Evaluation of Cone-Beam Computed Tomography Scans to Develop a Staging Method of External Carotid Artery Calcification
Abstract
:1. Introduction
2. Materials and Method
2.1. Acquisition and Scan Parameters
2.2. Scan Evaluation
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, H.W.; Regenhardt, R.W.; D’Amato, S.A.; Nahhas, M.I.; Dmytriw, A.A.; Hirsch, J.A.; Silverman, S.B.; Martinez-Gutierrez, J.C. Asymptomatic carotid artery stenosis: A summary of current state of evidence for revascularization and emerging high-risk features. J. NeuroInterventional Surg. 2023, 15, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Benson, J.; Saba, L.; Bathla, G.; Brinjikji, W.; Nardi, V.; Lanzino, G. MR Imaging of Carotid Artery Atherosclerosis: Updated Evidence on High-Risk Plaque Features and Emerging Trends. Am. J. Neuroradiol. 2023, 44, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Brar, A.; DeColibus, K.; Rasner, D.S.; Haynes, A.R.; Pancratz, F.; Oladiran, O.; Gbadamosi, S.O.; Owosho, A.A. Carotid Artery Calcification Detected on Panoramic Radiography Is Significantly Related to Cerebrovascular Accident, Coronary Artery Disease, and Poor Oral Health: A Retrospective Cross-Sectional Study. Dent. J. 2024, 12, 99. [Google Scholar] [CrossRef] [PubMed]
- Strecker, C.; Krafft, A.J.; Kaufhold, L.; Hüllebrandt, M.; Treppner, M.; Ludwig, U.; Köber, G.; Hennemuth, A.; Hennig, J.; Harloff, A. Carotid Geometry and Wall Shear Stress Independently Predict Increased Wall Thickness—A Longitudinal 3D MRI Study in High-Risk Patients. Front. Cardiovasc. Med. 2021, 8, 723860. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Ng, E.Y.; Lim, S.T. Imaging modalities to diagnose carotid artery stenosis: Progress and prospect. Biomed. Eng. Online 2019, 18, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Bash, S.; Villablanca, J.P.; Jahan, R.; Duckwiler, G.; Tillis, M.; Kidwell, C.; Saver, J.; Sayre, J. Intracranial vascular stenosis and occlusive disease: Evaluation with CT angiography, MR angiography, and digital subtraction angiography. Am. J. Neuroradiol. 2005, 26, 1012–1021. [Google Scholar] [PubMed]
- Stables, R.H.; Mullen, L.J.; Elguindy, M.; Nicholas, Z.; Aboul-Enien, Y.H.; Kemp, I.; O’Kane, P.; Hobson, A.; Johnson, T.W.; Khan, S.Q.; et al. Routine Pressure Wire Assessment versus Conventional Angiography in the Management of Patients with Coronary Artery Disease: The RIPCORD 2 Trial. Circulation 2022, 146, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Möst, T.; Winter, L.; Ballheimer, Y.E.; Kappler, C.; Schmid, M.; Adler, W.; Weber, M.; Kesting, M.R.; Lutz, R. Prevalence of carotid artery calcification detected by different dental imaging techniques and their relationship with cardiovascular risk factors, age and gender. BMC Oral Health 2023, 23, 949. [Google Scholar] [CrossRef] [PubMed]
- Mutalik, S.; Tadinada, A. Assessment of the relationship between extracranial and intracranial carotid calcifications—A retrospective cone beam computed tomography study. Dentomaxillofac. Radiol. 2019, 48, 20190013. [Google Scholar] [CrossRef]
- Teichner, E.M.; Subtirelu, R.C.; Patil, S.; Al-Daoud, O.; Parikh, C.; Nguyen, L.; Atary, J.; Newberg, A.; Høilund-Carlsen, P.F.; Alavi, A. Bilateral Carotid Calcification Correlates with Regional Cerebral Glucose Metabolism: Insights from PET/CT Imaging of Patients with Cardiovascular Risk Factors. J. Vasc. Dis. 2024, 3, 10. [Google Scholar] [CrossRef]
- Patil, S.; Teichner, E.M.; Subtirelu, R.C.; Parikh, C.; Al-Daoud, O.; Ismoilov, M.; Werner, T.; Høilund-Carlsen, P.F.; Alavi, A. Bilateral Carotid Artery Molecular Calcification Assessed by [18F] Fluoride PET/CT: Correlation with Cardiovascular and Thromboembolic Risk Factors. Life 2023, 13, 2070. [Google Scholar] [CrossRef] [PubMed]
- Babiarz, L.; Yousem, D.; Bilker, W.; Wasserman, B. Middle Cerebral Artery Infarction: Relationship of Cavernous Carotid Artery Calcification. Am. J. Neuroradiol. 2005, 26, 1505. [Google Scholar] [PubMed]
- Woodcock, R.J., Jr.; Goldstein, J.H.; Kallmes, D.F.; Cloft, H.J.; Phillips, C.D. Angiographic correlation of CT calcification in the carotid siphon. Am. J. Neuroradiol. 1999, 20, 495–499. [Google Scholar]
- Suzuki, M.; Ozaki, Y.; Komura, S.; Nakanishi, A. Intracranial carotid calcification on CT images as an indicator of atheromatous plaque: Analysis of high-resolution CTA images using a 64-multidetector scanner. Radiat. Med. 2007, 25, 378–385. [Google Scholar] [CrossRef]
- Kurt Bayrakdar, S.; Orhan, K.; Bayrakdar, I.S.; Bilgir, E.; Ezhov, M.; Gusarev, M.; Shumilov, E. A deep learning approach for dental implant planning in cone-beam computed tomography images. BMC Med. Imaging 2021, 21, 86. [Google Scholar] [CrossRef] [PubMed]
- Subedi, D.; Zishan, U.S.; Chappell, F.; Gregoriades, M.L.; Sudlow, C.; Sellar, R.; Wardlaw, J. Intracranial carotid calcification on cranial computed tomography: Visual scoring methods, semiautomated scores, and volume measurements in patients with stroke. Stroke 2015, 46, 2504–2509. [Google Scholar] [CrossRef] [PubMed]
- Evans, N.R.; Bhakta, S.; Chowdhury, M.M.; Markus, H.; Warburton, E. Management of carotid atherosclerosis in stroke. Pract. Neurol. 2024; Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Friedland, B. Conebeam computed tomography: Legal considerations. Alpha Omegan 2010, 103, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Damaskos, S.; Tsiklakis, K.; Syriopoulos, K.; der Stelt, P.V. Extra-and intra-cranial arterial calcifications in adults depicted as incidental findings on cone beam CT images. Acta Odontol. Scand. 2015, 73, 202–209. [Google Scholar] [CrossRef]
- Doris, I.; Dobranowski, J.; Franchetto, A.A.; Jaeschke, R. The relevance of detecting carotid artery calcification on plain radiograph. Stroke 1993, 24, 1330–1334. [Google Scholar] [CrossRef]
- Phyo, W.S.; Shirakawa, M.; Yamada, K.; Kuwahara, S.; Yoshimura, S. Characteristics of Calcification and Their Association with Carotid Plaque Vulnerability. World Neurosurg. 2022, 167, e1017–e1024. [Google Scholar] [CrossRef] [PubMed]
- Ertas, E.T.; Sisman, Y. Detection of incidental carotid artery calcifications during dental examinations: Panoramic radiography as an important aid in dentistry. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011, 112, e11–e17. [Google Scholar] [CrossRef] [PubMed]
- Johansson, E.P.; Ahlqvist, J.; Garoff, M.; Karp, K.; Jäghagen, E.L.; Wester, P. Ultrasound screening for asymptomatic carotid stenosis in subjects with calcifications in the area of the carotid arteries on panoramic radiographs: A cross-sectional study. BMC Cardiovasc. Disord. 2011, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- Wolf, J.; Matila, K.; Hietnanen, J.; Vartiova, J. A radiological study of degenerative vascular changes in the external carotid region and bifurcation. Br. J. Oral Maxillofac. Surg. 1989, 27, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Culebras, A.; Otero, C.; Toledo, J.R.; Rubin, B.S. Computed Tomographic Study of Cervical Carotid Calcification. Stroke 1989, 20, 1472–1476. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, R.; Salmon, B.; Codari, M.; Hassan, B.; Bornstein, M.M. Cone beam computed tomography in implant dentistry: Recommendations for clinical use. BMC Oral Health 2018, 18, 88. [Google Scholar] [CrossRef] [PubMed]
- Barghan, S.; Tahmasbi Arashlow, M.; Nair, M.K. Incidental Findings on Cone Beam Computed Tomography Studies Outside of the Maxillofacial Skeleton. Int. J. Dent. 2016, 2016, 9196503. [Google Scholar] [CrossRef] [PubMed]
- Friedlander, A.H.; Liebeskind, D.S.; Tran, H.Q.; Mallya, S.M. What are the potential implications of identifying intracranial internal carotid artery atherosclerotic lesions on cone-beam computed tomography? A systematic review and illustrative case studies. J. Oral Maxillofac. Surg. 2014, 72, 2167–2177. [Google Scholar] [CrossRef]
- Paknahad, M.; Shahidi, S.; Abbasi, R.; Paknahad, M. Evaluation of the Prevalence of Atherosclerosis within the Course of Internal Carotid Artery in Cone Beam Computed Tomography Images. Indian J. Otolaryngol. Head Neck Surg. 2022, 74 (Suppl. S3), 5242–5251. [Google Scholar] [CrossRef]
Grade | Description |
---|---|
Grade 0 | No calcified plaque was present. |
Grade 1 | Presence of a single speck of calcified plaque. |
Grade 2 | Presence of more than one/multiple discontinuous specks of calcifications. |
Grade 3 | One continuous semi-lunar band of calcification, covering at least half of the arterial lumen. |
Grade 4 | One continuous semi-lunar band of calcification, covering at least half of the arterial lumen, along with one or more discontinuous calcified specks (Grade 2 + Grade 3). |
Grade 5 | Circumferential coverage of the arterial lumen with calcified plaque. |
Age Group | Total No. of Patients in the Age Group | No Calcification | ECAC Left | ECAC Right | Bilateral | Percentage of ECACs |
---|---|---|---|---|---|---|
31–40 years | 16 | 16 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0% |
41–50 years | 43 | 38 (88.4%) | 3 (7%) | 2 (4.7%) | 0 (0%) | 11.6% |
51–60 years | 146 | 111 (76%) | 7 (4.8%) | 10 (6.8%) | 18 (12.3%) | 23.9% |
61–70 years | 166 | 105 (63.3%) | 18 (10.8%) | 27 (16.3%) | 16 (9.6%) | 36.7% |
71–80 years | 106 | 47 (44.3%) | 15 (14.2%) | 13 (12.3%) | 31 (29.2%) | 55.6% |
81–90 years | 12 | 2 (16.7%) | 2 (16.7%) | 0 (0%) | 8 (66.7%) | 83.3% |
Total | 489 | 319 (65.2%) | 45 (9.2%) | 52 (10.6%) | 73 (14.9%) | 34.7% |
Gender | Total No. of Patients | No Calcification | ECAC Left | ECAC Right | Bilateral | Total No. of ECACs | Percentage of ECACs |
---|---|---|---|---|---|---|---|
Males | 208 | 134 (64.4%) | 20 (9.6%) | 22 (10.6%) | 32 (15.4%) | 74 | 35.6% |
Females | 281 | 185 (65.8%) | 25 (8.9%) | 30 (10.7%) | 41 (14.6%) | 96 | 34.2% |
Total | 489 | 319 (65.2%) | 45 (9.2%) | 52 (10.6%) | 73 (14.9%) | 170 | 34.7% |
Age Group | Total No. of Patients in the Age Group | Grade 0 | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 |
---|---|---|---|---|---|---|---|
31–40 years | 16 100% | 16 100% | 0 0% | 0 0% | 0 0% | 0 0% | 0 0% |
41–50 years | 43 100% | 38 88.4% | 4 9.3% | 1 2.3% | 0 0% | 0 0% | 0 0% |
51–60 years | 146 100% | 108 73.97% | 14 9.58% | 16 10.95% | 8 5.47% | 0 0% | 0 0% |
61–70 years | 166 100% | 101 60.84% | 15 9.03% | 30 18.07% | 18 10.84% | 2 1.2% | 0 0% |
71–80 years | 106 100% | 39 36.79% | 7 6.6% | 27 25.47% | 20 18.86% | 13 12.26% | 0 0% |
81–90 years | 12 100% | 1 8.33% | 0 0% | 2 16.6% | 4 33.3% | 5 41.6% | 0 0% |
Total | 489 100% | 303 61.96% | 40 8.17% | 76 15.54% | 50 10.22% | 20 4.08% | 0 0% |
Category | Inter-Rater Reliability (Krippendorff’s Alpha) Score |
---|---|
Overall ECA identification | 1 |
Overall grading of ECA calcification | 0.978 |
Subjects in Grade 1 | 0.945 |
Subjects in Grade 2 | 0.965 |
Subjects in Grade 3 | 1 |
Subjects in Grade 4 | 1 |
Subjects in Grade 5 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadyan, V.; Vaddi, A.; Nagpal, A.; Molina, M.R.; Lurie, A.G.; Tadinada, A. Evaluation of Cone-Beam Computed Tomography Scans to Develop a Staging Method of External Carotid Artery Calcification. J. Clin. Med. 2024, 13, 3189. https://doi.org/10.3390/jcm13113189
Kadyan V, Vaddi A, Nagpal A, Molina MR, Lurie AG, Tadinada A. Evaluation of Cone-Beam Computed Tomography Scans to Develop a Staging Method of External Carotid Artery Calcification. Journal of Clinical Medicine. 2024; 13(11):3189. https://doi.org/10.3390/jcm13113189
Chicago/Turabian StyleKadyan, Varsha, Anusha Vaddi, Archna Nagpal, Marco R. Molina, Alan G. Lurie, and Aditya Tadinada. 2024. "Evaluation of Cone-Beam Computed Tomography Scans to Develop a Staging Method of External Carotid Artery Calcification" Journal of Clinical Medicine 13, no. 11: 3189. https://doi.org/10.3390/jcm13113189
APA StyleKadyan, V., Vaddi, A., Nagpal, A., Molina, M. R., Lurie, A. G., & Tadinada, A. (2024). Evaluation of Cone-Beam Computed Tomography Scans to Develop a Staging Method of External Carotid Artery Calcification. Journal of Clinical Medicine, 13(11), 3189. https://doi.org/10.3390/jcm13113189