Does Cataract Extraction Significantly Affect Intraocular Pressure of Glaucomatous/Hypertensive Eyes? Meta-Analysis of Literature
Abstract
:1. Introduction
2. Materials and Methods
- Inclusion criteria
- Studies providing data on IOP pre-phacoemulsification and post-phacoemulsification.
- Studies approved by an institutional revision group or by an ethical committee.
- Exclusion criteria
- Papers not available in English.
- Papers not available in a digital format.
- Results on a non-human population.
- Studies conducted on patients under 18 years of age.
- Preceding or concurrent trabeculectomy, other major ocular surgery or relevant illness.
- A follow-up period of less than 12 months.
- Relevant study arm with less than 15 eyes analysed.
- Studies on MIGS without an arm treated only with phacoemulsification.
- Different subtypes of glaucoma included in the same arm.
2.1. Literature Research Method
2.2. Analysis and Data Synthesis
3. Results
4. Discussion
- The molecular theory based on the effects on the pattern of the trabecular meshwork: the inflammatory reaction, consequent from surgery, could lead to hyposecretion of aqueous humour, a reduction in resistance to outflow and biochemical alterations in the blood–aqueous barrier.
- The physiologic theory based on the effects on the ciliary body: it appears that cataract extraction has a relevant effect on the dynamic involving the ciliary body by reducing its anteposition, especially relevant in ACG.
- The biomechanical theory based on the anatomical changes in the anterior segment: with an improvement in predictive anatomical parameters on the reduction in IOP in an OCT scan, mainly in the aperture of the camerular angle;
- The biomechanical theory based on the position of the lens: since an excessively anterior position favours the formation of a higher pressure gradient, which can lead to relative pupillary block.
- The biomechanical theory based on fluid dynamics: the high flow generated from phacoemulsification, in this limited anatomical space, can clean the pattern of the trabecular meshwork and favour the action of the macrophages in that location [38].
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
6 Months | |||||
---|---|---|---|---|---|
Stratum | Standardized Effect | Standard Error | % Weights (Fixed, Random) | ||
1 | 3.64 | 0.689736 | 5.569417 | 7.981535 | Anders et al. [19] |
2 | 2.1 | 0.836791 | 3.783918 | 7.017597 | Arthur et al. [20] |
3 | 1.54 | 1.019467 | 2.549346 | 5.934885 | Damji et al. [22] |
4 | 0.2 | 0.46063 | 12.487372 | 9.516199 | Francis et al. [24] |
5 | 3.7 | 0.462905 | 12.364928 | 9.501634 | Gimbel et al. [25] |
6 | 4.6 | 0.750648 | 4.702222 | 7.574875 | Hayashi et al. [7] |
7 | 2.8 | 0.423398 | 14.780124 | 9.750329 | Iancu et al. [26] |
8 | 3 | 0.402702 | 16.338355 | 9.876551 | Lee et al. [9] |
9 | 2.32 | 0.884101 | 3.389781 | 6.723115 | Merkur et al. [29] |
10 | 2 | 0.518925 | 9.839359 | 9.135615 | Shoji et al. [33] |
11 | 1.6 | 0.649964 | 6.271866 | 8.250529 | Siak et al. [11] |
12 | 1.7 | 0.578275 | 7.923312 | 8.737136 | Siegel et al. [34] |
12 Months | |||||
Stratum | Standardized Effect | Standard Error | % Weights (Fixed, Random) | ||
1 | 3.71 | 0.70208 | 3.092045 | 5.430569 | Anders et al. [19] |
2 | 2.5 | 0.836791 | 2.176635 | 5.209048 | Arthur et al. [20] |
3 | 0.9 | 0.348044 | 12.582005 | 5.878943 | Craven et al. [21] |
4 | 1.67 | 0.844914 | 2.134984 | 5.195083 | Damji et al. [22] |
5 | 1.1 | 0.60829 | 4.11906 | 5.571025 | Fea et al. [23] |
6 | 0.6 | 0.469574 | 6.912112 | 5.752014 | Francis et al. [24] |
7 | 4.2 | 0.462905 | 7.112715 | 5.759797 | Gimbel et al. [25] |
8 | 4.4 | 0.744584 | 2.749106 | 5.362921 | Hayashi et al. [7] |
9 | 2.2 | 0.501264 | 6.065771 | 5.713818 | Iancu et al. [26] |
10 | 3.2 | 0.356514 | 11.991312 | 5.871163 | Lee et al. [9] |
11 | 1.5 | 0.772082 | 2.556776 | 5.317991 | Mathalone et al. [28] |
12 | 1.89 | 0.731886 | 2.845332 | 5.383369 | Merkur et al. [29] |
13 | 9.2 | 0.708521 | 3.036085 | 5.420467 | Pfeiffer et al. [30] |
14 | 1 | 0.365178 | 11.429074 | 5.863033 | Samuelson et al. [31] |
15 | 0.9 | 0.708239 | 3.038501 | 5.42091 | Shoji et al. [33] |
16 | 2.2 | 0.741251 | 2.773886 | 5.368307 | Siak et al. [11] |
17 | 1.5 | 0.564407 | 4.784471 | 5.632019 | Siegel et al. [34] |
18 | 6.2 | 0.379188 | 10.60013 | 5.849522 | Vold et al. [35] |
24 Months | |||||
Stratum | Standardized Effect | Standard Error | % Weights (Fixed, Random) | ||
1 | 2.1 | 0.895974 | 2.143409 | 6.570987 | Arthur et al. [20] |
2 | 0.1 | 0.359766 | 13.294001 | 7.53182 | Craven et al. [21] |
3 | 1.54 | 0.913621 | 2.061409 | 6.531471 | Damji et al. [22] |
4 | 0.8 | 0.436033 | 9.050179 | 7.43384 | Francis et al. [24] |
5 | 3.8 | 0.435433 | 9.075149 | 7.434673 | Gimbel et al. [25] |
6 | 5.5 | 0.721543 | 3.304999 | 6.942075 | Hayashi et al. [7] |
7 | 4 | 0.334863 | 15.344815 | 7.56022 | Lee et al. [9] |
8 | 2.75 | 0.628619 | 4.354337 | 7.120899 | Liaska et al. [27] |
9 | 1.2 | 0.655219 | 4.007959 | 7.071317 | Mathalone et al. [28] |
10 | 7.4 | 0.797616 | 2.704632 | 6.785123 | Pfeiffer et al. [30] |
11 | 5.3 | 0.326879 | 16.103599 | 7.568938 | Samuelson et al. [32] |
12 | 1.2 | 0.748807 | 3.068718 | 6.886817 | Shoji et al. [33] |
13 | 2.7 | 0.660093 | 3.948988 | 7.062086 | Siegel et al. [34] |
14 | 5.4 | 0.386177 | 11.537804 | 7.499734 | Vold et al. [35] |
6 Months | |||||
---|---|---|---|---|---|
Stratum | Standardized Effect | Standard Error | % Weights (Fixed, Random) | ||
1 | 13.8 | 0.586595 | 14.054262 | 11.426995 | Azuara-Blanco et al. [4] |
2 | 9.2 | 1.598061 | 1.893645 | 10.124845 | El Sayed et al. [6] |
3 | 6.1 | 0.50219 | 19.175631 | 11.488444 | Hayashi et al. [7] |
4 | 4.2 | 0.399815 | 30.252909 | 11.550858 | Lee et al. [9] |
5 | 8.4 | 0.979015 | 5.045534 | 11.032496 | Moghimi et al. [10] |
6 | 2.1 | 0.722599 | 9.261688 | 11.309789 | Siak et al. [11] |
7 | 1.6 | 0.620343 | 12.566703 | 11.399969 | Tham et al. [12] |
8 | 8.1 | 1.231681 | 3.187787 | 10.696753 | Tham et al. [13] |
9 | 8.2 | 1.02961 | 4.561841 | 10.969851 | Tham et al. [14] |
12 Months | |||||
Stratum | Standardized Effect | Standard Error | % Weights (Fixed, Random) | ||
1 | 13.6 | 0.567181 | 14.65517 | 11.43904 | Azuara-Blanco et al. [4] |
2 | 9 | 1.599829 | 1.841989 | 10.142074 | El Sayed et al. [6] |
3 | 6.1 | 0.552176 | 15.462461 | 11.45003 | Hayashi et al. [7] |
4 | 4.3 | 0.382495 | 32.224309 | 11.554855 | Lee et al. [9] |
5 | 8.3 | 0.979015 | 4.918762 | 11.037396 | Moghimi et al. [10] |
6 | 2 | 0.62462 | 12.083772 | 11.394465 | Siak et al. [11] |
7 | 2 | 0.630485 | 11.859995 | 11.389692 | Tham et al. [12] |
8 | 8.9 | 1.212436 | 3.207132 | 10.734619 | Tham et al. [13] |
9 | 9.6 | 1.121784 | 3.746411 | 10.857828 | Tham et al. [13] |
24 Months | |||||
Stratum | Standardized Effect | Standard Error | % Weights (Fixed, Random) | ||
1 | 12.5 | 0.578968 | 17.711004 | 13.286631 | Azuara-Blanco et al. [4] |
2 | 5.4 | 2.016533 | 1.459963 | 10.511929 | Dias-Santos et al. [5] |
3 | 6.9 | 0.491728 | 24.552956 | 13.375013 | Hayashi et al. [7] |
4 | 4.2 | 1.424963 | 2.923787 | 11.863783 | Lai et al. [8] |
5 | 4.5 | 0.430126 | 32.089394 | 13.429322 | Lee et al. [9] |
6 | 1.8 | 0.650769 | 14.01843 | 13.204153 | Tham et al. [12] |
7 | 8.3 | 1.275944 | 3.646612 | 12.173276 | Tham et al. [13] |
8 | 8.4 | 1.284561 | 3.597854 | 12.155893 | Tham et al. [14] |
Stratum | Standardized Effect | Standard Error | % Weights (Fixed, Random) | ||
---|---|---|---|---|---|
1 | 3.23 | 0.720498 | 13.924825 | 25.793522 | Damji et al. [22] |
2 | 13.6 | 1.609665 | 2.78987 | 21.203222 | Jacobi et al. [36] |
3 | 4.51 | 0.650289 | 17.093932 | 26.055539 | Merkur et al. [29] |
4 | 1.5 | 0.330466 | 66.191372 | 26.947717 | Shingleton et al. [37] |
Stratum | Standardized Effect | Standard Error | % Weights (Fixed, Random) | ||
---|---|---|---|---|---|
1 | 0.25 | 0.131343 | 69.476254 | 25.497239 | Cetinkaya et al. [15] |
2 | 3.25 | 0.472456 | 5.369403 | 24.448711 | Mansberg et al. [16] |
3 | 5.4 | 0.38 | 8.300051 | 24.839593 | Poley et al. [17] |
4 | 0.3 | 0.266667 | 16.854292 | 25.214457 | Tanito et al. [18] |
References
- GBD 2019 Blindness; Vision Impairment Collaborators; The Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The Right to Sight: An analysis for the Global Burden of Disease Study. Lancet Glob. Health 2021, 9, e144–e160, Erratum in Lancet Glob. Health 2021, 9, e408. [Google Scholar] [CrossRef]
- Young, C.E.C.; Seibold, L.K.; Kahook, M.Y. Cataract surgery and intraocular pressure in glaucoma. Curr. Opin. Ophthalmol. 2020, 31, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.; Wilkins, M.; Kim, T.; Malyugin, B.; Mehta, J.S. Cataracts. Lancet 2017, 390, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Azuara-Blanco, A.; Burr, J.M.; Cochran, C.; Ramsay, C.; Vale, L.; Foster, P.; Friedman, D.; Quayyum, Z.; Lai, J.; Nolan, W.; et al. The effectiveness of early lens extraction with intraocular lens implantation for the treatment of primary angle-closure glaucoma (EAGLE): Study protocol for a randomized controlled trial. Trials 2011, 12, 133. [Google Scholar] [CrossRef] [PubMed]
- Dias-Santos, A.; Ferreira, J.; Abegão Pinto, L.; Domingues, I.; Silva, J.P.; Cunha, J.P.; Reina, M. Phacoemulsification versus peripheral iridotomy in the management of chronic primary angle closure: Long-term follow-up. Int. Ophthalmol. 2015, 35, 173–178. [Google Scholar] [CrossRef]
- El Sayed, Y.M.; Elhusseiny, A.M.; Albalkini, A.S.; El Sheikh, R.H.; Osman, M.A. Mitomycin C-augmented Phacotrabeculectomy Versus Phacoemulsification in Primary Angle-closure Glaucoma: A Randomized Controlled Study. J. Glaucoma 2019, 28, 911–915. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Hayashi, H.; Nakao, F.; Hayashi, F. Effect of cataract surgery on intraocular pressure control in glaucoma patients. J. Cataract Refract. Surg. 2001, 27, 1779–1786. [Google Scholar] [CrossRef]
- Lai, J.S.M.; Tham, C.C.Y.; Chan, J.C.H. The clinical outcomes of cataract extraction by phacoemulsification in eyes with primary angle-closure glaucoma (PACG) and co-existing cataract: A prospective case series. J. Glaucoma 2006, 15, 47–52. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Yun, Y.-M.; Kim, S.H.; Lee, E.-K.; Lee, J.-E.; Kim, C.-S. Factors that influence intraocular pressure after cataract surgery in primary glaucoma. Can. J. Ophthalmol. 2009, 44, 705–710. [Google Scholar] [CrossRef]
- Moghimi, S.; Latifi, G.; ZandVakil, N.; Mohammadi, M.; Khatibi, N.; Soltani-Moghadam, R.; Lin, S. Phacoemulsification Versus Combined Phacoemulsification and Viscogonioplasty in Primary Angle-Closure Glaucoma: A Randomized Clinical Trial. J. Glaucoma 2015, 24, 575–582. [Google Scholar] [CrossRef]
- Siak, J.; Quek, D.; Nongpiur, M.E.; Ho, S.-W.; Htoon, H.M.; Perera, S.; Aung, T.; Wong, T. Anterior Chamber Angle and Intraocular Pressure Changes After Phacoemulsification: A Comparison Between Eyes with Closed-angle and Open-angle Glaucoma. J. Glaucoma 2016, 25, e259–e264. [Google Scholar] [CrossRef]
- Tham, C.C.; Kwong, Y.Y.; Baig, N.; Leung, D.Y.; Li, F.C.; Lam, D.S. Phacoemulsification versus trabeculectomy in medically uncontrolled chronic angle-closure glaucoma without cataract. Ophthalmology 2013, 120, 62–67. [Google Scholar] [CrossRef]
- Tham, C.C.; Kwong, Y.Y.; Leung, D.Y.; Lam, S.W.; Li, F.C.; Chiu, T.Y.; Chan, J.C.; Chan, C.H.; Poon, A.S.; Yick, D.W.; et al. Phacoemulsification versus combined phacotrabeculectomy in medically controlled chronic angle closure glaucoma with cataract. Ophthalmology 2008, 115, 2167–2173.e2. [Google Scholar] [CrossRef] [PubMed]
- Tham, C.C.; Kwong, Y.Y.; Leung, D.Y.; Lam, S.W.; Li, F.C.; Chiu, T.Y.; Chan, J.C.; Lam, D.S.; Lai, J.S. Phacoemulsification versus combined phacotrabeculectomy in medically uncontrolled chronic angle closure glaucoma with cataracts. Ophthalmology 2009, 116, 725–731.e3. [Google Scholar] [CrossRef] [PubMed]
- Cetinkaya, S.; Dadaci, Z.; Yener, H.I.; Acir, N.O.; Cetinkaya, Y.F.; Saglam, F. The effect of phacoemulsification surgery on intraocular pressure and anterior segment anatomy of the patients with cataract and ocular hypertension. Indian J. Ophthalmol. 2015, 63, 743–745. [Google Scholar] [CrossRef] [PubMed]
- Mansberger, S.L.; Gordon, M.O.; Jampel, H.; Bhorade, A.; Brandt, J.D.; Wilson, B.; Kass, M.A.; Ocular Hypertension Treatment Study Group. Reduction in intraocular pressure after cataract extraction: The Ocular Hypertension Treatment Study. Ophthalmology 2012, 119, 1826–1831. [Google Scholar] [CrossRef] [PubMed]
- Poley, B.J.; Lindstrom, R.L.; Samuelson, T.W. Long-term effects of phacoemulsification with intraocular lens implantation in normotensive and ocular hypertensive eyes. J. Cataract Refract. Surg. 2008, 34, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Tanito, M.; Ohira, A.; Chihara, E. Surgical outcome of combined trabeculotomy and cataract surgery. J. Glaucoma 2001, 10, 302–308. [Google Scholar] [CrossRef]
- Anders, N.; Pham, T.; Holschbach, A.; Wollensak, J. Combined phacoemulsification and filtering surgery with the ‘no-stitch’ technique. Arch. Ophthalmol. 1997, 115, 1245–1249. [Google Scholar] [CrossRef] [PubMed]
- Arthur, S.N.; Cantor, L.B.; WuDunn, D.; Pattar, G.R.; Catoira-Boyle, Y.; Morgan, L.S.; Hoop, J.S. Efficacy, safety, and survival rates of IOP-lowering effect of phacoemulsification alone or combined with canaloplasty in glaucoma patients. J. Glaucoma 2014, 23, 316–320. [Google Scholar] [CrossRef]
- Craven, E.R.; Katz, L.J.; Wells, J.M.; Giamporcaro, J.E.; iStent Study Group. Cataract surgery with trabecular micro-bypass stent implantation in patients with mild-to-moderate open-angle glaucoma and cataract: Two-year follow-up. J. Cataract Refract. Surg. 2012, 38, 1339–1345. [Google Scholar] [CrossRef] [PubMed]
- Damji, K.F.; Konstas, A.G.P.; Liebmann, J.M.; Hodge, W.G.; Ziakas, N.G.; Giannikakis, S.; Mintsioulis, G.; Merkur, A.; Pan, Y.; Ritch, R. Intraocular pressure following phacoemulsification in patients with and without exfoliation syndrome: A 2 year prospective study. Br. J. Ophthalmol. 2006, 90, 1014–1018. [Google Scholar] [CrossRef]
- Fea, A.M.; Consolandi, G.; Zola, M.; Pignata, G.; Cannizzo, P.; Lavia, C.; Rolle, T.; Grignolo, F.M. Micro-Bypass Implantation for Primary Open-Angle Glaucoma Combined with Phacoemulsification: 4-Year Follow-Up. J. Ophthalmol. 2015, 2015, 795357. [Google Scholar] [CrossRef] [PubMed]
- Francis, B.A.; Berke, S.J.; Dustin, L.; Noecker, R. Endoscopic cyclophotocoagulation combined with phacoemulsification versus phacoemulsification alone in medically controlled glaucoma. J. Cataract Refract. Surg. 2014, 40, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Gimbel, H.V.; Meyer, D.; DeBroff, B.M.; Roux, C.W.; Ferensowicz, M. Intraocular pressure response to combined phacoemulsification and trabeculotomy ab externo versus phacoemulsification alone in primary open-angle glaucoma. J. Cataract Refract. Surg. 1995, 21, 653–660. [Google Scholar] [CrossRef]
- Iancu, R.; Corbu, C. Intraocular pressure after phacoemulsification in patients with uncontrolled primary open angle glaucoma. J. Med. Life 2014, 7, 11–16. [Google Scholar]
- Liaska, A.; Papaconstantinou, D.; Georgalas, I.; Koutsandrea, C.; Theodosiadis, P.; Chatzistefanou, K. Phaco-trabeculectomy in controlled, advanced, open-angle glaucoma and cataract: Parallel, randomized clinical study of efficacy and safety. Semin. Ophthalmol. 2014, 29, 226–235. [Google Scholar] [CrossRef]
- Mathalone, N.; Hyams, M.; Neiman, S.; Buckman, G.; Hod, Y.; Geyer, O. Long-term intraocular pressure control after clear corneal phacoemulsification in glaucoma patients. J. Cataract Refract. Surg. 2005, 31, 479–483. [Google Scholar] [CrossRef]
- Merkur, A.; Damji, K.F.; Mintsioulis, G.; Hodge, W.G. Intraocular pressure decrease after phacoemulsification in patients with pseudoexfoliation syndrome. J. Cataract Refract. Surg. 2001, 27, 528–532. [Google Scholar] [CrossRef]
- Pfeiffer, N.; Garcia-Feijoo, J.; Martinez-de-la-Casa, J.M.; Larrosa, J.M.; Fea, A.; Lemij, H.; Gandolfi, S.; Schwenn, O.; Lorenz, K.; Samuelson, T.W. A Randomized Trial of a Schlemm’s Canal Microstent with Phacoemulsification for Reducing Intraocular Pressure in Open-Angle Glaucoma. Ophthalmology 2015, 122, 1283–1293. [Google Scholar] [CrossRef]
- Samuelson, T.W.; Chang, D.F.; Marquis, R.; Flowers, B.; Lim, K.S.; Ahmed, I.I.K.; Jampel, H.D.; Aung, T.; Crandall, A.S.; Singh, K.; et al. A Schlemm Canal Microstent for Intraocular Pressure Reduction in Primary Open-Angle Glaucoma and Cataract: The HORIZON Study. Ophthalmology 2019, 126, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Samuelson, T.W.; Katz, L.J.; Wells, J.M.; Duh, Y.J.; Giamporcaro, J.E.; US iStent Study Group. Randomized evaluation of the trabecular micro-bypass stent with phacoemulsification in patients with glaucoma and cataract. Ophthalmology 2011, 118, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Shoji, T.; Tanito, M.; Takahashi, H.; Park, M.; Hayashi, K.; Sakurai, Y.; Nishikawa, S.; Chihara, E. Phacoviscocanalostomy versus cataract surgery only in patients with coexisting normal-tension glaucoma: Midterm outcomes. J. Cataract Refract. Surg. 2007, 33, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Siegel, M.J.; Boling, W.S.; Faridi, O.S.; Gupta, C.K.; Kim, C.; Boling, R.C.; Citron, M.E.; Siegel, M.J.; Siegel, L.I. Combined endoscopic cyclophotocoagulation and phacoemulsification versus phacoemulsification alone in the treatment of mild to moderate glaucoma. Clin. Exp. Ophthalmol. 2015, 43, 531–539. [Google Scholar] [CrossRef]
- Vold, S.; Ahmed, I.I.K.; Craven, E.R.; Mattox, C.; Stamper, R.; Packer, M.; Brown, R.H.; Ianchulev, T.; CyPass Study Group. Two-Year COMPASS Trial Results: Supraciliary Microstenting with Phacoemulsification in Patients with Open-Angle Glaucoma and Cataracts. Ophthalmology 2016, 123, 2103–2112. [Google Scholar] [CrossRef] [PubMed]
- Jacobi, P.C.; Dietlein, T.S.; Krieglstein, G.K. Comparative study of trabecular aspiration vs trabeculectomy in glaucoma triple procedure to treat pseudoexfoliation glaucoma. Arch. Ophthalmol. 1999, 117, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- Shingleton, B.J.; Laul, A.; Nagao, K.; Wolff, B.; O’Donoghue, M.; Eagan, E.; Flattem, N.; Desai-Bartoli, S. Effect of phacoemulsification on intraocular pressure in eyes with pseudoexfoliation: Single-surgeon series. J. Cataract Refract. Surg. 2008, 34, 1834–1841. [Google Scholar] [CrossRef]
- Shah, M.; Law, G.; Ahmed, I.I.K. Glaucoma and cataract surgery: Two roads merging into one. Curr. Opin. Ophthalmol. 2016, 27, 51–57. [Google Scholar] [CrossRef]
- Tsui, J.L.; Chan, N.C.; Tham, C.C. The role of lens extraction in glaucoma management. Ann. Transl. Med. 2020, 8, 1550. [Google Scholar] [CrossRef]
- Masis, M.; Mineault, P.J.; Phan, E.; Lin, S.C. The role of phacoemulsification in glaucoma therapy: A systematic review and meta-analysis. Surv. Ophthalmol. 2018, 63, 700–710. [Google Scholar] [CrossRef]
- Masis Solano, M.; Lin, S.C. Cataract, phacoemulsification and intraocular pressure: Is the anterior segment anatomy the missing piece of the puzzle? Prog. Retin. Eye Res. 2018, 64, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Venkatesh, R.; Krishnamurthy, P.; Nath, M.; Mashruwala, A.; Ramulu, P.Y.; Robin, A.L.; Lee, P. Intraocular Pressure Reduction after Phacoemulsification versus Manual Small-Incision Cataract Surgery: A Randomized Controlled Trial. Ophthalmology 2016, 123, 1695–1703. [Google Scholar] [CrossRef] [PubMed]
Paper | Year | N° of Eyes | Study Design | Glaucoma Subtype | Follow-Up (Months) | Mean and SD Age (Years) | Mean and SD IOP Preop (mmHg) | Mean and SD IOP at 6 Months (mmHg) | Mean and SD IOP at 12 Months (mmHg) | Mean and SD IOP at 24 Months (mmHg) |
---|---|---|---|---|---|---|---|---|---|---|
Azuara-Blanco et al. [4] | 2016 | 208 | Prospective | Angle Closure Glaucoma | 36 | 67.0 | 29.5 ± 8.2 | 15.7 ± 4.3 | 15.9 ± 3.2 | 17.0 ± 3.9 |
Dias-Santos et al. [5] | 2014 | 15 | Prospective | Angle Closure Glaucoma | 31.13 ± 4.97 | 69.5 ± 11.34 | 19.93 ± 8.30 | 14.53 ± 1.51 | ||
El Sayed et al. [6] | 2019 | 32 | Prospective | Angle Closure Glaucoma | 20.4 ± 6.5 | 58.8 ± 8.4 | 21.6 ± 9.2 | 12.4 ± 2.5 | 12.6 ± 2.6 | |
Hayashi et al. [7] | 2001 | 74 | Prospective | Angle Closure Glaucoma | 25.7 ± 8.5 | 73.4 ± 7.3 | 21.4 ± 3.9 | 15.3 ± 2.8 | 15.3 ± 3.6 | 14.5 ± 2.6 |
Lai et al. [8] | 2006 | 21 | Prospective | Angle Closure Glaucoma | 20.7 ± 3.6 | 73.7 ± 8.1 | 19.7 ± 6.1 | 15.5 ± 3.9 | ||
Lee et al. [9] | 2009 | 48 | Retrospective | Angle Closure Glaucoma | 31.1 | 67.2 ± 6.7 | 19.5 ± 2.5 | 15.3 ± 1.8 | 15.2 ± 1.5 | 15.0 ± 2.2 |
Moghimi et al. [10] | 2015 | 46 | Prospective | Angle Closure Glaucoma | 12 | 63.2 ± 6.9 | 22.3 ± 6.3 | 13.9 ± 3.7 | 14.0 ± 3.7 | |
Siak et al. [11] | 2016 | 24 | Prospective | Angle Closure Glaucoma | 12 | 70.6 ± 5.5 | 16.4 ± 4.0 | 14.3 ± 3.5 | 14.4 ± 3.5 | |
Tham et al. [12] | 2008 | 35 | Prospective | Angle Closure Glaucoma | 24 | 71.9 ± 6.7 | 16.3 ± 3.0 | 14.7 ± 2.8 | 14.3 ± 2.9 | 14.5 ± 3.1 |
Tham et al. [13] | 2009 | 27 | Prospective | Angle Closure Glaucoma | 24 | 70.3 ± 7.4 | 24.4 ± 6.1 | 16.3 ± 3.5 | 15.5 ± 3.2 | 16.1 ± 4.1 |
Tham et al. [14] | 2013 | 26 | Prospective | Angle Closure Glaucoma | 24 | 66.4 ± 8.1 | 24.1 ± 4.1 | 15.9 ± 4.2 | 14.5 ± 4.9 | 15.7 ± 6.0 |
Cetinkaya et al. [15] | 2015 | 112 | Prospective | Ocular Hypertension | 24 | 61.32 ± 11.12 | 24.67 ± 2.14 | 21.00 ± 1.76 | 23.71 ± 1.11 | 24.42 ± 1.85 |
Mansberg et al. [16] | 2012 | 63 | Retrospective | Ocular Hypertension | 72 | 64.1 ± 8.9 | 23.9 ± 3.2 | 20.17 ± 3.89 | 20.42 ± 3.61 | 20. 65 ± 2.69 |
Poley et al. [17] | 2008 | 81 | Retrospective | Ocular Hypertension | 49.2 ± 30 | 70.5 ± 7.4 | 21.7 ± 2.0 | 16.3 ± 3.2 | ||
Tanito et al. [18] | 2001 | 36 | Prospective | Ocular Hypertension | 20.5 ± 1.95 | 72.6 ± 7.9 | 20.6 ± 1.7 | 18.9 ± 2.4 | 19.6 ± 1.9 | 20.3 ± 1.2 |
Anders et al. [19] | 1997 | 42 | Prospective | Open Angle Glaucoma | 12 | 74.9 ± 9.6 | 24.71 ± 3.38 | 21.07 ± 3.68 | 21.0 ± 3.8 | |
Arthur et al. [20] | 2014 | 37 | Retrospective | Open Angle Glaucoma | 21.8 ± 10.1 | 74.7 ± 9.8 | 16.2 ± 4.6 | 14.1 ± 3.3 | 13.7 ± 3.3 | 14.1 ± 4.0 |
Craven et al. [21] | 2012 | 123 | Prospective | Open Angle Glaucoma | 24 | - | 17.9 ± 3.0 | 17.0 ± 3.1 | 17.8 ± 3.3 | |
Damji et al. [22] | 2006 | 29 | Prospective | Open Angle Glaucoma | 24 | 73.99 ± 10.78 | 18.52 ± 3.52 | 16.98 ± 4.97 | 16.85 ± 3.67 | 16.98 ± 4.21 |
Fea et al. [23] | 2015 | 24 | Prospective | Open Angle Glaucoma | 48 | - | 16.7 ± 3.0 | 15.6 ± 1.1 | ||
Francis et al. [24] | 2014 | 80 | Prospective | Open Angle Glaucoma | 36 | 69.7 ± 6.9 | 18.1 ± 3.0 | 17.9 ± 3.5 | 17.5 ± 3.6 | 17.3 ± 3.2 |
Gimbel et al. [25] | 1995 | 53 | Prospective | Open Angle Glaucoma | 24 | 77.5 | 19.3 ± 2.4 | 15.6 ± 2.9 | 15.1 ± 2.9 | 15.5 ± 2.6 |
Hayashi et al. [7] | 2001 | 68 | Prospective | Open Angle Glaucoma | 24.1 ± 9.8 | 73.5 ± 7.9 | 20.7 ± 5.4 | 16.1 ± 4.3 | 16.3 ± 4.2 | 15.2 ± 3.8 |
Iancu et al. [26] | 2014 | 38 | Prospective | Open Angle Glaucoma | 12 | 71.7 ± 8.27 | 23.8 ± 2.32 | 21 ± 2.1 | 21.6 ± 2.4 | |
Lee et al. [9] | 2009 | 48 | Retrospective | Open Angle Glaucoma | 30.8 | 64.5 ± 9.3 | 19.1 ± 2.1 | 16.1 ± 2.3 | 15.9 ± 1.8 | 15.1 ± 1.5 |
Liaska et al. [27] | 2014 | 31 | Prospective | Open Angle Glaucoma | 24 | 78.1 ± 7.26 | 16.65 ± 2.83 | 13.9 ± 2.7 | ||
Mathalone et al. [28] | 2005 | 58 | Retrospective | Open Angle Glaucoma | 24 | 78.1 ± 5.7 | 16.3 ± 4.5 | 14.8 ± 2.5 | 15.1 ± 3.2 | |
Merkur et al. [29] | 2001 | 23 | Retrospective | Open Angle Glaucoma | 18 | 78.13 ± 6.84 | 17.22 ± 3.19 | 14.90 ± 3.51 | 15.33 ± 2.24 | |
Pfeiffer et al. [30] | 2015 | 50 | Prospective | Open Angle Glaucoma | 24 | 71.5 ± 6.9 | 26.6 ± 4.2 | 17.4 ± 3.7 | 19.2 ± 4.7 | |
Samuelson et al. [31] | 2011 | 117 | Prospective | Open Angle Glaucoma | 12 | 73 | 18.0 ± 3.0 | 17.0 ± 3.24 | ||
Samuelson et al. [32] | 2018 | 187 | Prospective | Open Angle Glaucoma | 24 | 71.2 ± 7.6 | 18.1 ± 3.1 | 12.8 ± 3.9 | ||
Shoji et al. [33] | 2007 | 35 | Retrospective | Open Angle Glaucoma | 34.9 ± 19.8 | 74.9 ± 7.0 | 16.7 ± 1.4 | 14.7 ± 2.1 | 15.8 ± 2.7 | 15.5 ± 2.5 |
Siak et al. [11] | 2016 | 30 | Prospective | Open Angle Glaucoma | 12 | 67.6 ± 8.1 | 16.5 ± 4.1 | 14.9 ± 2.0 | 14.3 ± 2.4 | |
Siegel et al. [34] | 2015 | 52 | Retrospective | Open Angle Glaucoma | 36 | 78.0 ± 8.1 | 17.7 ± 4.4 | 16.0 ± 3.3 | 16.2 ± 3.4 | 14.1 ± 2.9 |
Vold et al. [35] | 2016 | 131 | Prospective | Open Angle Glaucoma | 24 | 70 ± 8 | 24.5 ± 3.0 | 18.3 ± 3.8 | 19.1 ± 3.9 | |
Damji et al. [22] | 2006 | 29 | Prospective | Pseudoexfoliation Glaucoma | 24 | 72.49 ± 6.32 | 19.81 ± 2.9 | 15.73 ± 2.97 | 16.58 ± 3.22 | 16.66 ± 3.78 |
Jacobi et al. [36] | 1999 | 22 | Prospective | Pseudoexfoliation Glaucoma | 24 | 71.3 ± 6.1 | 32.0 ± 7.7 | 18.5 ± 1.7 | 18.4 ± 1.7 | 18.0 ± 1.3 |
Merkur et al. [29] | 2001 | 21 | Retrospective | Pseudoexfoliation Glaucoma | 18 | 81.57 ± 5.37 | 16.14 ± 2.50 | 11.63 ± 2.20 | 13.83 ± 2.32 | |
Shingleton et al. [37] | 2008 | 51 | Retrospective | Pseudoexfoliation Glaucoma | 60 | 78.2 ± 7.0 | 17.3 ± 5.2 | 15.8 ± 4.3 |
Paper | Year | N° of Eyes | Diff 6 Months | SD | Diff 12 Months | SD | Diff 24 Months | SD | Study Design | Glaucoma Subtype |
---|---|---|---|---|---|---|---|---|---|---|
Azuara-Blanco et al. [4] | 2016 | 208 | 13.8 | 8.46 | 13.6 | 8.18 | 12.5 | 8.35 | Prospective | Angle Closure Glaucoma |
Dias-Santos et al. [5] | 2014 | 15 | 5.4 | 7.81 | Prospective | Angle Closure Glaucoma | ||||
El Sayed et al. [6] | 2019 | 32 | 9.2 | 9.04 | 9 | 9.05 | Prospective | Angle Closure Glaucoma | ||
Hayashi et al. [7] | 2001 | 74 | 6.1 | 4.32 | 6.1 | 4.75 | 6.9 | 4.23 | Prospective | Angle Closure Glaucoma |
Lai et al. [8] | 2006 | 21 | 4.2 | 6.53 | Prospective | Angle Closure Glaucoma | ||||
Lee et al. [9] | 2009 | 48 | 4.2 | 2.77 | 4.3 | 2.65 | 4.5 | 2.98 | Retrospective | Angle Closure Glaucoma |
Moghimi et al. [10] | 2015 | 46 | 8.4 | 6.64 | 8.3 | 6.64 | Prospective | Angle Closure Glaucoma | ||
Siak et al. [11] | 2016 | 24 | 2.1 | 3.54 | 2 | 3.06 | Prospective | Angle Closure Glaucoma | ||
Tham et al. [12] | 2008 | 35 | 1.6 | 3.67 | 2 | 3.73 | 1.8 | 3.85 | Prospective | Angle Closure Glaucoma |
Tham et al. [13] | 2009 | 27 | 8.1 | 6.4 | 8.9 | 6.3 | 8.3 | 6.63 | Prospective | Angle Closure Glaucoma |
Tham et al. [14] | 2013 | 26 | 8.2 | 5.25 | 9.6 | 5.72 | 8.4 | 6.55 | Prospective | Angle Closure Glaucoma |
Cetinkaya et al. [15] | 2015 | 112 | 3.67 | 4.68 | 0.96 | 4.68 | 0.25 | 1.39 | Prospective | Ocular Hypertension |
Mansberg et al. [16] | 2012 | 63 | 3.73 | 4.52 | 3.48 | 4.32 | 3.25 | 3.75 | Retrospective | Ocular Hypertension |
Poley et al. [17] | 2008 | 81 | 5.4 | 3.42 | Retrospective | Ocular Hypertension | ||||
Tanito et al. [18] | 2001 | 36 | 1.7 | 2.46 | 1 | 1.92 | 0.3 | 1.6 | Prospective | Ocular Hypertension |
Anders et al. [19] | 1997 | 42 | 3.64 | 4.47 | 3.71 | 4.55 | Prospective | Open Angle Glaucoma | ||
Arthur et al. [20] | 2014 | 37 | 2.1 | 5.09 | 2.5 | 5.09 | 2.1 | 5.45 | Retrospective | Open Angle Glaucoma |
Craven et al. [21] | 2012 | 123 | 0.9 | 3.86 | 0.1 | 3.99 | Prospective | Open Angle Glaucoma | ||
Damji et al. [22] | 2006 | 29 | 1.54 | 5.49 | 1.67 | 4.55 | 1.54 | 4.92 | Prospective | Open Angle Glaucoma |
Fea et al. [23] | 2015 | 24 | 1.1 | 2.98 | Prospective | Open Angle Glaucoma | ||||
Francis et al. [24] | 2014 | 80 | 0.2 | 4.12 | 0.6 | 4.2 | 0.8 | 3.9 | Prospective | Open Angle Glaucoma |
Gimbel et al. [25] | 1995 | 53 | 3.7 | 3.37 | 4.2 | 3.37 | 3.8 | 3.17 | Prospective | Open Angle Glaucoma |
Hayashi et al. [7] | 2001 | 68 | 4.6 | 6.19 | 4.4 | 6.14 | 5.5 | 5.95 | Prospective | Open Angle Glaucoma |
Iancu et al. [26] | 2014 | 38 | 2.8 | 2.61 | 2.2 | 3.09 | Prospective | Open Angle Glaucoma | ||
Lee et al. [9] | 2009 | 48 | 3 | 2.79 | 3.2 | 2.47 | 4 | 2.32 | Retrospective | Open Angle Glaucoma |
Liaska et al. [27] | 2014 | 31 | 2.75 | 3.5 | Prospective | Open Angle Glaucoma | ||||
Mathalone et al. [28] | 2005 | 58 | 1.5 | 5.88 | 1.2 | 4.99 | Retrospective | Open Angle Glaucoma | ||
Merkur et al. [29] | 2001 | 23 | 2.32 | 4.24 | 1.89 | 3.51 | Retrospective | Open Angle Glaucoma | ||
Pfeiffer et al. [30] | 2015 | 50 | 9.2 | 5.01 | 7.4 | 5.64 | Prospective | Open Angle Glaucoma | ||
Samuelson et al. [31] | 2011 | 117 | 1 | 3.95 | Prospective | Open Angle Glaucoma | ||||
Samuelson et al. [32] | 2018 | 187 | 5.3 | 4.47 | Prospective | Open Angle Glaucoma | ||||
Shoji et al. [33] | 2007 | 35 | 2 | 3.07 | 0.9 | 4.19 | 1.2 | 4.43 | Retrospective | Open Angle Glaucoma |
Siak et al. [11] | 2016 | 30 | 1.6 | 3.56 | 2.2 | 4.06 | Prospective | Open Angle Glaucoma | ||
Siegel et al. [34] | 2015 | 52 | 1.7 | 4.17 | 1.5 | 4.07 | 2.7 | 4.76 | Retrospective | Open Angle Glaucoma |
Vold et al. [35] | 2016 | 131 | 6.2 | 4.34 | 5.4 | 4.42 | Prospective | Open Angle Glaucoma | ||
Damji et al. [22] | 2006 | 29 | 4.08 | 3.71 | 3.23 | 3.88 | 3.17 | 4.28 | Prospective | Pseudoexfoliation Glaucoma |
Jacobi et al. [36] | 1999 | 22 | 13.5 | 7.55 | 13.6 | 7.55 | 14 | 7.55 | Prospective | Pseudoexfoliation Glaucoma |
Merkur et al. [29] | 2001 | 21 | 4.51 | 2.98 | 2.31 | 3.05 | Retrospective | Pseudoexfoliation Glaucoma | ||
Shingleton et al. [37] | 2008 | 51 | 1.5 | 2.36 | Retrospective | Pseudoexfoliation Glaucoma |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasquali, A.; Varano, L.; Ungaro, N.; Tagliavini, V.; Mora, P.; Goldoni, M.; Gandolfi, S. Does Cataract Extraction Significantly Affect Intraocular Pressure of Glaucomatous/Hypertensive Eyes? Meta-Analysis of Literature. J. Clin. Med. 2024, 13, 508. https://doi.org/10.3390/jcm13020508
Pasquali A, Varano L, Ungaro N, Tagliavini V, Mora P, Goldoni M, Gandolfi S. Does Cataract Extraction Significantly Affect Intraocular Pressure of Glaucomatous/Hypertensive Eyes? Meta-Analysis of Literature. Journal of Clinical Medicine. 2024; 13(2):508. https://doi.org/10.3390/jcm13020508
Chicago/Turabian StylePasquali, Andrea, Luigi Varano, Nicola Ungaro, Viola Tagliavini, Paolo Mora, Matteo Goldoni, and Stefano Gandolfi. 2024. "Does Cataract Extraction Significantly Affect Intraocular Pressure of Glaucomatous/Hypertensive Eyes? Meta-Analysis of Literature" Journal of Clinical Medicine 13, no. 2: 508. https://doi.org/10.3390/jcm13020508
APA StylePasquali, A., Varano, L., Ungaro, N., Tagliavini, V., Mora, P., Goldoni, M., & Gandolfi, S. (2024). Does Cataract Extraction Significantly Affect Intraocular Pressure of Glaucomatous/Hypertensive Eyes? Meta-Analysis of Literature. Journal of Clinical Medicine, 13(2), 508. https://doi.org/10.3390/jcm13020508