Sensitization to Food and Aero-Allergens in Children with Coeliac Disease Assessed with the Use of a Multiplex Molecular Diagnostic Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. ALEX®2 Test
2.3. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Sensitization Profile
3.3. Relationship between Sensitization and Patients’ Age and Sex
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ludvigsson, J.F.; Leffler, D.A.; Bai, J.C.; Biagi, F.; Fasano, A.; Green, P.H.; Hadjivassiliou, M.; Kaukinen, K.; Kelly, C.P.; Leonard, J.N.; et al. The Oslo definitions for coeliac disease and related terms. Gut 2013, 62, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Singh, A.D.; Ahuja, V.; Makharia, G.K. Who to screen and how to screen for celiac disease. World J. Gastroenterol. 2022, 28, 4493–4507. [Google Scholar] [CrossRef] [PubMed]
- Majsiak, E.; Choina, M.; Knyziak-Mędrzycka, I.; Bierła, J.B.; Janeczek, K.; Wykrota, J.; Cukrowska, B. IgE-dependent allergy in patients with celiac disease: A aystematic review. Nutrients 2023, 15, 995. [Google Scholar] [CrossRef] [PubMed]
- Gregori, S.; Amodio, G.; Passerini, L.; Santoni de Sio, F.R. Alteration of interleukin-10-producing Type 1 regulatory cells in autoimmune diseases. Curr. Opin. Hematol. 2022, 29, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Schülke, S. Induction of Interleukin-10 producing dendritic cells as a tool to suppress allergen-specific T helper 2 responses. Front. Immunol. 2018, 9, 455. [Google Scholar] [CrossRef]
- Akdis, C.A.; Akdis, M. Mechanisms and treatment of allergic disease in the big picture of regulatory T cells. J. Allergy Clin. Immunol. 2009, 123, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Caproni, M.; Capone, M.; Rossi, M.C.; Santarlasci, V.; Maggi, L.; Mazzoni, A.; Rossettini, B.; Renzi, D.; Quintarelli, L.; Bianchi, B.; et al. T Cell Response Toward Tissue-and Epidermal-Transglutaminases in Coeliac Disease Patients Developing Dermatitis Herpetiformis. Front. Immunol. 2021, 12, 645143. [Google Scholar] [CrossRef]
- Ciacci, C.; Cavallaro, R.; Iovino, P.; Sabbatini, F.; Palumbo, A.; Amoruso, D.; Mazzacca, G. Allergy prevalence in adult celiac disease. J. Allergy Clin. Immunol. 2004, 113, 1199–1203. [Google Scholar] [CrossRef]
- Armentia, A.; Arranz, E.; Hernandez, N.; Garrote, A.; Panzani, R.; Blanco, A. Allergy after inhalation and ingestion of cereals involve different allergens in allergic and celiac disease. Recent Pat. Inflamm. Allergy Drug Discov. 2008, 2, 47–57. [Google Scholar] [CrossRef]
- Lanzarin, C.M.V.; Silva, N.O.E.; Venturieri, M.O.; Solé, D.; Oliveira, R.P.; Sdepanian, V.L. Celiac disease and sensitization to wheat, rye, and barley: Should we be concerned? Int. Arch. Allergy Immunol. 2021, 182, 440–446. [Google Scholar] [CrossRef]
- Cudowska, B.; Lebensztejn, D.M. Immunogloboulin E-mediated food sensitization in children with celiac disease: A single-center experience. Pediatr. Gastroenterol. Hepatol. Nutr. 2021, 24, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Majsiak, E.; Choina, M.; Golicki, D.; Gray, A.M.; Cukrowska, B. The impact of symptoms on quality of life before and after diagnosis of coeliac disease: The results from a Polish population survey and comparison with the results from the United Kingdom. BMC Gastroenterol. 2021, 21, 99. [Google Scholar] [CrossRef] [PubMed]
- Husby, S.; Koletzko, S.; Korponay-Szabó, I.; Kurppa, K.; Mearin, M.L.; Ribes-Koninckx, C.; Shamir, R.; Troncone, R.; Auricchio, R.; Castillejo, G.; et al. European Society Paediatric Gastroenterology, Hepatology and Nutrition Guidelines for Diagnosing Coeliac Disease. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 141–156. [Google Scholar] [CrossRef] [PubMed]
- Oberhuber, G.; Granditsch, G.; Vogelsang, H. The histopathology of celiac disease: Time for a standardized report scheme for pathologists. Eur. J. Gastroenterol. Hepatol. 1999, 11, 1185–1194. [Google Scholar] [CrossRef] [PubMed]
- Enroth, S.; Dahlbom, I.; Hansson, T.; Johansson, Å.; Gyllensten, U. Prevalence and sensitization of atopic allergy and coeliac disease in the northern Sweden population health study. Int. J. Circumpolar. Health 2013, 72, 21403. [Google Scholar] [CrossRef] [PubMed]
- Spoerl, D.; Bastid, C.; Ramadan, S.; Frossard, J.L.; Caubet, J.C.; Roux-Lombard, P. Identifying true celiac disease and wheat allergy in the era of fashion driven gluten-free diets. Int. Arch. Allergy Immunol. 2019, 179, 132–141. [Google Scholar] [CrossRef]
- Dramburg, S.; Hilger, C.; Santos, A.F.; de Las Vecillas, L.; Aalberse, R.C.; Acevedo, N.; Aglas, L.; Altmann, F.; Arruda, K.L.; Asero, R.; et al. EAACI Molecular Allergology User’s Guide 2.0. Pediatr Allergy Immunol. 2023, 34 (Suppl. S28), e13854. [Google Scholar] [CrossRef]
- Matricardi, P.M.; Dramburg, S.; Potapova, E.; Skevaki, C.; Renz, H. Molecular diagnosis for allergen immunotherapy. J. Allergy Clin. Immunol. 2019, 143, 831–843. [Google Scholar] [CrossRef]
- Aglas, L.; Soh, W.T.; Kraiem, A.; Wenger, M.; Brandstetter, H.; Ferreira, F. Ligand binding of PR-10 proteins with a particular focus on the Bet v 1 allergen family. Curr. Allergy Asthma Rep. 2020, 20, 25. [Google Scholar] [CrossRef]
- Elisyutina, O.; Fedenko, E.; Campana, R.; Litovkina, A.; Ilina, N.; Kudlay, D.; Egorenkov, E.; Smirnov, V.; Valenta, R.; Lupinek, C.; et al. Bet v 1-specific IgE levels and PR-10 reactivity discriminate silent sensitization from phenotypes of birch allergy. Allergy 2019, 74, 2525–2528. [Google Scholar] [CrossRef]
- Knyziak-Mędrzycka, I.; Majsiak, E.; Cukrowska, B. Allergic March in Children: The significance of precision allergy molecular diagnosis (PAMD@) in predicting atopy development and planning allergen-specific immunotherapy. Nutrients 2023, 15, 978. [Google Scholar] [CrossRef] [PubMed]
- Knyziak-Mędrzycka, I.; Majsiak, E.; Gromek, W.; Kozłowska, D.; Swadźba, J.; Bierła, J.B.; Kurzawa, R.; Cukrowska, B. The sensitization profile for selected food allergens in Polish children assessed with the use of a precision allergy molecular diagnostic technique. Int. J. Mol. Sci. 2024, 25, 825. [Google Scholar] [CrossRef] [PubMed]
- Makharia, G.K.; Chauhan, A.; Singh, P.; Ahuja, V. Review article: Epidemiology of coeliac disease. Aliment. Pharmacol. Ther. 2022, 56 (Suppl. S1), S3–S17. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, L.; Guéry, J.C. Asthme et allergie: Qu’en est-il des différences entre les hommes et les femmes? [Asthma and allergy: What about the differences between men and women?]. Rev. Prat. 2020, 70, 195–199. [Google Scholar] [PubMed]
- Paller, A.S.; Spergel, J.M.; Mina-Osorio, P.; Irvine, A.D. The atopic march and atopic multimorbidity: Many trajectories, many pathways. J. Allergy Clin. Immunol. 2019, 143, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Landzaat, L.J.; Emons, J.A.M.; Sonneveld, L.J.H.; Schreurs, M.W.J.; Arends, N.J.T. Early inhalant allergen sensitization at component level: An analysis in atopic Dutch children. Front. Allergy 2023, 4, 1173540. [Google Scholar] [CrossRef]
- Westman, M.; Lupinek, C.; Bousquet, J.; Andersson, N.; Pahr, S.; Baar, A.; Bergström, A.; Holmström, M.; Stjärne, P.; Lødrup Carlsen, K.C.; et al. Early childhood IgE reactivity to pathogenesis-related class 10 proteins predicts allergic rhinitis in adolescence. J. Allergy Clin. Immunol. 2015, 135, e1–e11. [Google Scholar] [CrossRef]
Number of Patients | % | ||
---|---|---|---|
Sex | Female | 68 | 63% |
Male | 40 | 37% | |
Age (in years) | Mean | 9.4 | |
Standard deviation | 4.43 | ||
Median | 9.3 | ||
Minimum | 0.9 | ||
Maximum | 17.4 | ||
CD diagnosis 1 | Without biopsy | 84 | 78% |
With biopsy | 24 | 22% | |
IgA deficiency | Yes | 3 | 3% |
No | 105 | 97% | |
Symptoms 2 | Abdominal pain | 39 | 36.1% |
Diarrhea | 32 | 29.6% | |
Abdominal distension | 37 | 34.3% | |
Constipation | 6 | 5.6% | |
Growth retardation | 15 | 9.3% | |
Weight loss | 21 | 19.4% | |
Anemia | 15 | 13.9% | |
Skin changes | 13 | 12.0% | |
Other 3 | 19 | 17.6% |
Allergen | Molecule or Extract | Route of Exposure | Family of Molecules | Number of Patients (%) | Mean sIgE Levels (in kUA/L) | |
---|---|---|---|---|---|---|
1 | Timothy grass | Phl p 1 | Inhalation | Beta-expansin | 29 (26.9%) | 18.08 |
2 | Perennial ryegrass | Lol p 1 | Inhalation | Beta-expansin | 26 (24.1%) | 16.03 |
3 | Silver birch | Bet v 1 | Inhalation | PR-10 | 20 (18.5%) | 18.20 |
4 | Bermuda grass | Extract | Inhalation | 18 (16.7%) | 3.96 | |
5 | Bermuda grass | Cyn d 1 | Inhalation | Beta-expansin | 18 (16.7%) | 7.02 |
6 | Beech | Fag s 1 | Inhalation | PR-10 | 16 (14.8%) | 12.26 |
7 | Timothy grass | Phl p 2 | Inhalation | Expansin | 16 (14.8%) | 16.39 |
8 | Hazelnut | Cor a 1.0401 | Ingestion | PR-10 | 15 (13.9%) | 7.57 |
9 | Hazel | Cor a 1.0103 | Inhalation | PR-10 | 15 (13.9%) | 13.36 |
10 | Dermatophagoides pteronyssinus | Der p 23 | Inhalation | Chitinase class III | 14 (13.0%) | 15.18 |
11 | Timothy grass | Phl p 5.0101 | Inhalation | Group 5/6 grass | 14 (13.0%) | 24.82 |
12 | Apple | Mal d 1 | Ingestion | PR-10 | 13 (12.0%) | 9.09 |
13 | Black alder | Aln g 1 | Inhalation | PR-10 | 13 (12.0%) | 6.71 |
14 | Hazel | Extract | Inhalation | 12 (11.1%) | 6.77 | |
15 | Rye pollen | Extract | Inhalation | 12 (11.1%) | 7.33 | |
16 | Peanut | Ara h 8 | Ingestion | PR-10 | 12 (11.1%) | 3.32 |
17 | Strawberry | Fra a 1+3 | Ingestion | PR-10+LTP | 12 (11.1%) | 7.01 |
18 | Timothy grass | Phl p 6 | Inhalation | Group 5/7 grass | 11 (10.2%) | 23.06 |
19 | Dermatophagoides farinae | Der f 2 | Inhalation | NPC2 family | 10 (9.3%) | 42.99 |
20 | Dermatophagoides pteronyssinus | Der p 2 | Inhalation | NPC2 family | 10 (9.3%) | 42.14 |
21 | Dog urine (including Can f 5) | Extract | Inhalation | 9 (8.3%) | 8.46 | |
22 | Paspalum notatum | Extract | Inhalation | 9 (8.3%) | 2.23 | |
23 | Cat | Fel d 1 | Inhalation | Secretoglobin | 9 (8.3%) | 21.52 |
24 | Glycyphagus domesticus | Gly d 2 | Inhalation | NPC2 family | 9 (8.3%) | 7.47 |
25 | Celery | Api g 1 | Ingestion | PR-10 | 8 (7.4%) | 6.93 |
26 | Carrot | Dau c 1 | Ingestion | PR-10 | 8 (7.4%) | 6.75 |
27 | Soy | Gly m 4 | Ingestion | PR-10 | 8 (7.4%) | 2.81 |
28 | Dermatophagoides farinae | Der f 1 | Inhalation | Cysteine protease | 8 (7.4%) | 21.92 |
29 | Carrot | Extract | Ingestion | 7 (6.5%) | 3.35 | |
30 | European ash | Extract | Inhalation | 7 (6.5%) | 9.69 | |
31 | Dermatophagoides pteronyssinus | Der p 1 | Inhalation | Cysteine protease | 7 (6.5%) | 22.38 |
32 | Olive | Ole e 1 | Inhalation | Ole e 1 family | 7 (6.5%) | 11.10 |
33 | Walnut pollen | Extract | Inhalation | 6 (5.6%) | 2.74 | |
34 | Melon | Cuc m 2 | Ingestion | Profilin | 6 (5.6%) | 11.26 |
35 | European ash | Fra e 1 | Inhalation | Ole e 1 family | 6 (5.6%) | 8.47 |
36 | Annual mercury | Mer a 1 | Inhalation | Profilin | 6 (5.6%) | 3.13 |
37 | Date palm | Pho d 2 | Inhalation | Profilin | 6 (5.6%) | 12.26 |
38 | Common wasp venom | Ves v 5 | Other | Antigen 5 | 6 (5.6%) | 1.91 |
Number of Sensitized Children | r | p-Value | |
---|---|---|---|
All tested allergens | 53 | 0.21 | 0.124 |
Food extracts and molecules | 29 | 0.13 | 0.491 |
Inhalant extracts and molecules | 42 | 0.30 | 0.055 |
Food extracts | 20 | 0.20 | 0.403 |
Food molecules | 23 | 0.18 | 0.411 |
Inhalant extracts | 28 | 0.27 | 0.161 |
Inhalant molecules | 42 | 0.31 | 0.045 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knyziak-Mędrzycka, I.; Cukrowska, B.; Nazar, W.; Bierła, J.B.; Janeczek, K.; Krawiec, P.; Gromek, W.; Wysokiński, M.; Konopka, E.; Trojanowska, I.; et al. Sensitization to Food and Aero-Allergens in Children with Coeliac Disease Assessed with the Use of a Multiplex Molecular Diagnostic Technique. J. Clin. Med. 2024, 13, 2992. https://doi.org/10.3390/jcm13102992
Knyziak-Mędrzycka I, Cukrowska B, Nazar W, Bierła JB, Janeczek K, Krawiec P, Gromek W, Wysokiński M, Konopka E, Trojanowska I, et al. Sensitization to Food and Aero-Allergens in Children with Coeliac Disease Assessed with the Use of a Multiplex Molecular Diagnostic Technique. Journal of Clinical Medicine. 2024; 13(10):2992. https://doi.org/10.3390/jcm13102992
Chicago/Turabian StyleKnyziak-Mędrzycka, Izabela, Bożena Cukrowska, Wojciech Nazar, Joanna Beata Bierła, Kamil Janeczek, Paulina Krawiec, Weronika Gromek, Mariusz Wysokiński, Ewa Konopka, Ilona Trojanowska, and et al. 2024. "Sensitization to Food and Aero-Allergens in Children with Coeliac Disease Assessed with the Use of a Multiplex Molecular Diagnostic Technique" Journal of Clinical Medicine 13, no. 10: 2992. https://doi.org/10.3390/jcm13102992
APA StyleKnyziak-Mędrzycka, I., Cukrowska, B., Nazar, W., Bierła, J. B., Janeczek, K., Krawiec, P., Gromek, W., Wysokiński, M., Konopka, E., Trojanowska, I., Smolińska, S., & Majsiak, E. (2024). Sensitization to Food and Aero-Allergens in Children with Coeliac Disease Assessed with the Use of a Multiplex Molecular Diagnostic Technique. Journal of Clinical Medicine, 13(10), 2992. https://doi.org/10.3390/jcm13102992