, abdominal obesity and metabolic syndrome and atypical cardiometabolic phenotypes in the adult Romanian population: PREDATORR study. J. Endocrinol. Investig. 2016, 39, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.recensamantromania.ro/rezultate-rpl-2021/rezultate-definitive/ (accessed on 11 November 2023).
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; SmithJr, S.C.; et al. Diagnosis and Management of the Metabolic Syndrome, An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement: Executive Summary. Circulation 2005, 112, e285–e290. [Google Scholar]
- Mititelu, M.; Oancea, C.-N.; Neacșu, S.M.; Musuc, A.M.; Gheonea, T.C.; Stanciu, T.I.; Rogoveanu, I.; Hashemi, F.; Stanciu, G.; Ioniță-Mîndrican, C.-B.; et al. Evaluation of Junk Food Consumption and the Risk Related to Consumer Health among the Romanian Population. Nutrients 2023, 15, 3591. [Google Scholar] [CrossRef] [PubMed]
- Mititelu, M.; Oancea, C.-N.; Neacșu, S.M.; Olteanu, G.; Cîrțu, A.-T.; Hîncu, L.; Gheonea, T.C.; Stanciu, T.I.; Rogoveanu, I.; Hashemi, F.; et al. Evaluation of Non-Alcoholic Beverages and the Risk Related to Consumer Health among the Romanian Population. Nutrients 2023, 15, 3841. [Google Scholar] [CrossRef] [PubMed]
- Năstăsescu, V.; Mititelu, M.; Stanciu, T.I.; Drăgănescu, D.; Grigore, N.D.; Udeanu, D.I.; Stanciu, G.; Neacșu, S.M.; Dinu-Pîrvu, C.E.; Oprea, E. Food Habits and Lifestyle of Romanians in the Context of the COVID-19 Pandemic. Nutrients 2022, 14, 504. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.catestonline.org/hcp-homepage.html (accessed on 7 December 2023).
- Branca, F.; Nikogosian, H.; Lobstein, T.; World Health Organization; Regional Office for Europe. The Challenge of Obesity in the WHO European Region and the Strategies for Response; WHO Regional Office for Europe: Copenhagen, Denmark, 2007. [Google Scholar]
- Ashwell, M.; Gibson, S. Waist-to-height ratio as an indicator of early health risk: Simpler and more predictive than using a matrix based on BMI and waist circumference. BMJ Open 2016, 6, e010159. [Google Scholar] [CrossRef] [PubMed]
- Ionus, E.; Bucur, L.A.; Lupu, C.E.; Gird, C.E. Evaluation of the chemical composition of Ajuga chamaepitys (L.) schreb. From the spontaneous flora of Romania. Farmacia 2021, 69, 461–466. [Google Scholar] [CrossRef]
- Leahu, A.; Lupu, E.C. Statistical simulation and prediction in software reliability. Analele Univ. Ovidius Constanta Ser. Mat. 2008, 16, 81–90. [Google Scholar]
- Mititelu, M.; Neacsu, S.M.; Oprea, E.; Dumitrescu, D.-E.; Nedelescu, M.; Drăgănescu, D.; Nicolescu, T.O.; Rosca, A.C.; Ghica, M. Black Sea Mussels Qualitative and Quantitative Chemical Analysis: Nutritional Benefits and Possible Risks through Consumption. Nutrients 2022, 14, 964. [Google Scholar] [CrossRef]
- Katsiki, N.; Stoian, A.P.; Steiropoulos, P.; Papanas, N.; Suceveanu, A.-I.; Mikhailidis, D.P. Metabolic Syndrome and Abnormal Peri-Organ or Intra-Organ Fat (APIFat) Deposition in Chronic Obstructive Pulmonary Disease: An Overview. Metabolites 2020, 10, 465. [Google Scholar] [CrossRef]
- Cebron Lipovec, N.; Beijers, R.J.; van den Borst, B.; Doehner, W.; Lainscak, M.; Schols, A.M. The prevalence of metabolic syndrome in chronic obstructive pulmonary disease: A systematic review. COPD 2016, 13, 399–406. [Google Scholar] [CrossRef]
- Dave, L.; Garde, S.; Ansari, O.A.; Shrivastava, N.; Sharma, V.K. A study of association between metabolic syndrome and COPD. J. Evol. Med. Dent. Sci. 2014, 3, 6183–6188. [Google Scholar] [CrossRef]
- Xuan, L.; Han, F.; Gong, L.; Lv, Y.; Wan, Z.; Liu, H.; Zhang, D.; Jia, Y.; Yang, S.; Ren, L.; et al. Association between chronic obstructive pulmonary disease and serum lipid levels: A meta-analysis. Lipids Health Dis. 2018, 17, 263. [Google Scholar] [CrossRef] [PubMed]
- van Zelst, C.M.; de Boer, G.M.; Türk, Y.; van Huisstede, A.; In’t Veen, J.C.C.M.; Birnie, E.; Boxma-de Klerk, B.M.; Tramper-Stranders, G.A.; Braunstahl, G.J. Association between elevated serum triglycerides and asthma in patients with obesity: An explorative study. Allergy Asthma Proc. 2021, 42, e71–e76. [Google Scholar] [CrossRef] [PubMed]
- van Zelst, C.; De Boer, G.; Tramper, G.; Braunstahl, G.-J. Relations between serum lipid levels and inflammatory markers in obese asthma. Eur. Respir. J. 2018, 52, PA663. [Google Scholar] [CrossRef]
- Koul, P.A. Metabolic syndrome and chronic obstructive pulmonary disease. Lung India 2016, 33, 359–361. [Google Scholar] [CrossRef]
- Mannino, D.M.; Thorn, D.; Swensen, A.; Holguin, F. Prevalence and outcomes of diabetes, hypertension and cardiovascular disease in COPD. Eur. Respir. J. 2008, 32, 962–969. [Google Scholar] [CrossRef] [PubMed]
- Molina-Luque, R.; Molina-Recio, G.; de-Pedro-Jiménez, D.; Álvarez Fernández, C.; García-Rodríguez, M.; Romero-Saldaña, M. The Impact of Metabolic Syndrome Risk Factors on Lung Function Impairment: Cross-Sectional Study. JMIR Public Health Surveill. 2023, 9, e43737. [Google Scholar] [CrossRef]
- Ramalho, S.H.; Shah, A.M. Lung function and cardiovascular disease: A link. Trends Cardiovasc. Med. 2021, 31, 93–98. [Google Scholar] [CrossRef] [PubMed]
- McNeill, J.N.; Lau, E.S.; Zern, E.K.; Nayor, M.; Malhotra, R.; Liu, E.E.; Bhat, R.R.; Brooks, L.C.; Farrell, R.; Sbarbaro, J.A.; et al. Association of obesity-related inflammatory pathways with lung function and exercise capacity. Respir Med. 2021, 183, 106434. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.Y.; Tsao, Y.C.; Yang, C.K.; Chuang, C.H.; Yu, W.; Chen, J.C.; Li, W.C. Association between risk factors of metabolic syndrome with lung function. Eur. J. Clin. Nutr. 2020, 74, 811–817. [Google Scholar] [CrossRef]
- Fenger, R.V.; Gonzalez-Quintela, A.; Linneberg, A.; Husemoen, L.L.; Thuesen, B.H.; Aadahl, M.; Vidal, C.; Skaaby, T.; Sainz, J.C.; Calvo, E. The relationship of serum triglycerides, serum HDL, and obesity to the risk of wheezing in 85,555 adults. Respir. Med. 2013, 107, 816–824. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, H.; Park, Y.; Chung, S.J.; Yeo, Y.; Park, T.S.; Park, D.W.; Kim, S.H.; Kim, T.H.; Sohn, J.W.; et al. Additive Effect of Obesity and Dyslipidemia on Wheezing in Korean Adults: A Nationwide Representative Survey Study. Allergy Asthma Immunol. Res. 2021, 13, 808–816. [Google Scholar] [CrossRef]
- Capelo, A.V.; de Fonseca, V.M.; Peixoto, M.V.M.; de Carvalho, S.R.; Guerino, L.G. Central obesity and other factors associated with uncontrolled asthma in women. Allergy Asthma Clin. Immunol. 2015, 11, 12. [Google Scholar] [CrossRef]
- Choe, E.K.; Kang, H.Y.; Lee, Y.; Choi, S.H.; Kim, H.J.; Kim, J.S. The longitudinal association between changes in lung function and changes in abdominal visceral obesity in Korean non-smokers. PLoS ONE 2018, 13, e0193516. [Google Scholar] [CrossRef] [PubMed]
- Lv, N.; Xiao, L.; Camargo, C.A.; Wilson, S.R.; Buist, A.S.; Strub, P.; Nadeau, K.C.; Ma, J. Abdominal and general adiposity and level of asthma control in adults with uncontrolled asthma. Ann. Am. Thorac. Soc. 2014, 11, 1218–1224. [Google Scholar] [CrossRef] [PubMed]
- Yücel, Ü.Ö.; Çalış, A.G. The relationship between general and abdominal obesity, nutrition and respiratory functions in adult asthmatics. J. Asthma 2023, 60, 1183–1190. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.; Almeras, N.; Després, J.P.; Coxson, H.O.; Washko, G.R.; Vivodtzev, I.; Wouters, E.F.; Rutten, E.; Williams, M.C.; Murchison, J.T.; et al. Ectopic fat accumulation in patients with COPD: An ECLIPSE substudy. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Inomoto, A.; Fukuda, R.; Deguchi, J.; Kato, G.; Kanzaki, R.; Hiroshige, K.; Nakamura, K.; Nakano, K.; Toyonaga, T. The association between the body composition and lifestyle affecting pulmonary function in Japanese workers. J. Phys. Ther. Sci. 2016, 28, 2883–2889. [Google Scholar] [CrossRef]
- Ford, E.S.; Cunningham, T.J.; Mercado, C.I. Lung function and metabolic syndrome: Findings of national health and nutrition examination survey 2007–2010. J. Diabetes 2014, 6, 603–613. [Google Scholar] [CrossRef]
- Campbell Jenkins, B.W.; Sarpong, D.F.; Addison, C.; White, M.S.; Hickson, D.A.; White, W.; Burchfiel, C. Joint effects of smoking and sedentary lifestyle on lung function in African Americans: The Jackson Heart Study cohort. Int. J. Environ. Res. Public Health 2014, 11, 1500–1519. [Google Scholar] [CrossRef]
- Lim, S.Y.; Zhao, D.; Guallar, E.; Chang, Y.; Ryu, S.; Cho, J.; Shim, J.Y. Risk of chronic obstructive pulmonary disease in healthy individuals with high C-reactive protein levels by smoking status: A population-based cohort study in Korea. Int. J. Chronic Obstr. Pulm. Dis. 2019, 14, 2037–2046. [Google Scholar] [CrossRef]
- Lei, Y.; Zou, K.; Xin, J.; Wang, Z.; Liang, K.; Zhao, L.; Ma, X. Sedentary behavior is associated with chronic obstructive pulmonary disease: A generalized propensity score-weighted analysis. Medicine 2021, 100, e25336. [Google Scholar] [CrossRef]
- Mesquita, R.; Meijer, K.; Pitta, F.; Azcuna, H.; Goërtz, Y.M.J.; Essers, J.M.N.; Wouters, E.F.M.; Spruit, M.A. Changes in physical activity and sedentary behaviour following pulmonary rehabilitation in patients with COPD. Respir. Med. 2017, 126, 122–129. [Google Scholar] [CrossRef]
Variables | Metabolic Syndrome | |||||
---|---|---|---|---|---|---|
Yes N = 48 | No N = 22 | |||||
Count | Column N % | Count | Column N % | Chi-Square Test Values | ||
Gender | Female | 19 | 39.6% | 5 | 22.7% | χ2 = 3.91, p = 0.168 |
Male | 29 | 60.4% | 17 | 77.3% | ||
Smoke | Yes | 11 | 22.9% | 11 | 50.0% | χ2 = 5.185, p = 0.075 |
Former | 22 | 45.8% | 7 | 31.8% | ||
No | 15 | 31.2% | 4 | 18.2% | ||
BMI | Normal | 9 | 18.8% | 14 | 63.6% | χ2 = 15.85, p = 0.001 |
Obesity | 21 | 43.8% | 2 | 9.1% | ||
Overweight | 17 | 35.4% | 5 | 22.7% | ||
Underweight | 1 | 2.1% | 1 | 4.5% | ||
Sport | Yes, 2–3 times a week | 3 | 6.2% | 0 | 0.0% | χ2 = 2.12, p = 0.713 |
Yes, very rarely | 3 | 6.2% | 2 | 9.1% | ||
Yes, daily at least one hour | 5 | 10.4% | 2 | 9.1% | ||
Yes, daily for under an hour | 1 | 2.1% | 0 | 0.0% | ||
No | 36 | 75.0% | 18 | 81.8% | ||
Work | Other | 2 | 4.2% | 0 | 0.0% | χ2 = 6.266, p = 0.394 |
Work with extended hours or night shifts | 3 | 6.2% | 0 | 0.0% | ||
Work outdoors under normal conditions | 8 | 16.7% | 1 | 4.5% | ||
Work in difficult and dangerous conditions (construction site, factory, mine, etc.) | 22 | 45.8% | 13 | 59.1% | ||
Work in front of the computer or special devices | 4 | 8.3% | 1 | 4.5% | ||
Office work or minimal activity | 5 | 10.4% | 3 | 13.6% | ||
Work mostly standing | 4 | 8.3% | 4 | 18.2% | ||
Eating habits | I believe that I eat chaotically, insufficiently | 3 | 6.2% | 5 | 22.7% | χ2 = 4.76, p = 0.092 |
I consider that I eat chaotically, in excess | 2 | 4.2% | 0 | 0.0% | ||
Weighted food consumption, without excesses | 43 | 89.6% | 17 | 77.3% | ||
Spirometry | DVM | 29 | 60.41% | 15 | 68.18% | χ2 = 75.28, p < 0.001 |
DVO | 4 | 8.33% | 5 | 22.72% | ||
DVR | 10 | 20.83% | 0 | 0.00% | ||
Normal | 5 | 10.41% | 2 | 9.09% |
Metabolic Syndrome Risk Score | Age | BMI (kg/m²) | FEV1% | Number of Packs-Years |
---|---|---|---|---|
Mean ± SD | ||||
0 | 55.50 ± 10.6 | 20.70 ± 0.56 | 67.00 ± 2.82 | 20.00 ± 0.00 |
1 | 57.00 ± 11.93 | 22.94 ± 2.86 | 36.00 ± 20.33 | 33.00 ± 0.00 |
2 | 57.26 ± 14.41 | 24.43 ± 4.37 | 45.13 ± 24.58 | 23.00 ± 12.53 |
3 | 63.25 ± 9.14 | 25.67 ± 7.33 | 55.25 ± 25.77 | 13.00 ± 4.76 |
4 | 63.25 ± 9.83 | 29.06 ± 5.31 | 48.66 ± 22.97 | 17.00 ± 0.00 |
5 | 66.54 ± 8.37 | 31.56 ± 6.16 | 35.25 ± 20.39 | 29.66 ± 9.30 |
Variables | Metabolic Syndrome | Age | Fasting Blood Glucose | Abdominal Circumference | BMI kg/m² | TGL | HDL-Cholesterol | FEV1 or VEMS | TA S (mmHg) | TA D (mmHg) |
---|---|---|---|---|---|---|---|---|---|---|
Metabolic syndrome | 1 | 0.304 | 0.394 | 0.502 | 0.431 | 0.498 | −0.361 | 0.199 | 0.083 | 0.050 |
Age | 0.304 | 1 | 0.089 | 0.089 | −0.116 | 0.136 | −0.158 | −0.113 | 0.214 | −0.002 |
Fasting blood glucose | 0.394 | 0.089 | 1 | 0.270 | 0.230 | 0.318 | −0.189 | 0.081 | −0.225 | 0.0708 |
Abdominal circumference | 0.502 | 0.089 | 0.270 | 1 | 0.891 | 0.316 | −0.269 | 0.110 | 0.162 | 0.033 |
BMI (kg/m²) | 0.431 | −0.115 | 0.230 | 0.891 | 1 | 0.321 | −0.200 | 0.310 | 0.103 | 0.042 |
TGL | 0.498 | 0.136 | 0.318 | 0.316 | 0.321 | 1 | −0.230 | 0.219 | 0.163 | 0.023 |
HDL-cholesterol | −0.361 | −0.156 | −0.189 | −0.269 | −0.200 | −0.230 | 1 | −0.012 | −0.161 | −0.056 |
FEV1 or VEMS | 0.199 | −0.113 | 0.081 | 0.110 | 0.310 | 0.219 | −0.012 | 1 | −0.235 | −0.183 |
TA S (mmHg) | 0.083 | 0.214 | −0.225 | 0.162 | 0.103 | 0.163 | −0.161 | −0.235 | 1 | 0.479 |
TA D (mmHg) | 0.050 | −0.002 | 0.070 | 0.033 | 0.042 | 0.023 | −0.056 | −0.183 | 0.479 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihai, A.; Mititelu, M.; Matei, M.; Lupu, E.C.; Streba, L.; Vladu, I.M.; Iovănescu, M.L.; Cioboată, R.; Călărașu, C.; Busnatu, Ș.S.; et al. Assessment of Behavioral Risk Factors in Chronic Obstructive Airway Diseases of the Lung Associated with Metabolic Syndrome. J. Clin. Med. 2024, 13, 1037. https://doi.org/10.3390/jcm13041037
Mihai A, Mititelu M, Matei M, Lupu EC, Streba L, Vladu IM, Iovănescu ML, Cioboată R, Călărașu C, Busnatu ȘS, et al. Assessment of Behavioral Risk Factors in Chronic Obstructive Airway Diseases of the Lung Associated with Metabolic Syndrome. Journal of Clinical Medicine. 2024; 13(4):1037. https://doi.org/10.3390/jcm13041037
Chicago/Turabian StyleMihai, Andreea, Magdalena Mititelu, Marius Matei, Elena Carmen Lupu, Liliana Streba, Ionela Mihaela Vladu, Maria Livia Iovănescu, Ramona Cioboată, Cristina Călărașu, Ștefan Sebastian Busnatu, and et al. 2024. "Assessment of Behavioral Risk Factors in Chronic Obstructive Airway Diseases of the Lung Associated with Metabolic Syndrome" Journal of Clinical Medicine 13, no. 4: 1037. https://doi.org/10.3390/jcm13041037
APA StyleMihai, A., Mititelu, M., Matei, M., Lupu, E. C., Streba, L., Vladu, I. M., Iovănescu, M. L., Cioboată, R., Călărașu, C., Busnatu, Ș. S., & Streba, C. T. (2024). Assessment of Behavioral Risk Factors in Chronic Obstructive Airway Diseases of the Lung Associated with Metabolic Syndrome. Journal of Clinical Medicine, 13(4), 1037. https://doi.org/10.3390/jcm13041037