Paraoxonase 1 Activity and Renal Replacement Therapy for Chronic Renal Failure: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Source and Search
2.3. Study Selection and Data Collection Process
2.4. Data Synthesis and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- MEDLINE via PubMed
- #1. “Aryldialkylphosphatase”[Mesh]
- #2. “aryldialkylphosphatase”[tiab]
- #3. “arylesterase”[tiab]
- #4. “paraoxonase”[tiab]
- #5. #1 OR #2 OR #3 OR #4
- #6. “Renal Insufficiency”[Mesh]
- #7. “Kidney Failure, Chronic”[Mesh]
- #8. “Renal Insufficiency, Chronic”[Mesh]
- #9. “Kidney Diseases”[Mesh]
- #10. “Uremia”[Mesh]
- #11. “end-stage renal”[tiab] OR “end-stage kidney”[tiab] OR “endstage renal”[tiab] OR “endstage kidney”[tiab]
- #12. “ESRF”[tiab] OR “ESKF”[tiab] OR “ESRD”[tiab] OR “ESKD”[tiab]
- #13. “chronic kidney”[tiab] OR “chronic renal”[tiab]
- #14. “CKF”[tiab] OR “CKD”[tiab] OR “CRF”[tiab] OR “CRD”[tiab]
- #15. “predialysis”[tiab] OR “predialysis”[tiab]
- #16. “Renal Dialysis”[Mesh]
- #17. ”hemodialysis”[tiab] OR “haemodialysis”[tiab]
- #18. ”hemofiltration”[tiab] OR “haemofiltration”[tiab]
- #19. ”hemodiafiltration”[tiab] OR “hemodiafiltration”[tiab]
- #20. ”dialysis”[tiab] OR “dialysis”[tiab]
- #21. “CAPD”[tiab] OR “CCPD”[tiab] OR “APD”[tiab]
- #22. #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR #20 OR #21
- #17. #5 AND #22
- Embase via Proquest
- S1 EMB.EXACT.EXPLODE(“aryldialkylphosphatase”)
- S2 ab(aryldialkylphosphatase) OR ti(aryldialkylphosphatase)
- S3 ab(arylesterase) OR ti(arylesterase)
- S4 ab(paraoxonase) OR ti(paraoxonase)
- S5 S1 OR S2 OR S3 OR S4
- S6. EMB.EXACT.EXPLODE(“kidney failure”)
- S7. EMB.EXACT.EXPLODE(“chronic kidney failure”)
- S8. EMB.EXACT.EXPLODE(“chronic kidney failure”)
- S9. EMB.EXACT.EXPLODE(“kidney disease”)
- S10. EMB.EXACT.EXPLODE(“uremia”)
- S11. ab(end-stage renal) OR ti(end-stage renal) OR ab(end-stage kidney) OR ti(end-stage kidney) OR ab(endstage renal) OR ti(endstage renal) OR ab(endstage kidney) OR ti(endstage kidney)
- S12. ab(ESRF) OR ti(ESRF) OR ab(ESKF) OR ti(ESKF) OR ab(ESRD) OR ti(ESRD) OR ab(ESKD) OR ti(ESKD)
- S13. ab(chronic kidney) OR ti(chronic kidney) OR ab(chronic renal) OR ti(chronic renal)
- S14. ab(CKF) OR ti(CKF) OR ab(CKD) OR ti(CKD) OR ab(CRF) OR ti(CRF) OR ab(CRD) OR ti(CRD)
- S15. ab(predialysis) OR ti(predialysis) OR ab(predialysis) OR ti(predialysis)
- S16. EMB.EXACT.EXPLODE(“hemodialysis”)
- S17. ab(hemodialysis) OR ti(hemodialysis) OR ab(haemodialysis) OR ti(haemodialysis)
- S18. ab(hemofiltration) OR ti(hemofiltration) OR ab(haemofiltration) OR ti(haemofiltration)
- S19. ab(hemodiafiltration) OR ti(hemodiafiltration) OR ab(hemodiafiltration) OR ti(hemodiafiltration)
- S20. ab(dialysis) OR ti(dialysis) OR ab(dialysis) OR ti(dialysis)
- S21. ab(CAPD) OR ti(CAPD) OR ab(CCPD) OR ti(CCPD) OR ab(APD) OR ti(APD)
- S22. S6 OR S7 OR S8 OR S9 OR S10 OR S11 OR S12 OR S13 OR S14 OR S15 OR S16 OR S17 OR S18 OR S19 OR S20 OR S21
- S23. S5 AND S22
- CENTRAL via Cochrane Library
- #1. MeSH descriptor: [Aryldialkylphosphatase] explode all trees
- #2. aryldialkylphosphatase:ti,ab
- #3. arylesterase:ti,ab
- #4. paraoxonase:ti,ab
- #5. #1 OR #2 OR #3 OR #4
- #6. MeSH descriptor: [Renal Insufficiency] explode all trees
- #7. MeSH descriptor: [Kidney Failure, Chronic] explode all trees
- #8. MeSH descriptor: [Renal Insufficiency, Chronic] explode all trees
- #9. MeSH descriptor: [Kidney Diseases] explode all trees
- #10. MeSH descriptor: [Uremia] explode all trees
- #11. “end-stage renal”:ti,ab OR “end-stage kidney”:ti,ab OR “endstage renal”:ti,ab OR “endstage kidney”:ti,ab
- #12. ESRF:ti,ab OR ESKF:ti,ab OR ESRD:ti,ab OR ESKD:ti,ab
- #13. “chronic kidney”:ti,ab OR “chronic renal”:ti,ab
- #14. CKF:ti,ab OR CKD:ti,ab OR CRF:ti,ab OR CRD:ti,ab
- #15. predialysis:ti,ab OR predialysis:ti,ab
- #16. MeSH descriptor: [Renal Dialysis] explode all trees
- #17. hemodialysis:ti,ab OR haemodialysis:ti,ab
- #18. hemofiltration:ti,ab OR haemofiltration:ti,ab
- #19. hemodiafiltration:ti,ab OR hemodiafiltration:ti,ab
- #20. dialysis:ti,ab OR dialysis:ti,ab
- #21. “CAPD”[tiab] OR “CCPD”[tiab] OR “APD”[tiab]
- #22. #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR #20 OR #21
- #17. #5 AND #22
Appendix B
Authors [Reference No.] | Define the Source of Information | List Inclusion and Exclusion Criteria for Exposed and Unexposed Subjects | Indicate Time Period Used for Identifying Patients | Indicate Whether or Not Subjects Were Consecutive If Not Population-Based | Indicate if Evaluators of Subjective Components of Study Were Masked | Describe Any Assessments Undertaken for Quality Assurance Purposes | Explain Any Patient Exclusions from Analysis | Describe Any Assessments Undertaken for Quality Assurance Purpose | If Applicable, Explain How Missing Data Were Handled in the Analysis | Describe How Confounding Was Assessed and/or Controlled | Summarize Patient Response Rates and Completeness of Data Collection | Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Schiavon [65] | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 5 |
Hasselwander [64] | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 6 |
Paragh [63] | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 5 |
Itahara [62] | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 8 |
Juretić [61] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Ak [58] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Schiavon [59] | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 5 |
Suehiro [60] | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 5 |
Dirican [56] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Sutherland [57] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Kalogerakis [55] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Jurek [53] | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Krishnaswamy [54] | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 6 |
Dirican [50] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Gugliucci [51] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Horoz [52] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Atamer [42] | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Dronca [43] | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | - | 1 | - | 5 |
Ferretti [44] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Göçmen [45] | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Lahrach [46] | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 6 |
Prakash [47] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Saeed [48] | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 6 |
Senol [49] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Moradi [37] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Paragh [40] | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 6 |
Varga [41] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Abdin [35] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Kannampuzha [36] | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 6 |
Moradi [37] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Rajković [38] | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 6 |
Emre [28] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Gugliucci [29] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Horoz [30] | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 8 |
Johnson-Davis [31] | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 6 |
Kimak [32] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Kuchta [33] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Cacciagiú [20] | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 8 |
Gbandjaba [25] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Mahrooz [26] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Ribeiro [27] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Sztanek [15] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Kolarz [21] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Locsey [22] | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | - | 1 | - | 3 |
Gugliucci [20] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Abdallah [19] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Coimbra [16] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
Suematsu [18] | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 8 |
Sridevi [17] | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 6 |
Jose [13] | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 8 |
Szentimrei [15] | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | - | 1 | - | 7 |
References
- Campbell, N.R.C.; Ordunez, P.; Giraldo, G.; Rodriguez Morales, Y.A.; Lombardi, C.; Khan, T.; Padwal, R.; Tsuyuki, R.T.; Varghese, C. WHO HEARTS: A Global Program to Reduce Cardiovascular Disease Burden: Experience Implementing in the Americas and Opportunities in Canada. Can. J. Cardiol. 2021, 37, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Mineo, C.; Shaul, P.W. PON-Dering Differences in HDL Function in Coronary Artery Disease. J. Clin. Investig. 2011, 121, 2545–2548. [Google Scholar] [CrossRef] [PubMed]
- Mackness, M.I.; Arrol, S.; Durrington, P.N. Paraoxonase Prevents Accumulation of Lipoperoxides in Low-Density Lipoprotein. FEBS Lett. 1991, 286, 152–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aviram, M.; Vaya, J. Paraoxonase 1 Activities, Regulation, and Interactions with Atherosclerotic Lesion. Curr. Opin. Lipidol. 2013, 24, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Pavanello, C.; Ossoli, A. HDL and Chronic Kidney Disease. Atheroscler Plus 2023, 52, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Holzer, M.; Schilcher, G.; Curcic, S.; Trieb, M.; Ljubojevic, S.; Stojakovic, T.; Scharnagl, H.; Kopecky, C.M.; Rosenkranz, A.R.; Heinemann, A.; et al. Dialysis Modalities and HDL Composition and Function. J. Am. Soc. Nephrol. 2015, 26, 2267–2276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, J.; Kotani, K.; Gugliucci, A. Paraoxonase 1 and Chronic Kidney Disease: A Meta-Analysis. J. Clin. Med. Res. 2023, 12, 1199. [Google Scholar] [CrossRef] [PubMed]
- Hutton, B.; Salanti, G.; Caldwell, D.M.; Chaimani, A.; Schmid, C.H.; Cameron, C.; Ioannidis, J.P.A.; Straus, S.; Thorlund, K.; Jansen, J.P.; et al. The PRISMA Extension Statement for Reporting of Systematic Reviews Incorporating Network Meta-Analyses of Health Care Interventions: Checklist and Explanations. Ann. Intern. Med. 2015, 162, 777–784. [Google Scholar] [CrossRef] [Green Version]
- Isakova, T.; Nickolas, T.L.; Denburg, M.; Yarlagadda, S.; Weiner, D.E.; Gutiérrez, O.M.; Bansal, V.; Rosas, S.E.; Nigwekar, S.; Yee, J.; et al. KDOQI US Commentary on the 2017 KDIGO Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Am. J. Kidney Dis. 2017, 70, 737–751. [Google Scholar] [CrossRef] [Green Version]
- Viswanathan, M.; Ansari, M.T.; Berkman, N.D.; Chang, S.; Hartling, L.; McPheeters, M.; Santaguida, P.L.; Shamliyan, T.; Singh, K.; Tsertsvadze, A. Assessing the Risk of Bias of Individual Studies in Systematic Reviews of Health Care Interventions. Available online: https://effectivehealthcare.ahrq.gov/ (accessed on 9 July 2023).
- Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions Version 6.3.2022. Available online: https://training.cochrane.org/handbook/current (accessed on 9 July 2023).
- Owen, R.K.; Bradbury, N.; Xin, Y.; Cooper, N.; Sutton, A. MetaInsight: An Interactive Web-Based Tool for Analyzing, Interrogating, and Visualizing Network Meta-Analyses Using R-Shiny and Netmeta. Res. Synth. Methods 2019, 10, 569–581. [Google Scholar] [CrossRef] [Green Version]
- Jose, S.; Kc, R.; Chandran, S. Oxidative Stress in Patients with Diabetic Nephropathy. Natl. J. Physiol. Pharm. Pharmacol. 2022, 12, 1. [Google Scholar] [CrossRef]
- Miguita, R., Jr.; Matsumoto, A.K.; Michelin, A.P.; Morelli, N.R.; Baltus, T.H.L.; Delfino, V.D.A.; Barbosa, D.S. Effect of Dialyzer Reuse on the Activity of Paraoxonase 1 in Patients on Hemodialysis. Indian J. Nephrol. 2022, 32, 606–610. [Google Scholar] [CrossRef] [PubMed]
- Szentimrei, R.; Lőrincz, H.; Szentpéteri, A.; Varga, V.E.; Harangi, M.; Seres, I.; Szabó, R.P.; Nemes, B.; Paragh, G. Changes in Serum Pigment Epithelium-Derived Factor Levels after Kidney Transplantation in Patients with End-Stage Renal Disease. Ren. Fail. 2022, 44, 1649–1659. [Google Scholar] [CrossRef] [PubMed]
- Coimbra, S.; Reis, F.; Nunes, S.; Viana, S.; Valente, M.J.; Rocha, S.; Catarino, C.; Rocha-Pereira, P.; Bronze-da-Rocha, E.; Sameiro-Faria, M.; et al. The Protective Role of Adiponectin for Lipoproteins in End-Stage Renal Disease Patients: Relationship with Diabetes and Body Mass Index. Oxid. Med. Cell. Longev. 2019, 2019, 3021785. [Google Scholar] [CrossRef] [Green Version]
- Sridevi, C.; Sowjanya, U.; Kalai Selvi, V.S.; Rajakumari, D.M.M.; Babu, K. Serum Paraoxonase with HDL-C as a Predictor of Atherosclerosis in Patients of Chronic Kidney Disease. Biomedicine 2021, 40, 442–446. [Google Scholar] [CrossRef]
- Suematsu, Y.; Goto, M.; Park, C.; Nunes, A.C.F.; Jing, W.; Streja, E.; Rhee, C.M.; Cruz, S.; Kashyap, M.L.; Vaziri, N.D.; et al. Association of Serum Paraoxonase/Arylesterase Activity With All-Cause Mortality in Maintenance Hemodialysis Patients. J. Clin. Endocrinol. Metab. 2019, 104, 4848–4856. [Google Scholar] [CrossRef]
- Abdallah, E.; El-Shishtawy, S.; Sherif, N.; Ali, A.; El-Bendary, O. Assessment of the Relationship between Serum Paraoxonase Activity and Epicardial Adipose Tissue in Hemodialysis Patients. Int. Urol. Nephrol. 2017, 49, 329–335. [Google Scholar] [CrossRef]
- Gugliucci, A.; Kinugasa, E.; Ogata, H.; Caccavello, R.; Kimura, S. Activation of Paraoxonase 1 after Hemodialysis Is Associated with HDL Remodeling and Its Increase in the HDL2 Fraction and VLDL. Clin. Chim. Acta 2014, 430, 9–14. [Google Scholar] [CrossRef]
- Kolarz, M.; Małyszko, J.; Stompór, T.; Całka, A.; Undas, A.; Myśliwiec, M. Antibodies against Nε-Homocysteinylated Proteins in Patients on Different Methods of Renal Replacement Therapy. Clin. Chem. Lab. Med. 2013, 51, 1093–1099. [Google Scholar] [CrossRef]
- Locsey, L.; Seres, I.; Sztanek, F.; Harangi, M.; Padra, J.; Kovacs, D.; Fedor, R.; Asztalos, L.; Paragh, G. Relationship between Serum Paraoxonase and Homocysteine Thiolactonase Activity, Adipokines, and Asymmetric Dimethyl Arginine Concentrations in Renal Transplant Patients. Transplant. Proc. 2013, 45, 3685–3687. [Google Scholar] [CrossRef]
- Cacciagiú, L.D.; González, A.I.; Gomez Rosso, L.; Meroño, T.; De Marziani, G.; Elbert, A.; Berg, G.; Brites, F.; Schreier, L. HDL-Associated Enzymes and Proteins in Hemodialysis Patients. Clin. Biochem. 2012, 45, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Sztanek, F.; Seres, I.; Harangi, M.; Lőcsey, L.; Padra, J.; Paragh, G.J.R.; Asztalos, L.; Paragh, G. Decreased Paraoxonase 1 (PON1) Lactonase Activity in Hemodialyzed and Renal Transplanted Patients. A Novel Cardiovascular Biomarker in End-Stage Renal Disease. Nephrol. Dial. Transplant. 2012, 27, 2866–2872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gbandjaba, N.Y.; Ghalim, N.; Hassar, M.; Berrougui, H.; Labrazi, H.; Taki, H.; Saile, R.; Khalil, A. Paraoxonase Activity in Healthy, Diabetic, and Hemodialysis Patients. Clin. Biochem. 2012, 45, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Mahrooz, A.; Zargari, M.; Sedighi, O.; Shaygani, H.; Gohari, G. Increased Oxidized-LDL Levels and Arylesterase Activity/HDL Ratio in ESRD Patients Treated with Hemodialysis. Clin. Investig. Med. 2012, 35, E144–E151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, S.; do Sameiro Faria, M.; Mascarenhas-Melo, F.; Freitas, I.; Mendonça, M.I.; Nascimento, H.; Rocha-Pereira, P.; Miranda, V.; Mendonça, D.; Quintanilha, A.; et al. Main Determinants of PON1 Activity in Hemodialysis Patients. Am. J. Nephrol. 2012, 36, 317–323. [Google Scholar] [CrossRef]
- Emre, H.; Keles, M.; Yildirim, S.; Uyanik, A.; Kara, F.; Tamer, F.; Aydinli, B. Comparison of the Oxidant-Antioxidant Parameters and Sialic Acid Levels in Renal Transplant Patients and Peritoneal Dialysis Patients. Transplant. Proc. 2011, 43, 809–812. [Google Scholar] [CrossRef] [PubMed]
- Gugliucci, A.; Kinugasa, E.; Kotani, K.; Caccavello, R.; Kimura, S. Serum Paraoxonase 1 (PON1) Lactonase Activity Is Lower in End-Stage Renal Disease Patients than in Healthy Control Subjects and Increases after Hemodialysis. Clin. Chem. Lab. Med. 2011, 49, 61–67. [Google Scholar] [CrossRef]
- Horoz, M.; Kiykim, A.A.; Cimen, B.; Erdem, A. The Influence of Hemodialysis Membrane Permeability on Serum Paraoxonase-1 Activity and Oxidative Status Parameters. Artif. Organs 2011, 35, 923–929. [Google Scholar] [CrossRef]
- Johnson-Davis, K.L.; Fernelius, C.; Eliason, N.B.; Wilson, A.; Beddhu, S.; Roberts, W.L. Blood Enzymes and Oxidative Stress in Chronic Kidney Disease: A Cross Sectional Study. Ann. Clin. Lab. Sci. 2011, 41, 331–339. [Google Scholar]
- Kimak, E.; Hałabiś, M.; Baranowicz-Gąszczyk, I.; Solski, J.; Książek, A. Association between Moderately Oxidized Low-Density Lipoprotein and High-Density Lipoprotein Particle Subclass Distribution in Hemodialyzed and Post-Renal Transplant Patients. J. Zhejiang Univ. Sci. B 2011, 12, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Kuchta, A.; Pacanis, A.; Kortas-Stempak, B.; Cwiklińska, A.; Ziętkiewicz, M.; Renke, M.; Rutkowski, B. Estimation of Oxidative Stress Markers in Chronic Kidney Disease. Kidney Blood Press. Res. 2011, 34, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, N.D.; Navab, K.; Gollapudi, P.; Moradi, H.; Pahl, M.V.; Barton, C.H.; Fogelman, A.M.; Navab, M. Salutary Effects of Hemodialysis on Low-Density Lipoprotein Proinflammatory and High-Density Lipoprotein Anti-Inflammatory Properties in Patient with End-Stage Renal Disease. J. Natl. Med. Assoc. 2011, 103, 524–533. [Google Scholar] [CrossRef] [Green Version]
- Abdin, A.A.; Hassanien, M.A.; Ibrahim, E.A.; El-Noeman, S.E.-D.A.A. Modulating Effect of Atorvastatin on Paraoxonase 1 Activity in Type 2 Diabetic Egyptian Patients with or without Nephropathy. J. Diabetes Complicat. 2010, 24, 325–333. [Google Scholar] [CrossRef]
- Kannampuzha, J.; Darling, P.B.; Maguire, G.F.; Donnelly, S.; McFarlane, P.; Chan, C.T.; Connelly, P.W. Paraoxonase 1 Arylesterase Activity and Mass Are Reduced and Inversely Related to C-Reactive Protein in Patients on Either Standard or Home Nocturnal Hemodialysis. Clin. Nephrol. 2010, 73, 131–138. [Google Scholar] [PubMed]
- Moradi, H.; Ganji, S.; Kamanna, V.; Pahl, M.V.; Vaziri, N.D. Increased Monocyte Adhesion-Promoting Capacity of Plasma in End-Stage Renal Disease–Response to Antioxidant Therapy. Clin. Nephrol. 2010, 74, 273–281. [Google Scholar] [CrossRef]
- Rajković, M.G.; Rumora, L.; Juretić, D.; Grubisić, T.Z.; Flegar-Mestrić, Z.; Vrkić, N.; Sinjeri, Z.; Barisić, K. Effect of Non-Genetic Factors on Paraoxonase 1 Activity in Patients Undergoing Hemodialysis. Clin. Biochem. 2010, 43, 1375–1380. [Google Scholar] [CrossRef] [PubMed]
- Moradi, H.; Pahl, M.V.; Elahimehr, R.; Vaziri, N.D. Impaired Antioxidant Activity of High-Density Lipoprotein in Chronic Kidney Disease. Transl. Res. 2009, 153, 77–85. [Google Scholar] [CrossRef]
- Paragh, G.; Seres, I.; Harangi, M.; Pocsai, Z.; Asztalos, L.; Locsey, L.; Szeles, G.; Kardos, L.; Varga, E.; Karpati, I.; et al. Discordance in Human Paraoxonase-1 Gene between Phenotypes and Genotypes in Chronic Kidney Disease. Nephron Clin. Pract. 2009, 113, c46–c53. [Google Scholar] [CrossRef]
- Varga, E.; Seres, I.; Harangi, M.; Sztanek, F.; Asztalos, L.; Lõcsey, L.; Borbás, B.; Szegedi, J.; Kárpáti, I.; Paragh, G. Serum Cystatin C Is a Determinant of Paraoxonase Activity in Hemodialyzed and Renal Transplanted Patients. Dis. Markers 2009, 26, 141–148. [Google Scholar] [CrossRef]
- Atamer, A.; Kocyigit, Y.; Ecder, S.A.; Selek, S.; Ilhan, N.; Ecder, T.; Atamer, Y. Effect of Oxidative Stress on Antioxidant Enzyme Activities, Homocysteine and Lipoproteins in Chronic Kidney Disease. J. Nephrol. 2008, 21, 924–930. [Google Scholar]
- Dronca, M.; Paşca, S.P.; Nemeş, B.; Vlase, L.; Vladutiu, D. Serum Paraoxonase 1 Activities and Homocysteinemia in Hemodialysis Patients. Clin. Chem. Lab. Med. 2008, 46, 880–881. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, G.; Bacchetti, T.; Masciangelo, S.; Pallotta, G. Lipid Peroxidation in Hemodialysis Patients: Effect of Vitamin C Supplementation. Clin. Biochem. 2008, 41, 381–386. [Google Scholar] [CrossRef]
- Göçmen, A.Y.; Sahin, E.; Koçak, H.; Tuncer, M.; Gümüşlü, S. Levels of Asymmetric Dimethylarginine, Nitric Oxide and Lipid Peroxidation Markers in Patients with End-Stage Renal Disease Having Peritoneal Dialysis Treatment. Clin. Biochem. 2008, 41, 836–840. [Google Scholar] [PubMed]
- Lahrach, H.; Ghalim, N.; Taki, H.; Kettani, A.; Er-Rachdi, L.; Ramdani, B.; Saïle, R. Serum Paraoxonase Activity, High-Sensitivity C-Reactive Protein, and Lipoprotein Disturbances in End-Stage Renal Disease Patients on Long-Term Hemodialysis. J. Clin. Lipidol. 2008, 2, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Prakash, M.; Shetty, J.K.; Rao, L.; Sharma, S.; Rodrigues, A.; Prabhu, R. Serum Paraoxonase Activity and Protein Thiols in Chronic Renal Failure Patients. Indian J. Nephrol. 2008, 18, 13–16. [Google Scholar] [CrossRef]
- Saeed, S.A.; Elsharkawy, M.; Elsaeed, K.; Fooda, O. Paraoxonase-1 (PON1) Activity as a Risk Factor for Atherosclerosis in Chronic Renal Failure Patients. Hemodial. Int. 2008, 12, 471–479. [Google Scholar] [CrossRef]
- Senol, E.; Ersoy, A.; Erdinc, S.; Sarandol, E.; Yurtkuran, M. Oxidative Stress and Ferritin Levels in Haemodialysis Patients. Nephrol. Dial. Transplant. 2008, 23, 665–672. [Google Scholar] [CrossRef] [Green Version]
- Dirican, M.; Sarandol, E.; Serdar, Z.; Ocak, N.; Dilek, K. Oxidative Status and Prevalent Cardiovascular Disease in Patients with Chronic Renal Failure Treated by Hemodialysis. Clin. Nephrol. 2007, 68, 144–150. [Google Scholar] [CrossRef]
- Gugliucci, A.; Mehlhaff, K.; Kinugasa, E.; Ogata, H.; Hermo, R.; Schulze, J.; Kimura, S. Paraoxonase-1 Concentrations in End-Stage Renal Disease Patients Increase after Hemodialysis: Correlation with Low Molecular AGE Adduct Clearance. Clin. Chim. Acta 2007, 377, 213–220. [Google Scholar]
- Horoz, M.; Aslan, M.; Selek, S.; Koylu, A.O.; Bolukbas, C.; Bolukbas, F.F.; Celik, H.; Erel, O. PON1 Status in Haemodialysis Patients and the Impact of Hepatitis C Infection. Clin. Biochem. 2007, 40, 609–614. [Google Scholar] [CrossRef]
- Jurek, A.; Turyna, B.; Kubit, P.; Klein, A. LDL Susceptibility to Oxidation and HDL Antioxidant Capacity in Patients with Renal Failure. Clin. Biochem. 2006, 39, 19–27. [Google Scholar] [PubMed]
- Krishnaswamy, P.R.; Rao, A.; Murali, W.; Sudarshan Ballal, H. Paraoxonase Activity and Antibodies to Oxidized-LDL in Chronic Renal Failure Patients on Renal Replacement Therapy. Indian J. Clin. Biochem. 2006, 21, 173–176. [Google Scholar] [PubMed] [Green Version]
- Kalogerakis, G.; Baker, A.M.; Christov, S.; Rowley, K.G.; Dwyer, K.; Winterbourn, C.; Best, J.D.; Jenkins, A.J. Oxidative Stress and High-Density Lipoprotein Function in Type I Diabetes and End-Stage Renal Disease. Clin. Sci. 2005, 108, 497–506. [Google Scholar]
- Dirican, M.; Akca, R.; Sarandol, E.; Dilek, K. Serum Paraoxonase Activity in Uremic Predialysis and Hemodialysis Patients. J. Nephrol. 2004, 17, 813–818. [Google Scholar] [PubMed]
- Sutherland, W.H.F.; de Jong, S.A.; Walker, R.J. Hypochlorous Acid and Low Serum Paraoxonase Activity in Haemodialysis Patients: An in Vitro Study. Nephrol. Dial. Transplant. 2004, 19, 75–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ak, G.; Ozgönül, M.; Sözmen, E.Y.; Aslan, S.L.; Sözmen, B. Renal Cortical Thickness and PON1 Activity Both Decrease in Chronic Renal Failure. J. Nephrol. 2002, 15, 144–149. [Google Scholar]
- Schiavon, R.; Battaglia, P.; De Fanti, E.; Fasolin, A.; Biasioli, S.; Targa, L.; Guidi, G. HDL3-Related Decreased Serum Paraoxonase (PON) Activity in Uremic Patients: Comparison with the PON1 Allele Polymorphism. Clin. Chim. Acta 2002, 324, 39–44. [Google Scholar]
- Suehiro, T.; Ikeda, Y.; Shiinoki, T.; Inoue, M.; Kumon, Y.; Itahara, T.; Hashimoto, K. Serum Paraoxonase (PON1) Concentration in Patients Undergoing Hemodialysis. J. Atheroscler. Thromb. 2002, 9, 133–138. [Google Scholar]
- Juretić, D.; Tadijanović, M.; Rekić, B.; Simeon-Rudolf, V.; Reiner, E.; Baricić, M. Serum Paraoxonase Activities in Hemodialyzed Uremic Patients: Cohort Study. Croat. Med. J. 2001, 42, 146–150. [Google Scholar]
- Itahara, T.; Suehiro, T.; Ikeda, Y.; Inoue, M.; Nakamura, T.; Kumon, Y.; Kawada, M.; Hashimoto, K. Serum Paraoxonase and Arylesterase Activities in Hemodialysis Patients. J. Atheroscler. Thromb. 2000, 7, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Paragh, G.; Asztalos, L.; Seres, I.; Balogh, Z.; Löcsey, L.; Kárpáti, I.; Mátyus, J.; Katona, E.; Harangi, M.; Kakuk, G. Serum Paraoxonase Activity Changes in Uremic and Kidney-Transplanted Patients. Nephron 1999, 83, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Hasselwander, O.; McMaster, D.; Fogarty, D.G.; Maxwell, A.P.; Nicholls, D.P.; Young, I.S. Serum Paraoxonase and Platelet-Activating Factor Acetylhydrolase in Chronic Renal Failure. Clin. Chem. 1998, 44, 179–181. [Google Scholar] [CrossRef] [PubMed]
- Schiavon, R.; De Fanti, E.; Giavarina, D.; Biasioli, S.; Cavalcanti, G.; Guidi, G. Serum Paraoxonase Activity Is Decreased in Uremic Patients. Clin. Chim. Acta 1996, 247, 71–80. [Google Scholar] [PubMed]
- Ebert, T.; Neytchev, O.; Witasp, A.; Kublickiene, K.; Stenvinkel, P.; Shiels, P.G. Inflammation and Oxidative Stress in Chronic Kidney Disease and Dialysis Patients. Antioxid. Redox Signal. 2021, 35, 1426–1448. [Google Scholar]
- Colombo, G.; Reggiani, F.; Angelini, C.; Finazzi, S.; Astori, E.; Garavaglia, M.L.; Landoni, L.; Portinaro, N.M.; Giustarini, D.; Rossi, R.; et al. Plasma Protein Carbonyls as Biomarkers of Oxidative Stress in Chronic Kidney Disease, Dialysis, and Transplantation. Oxid. Med. Cell. Longev. 2020, 2020, 2975256. [Google Scholar]
- Gugliucci, A. Activation of Paraoxonase 1 Is Associated with HDL Remodeling Ex Vivo. Clin. Chim. Acta 2014, 429, 38–45. [Google Scholar]
- Umaerus, M.; Rosengren, B.; Fagerberg, B.; Hurt-Camejo, E.; Camejo, G. HDL2 Interferes with LDL Association with Arterial Proteoglycans: A Possible Athero-Protective Effect. Atherosclerosis 2012, 225, 115–120. [Google Scholar] [CrossRef]
- Moist, L.M.; Port, F.K.; Orzol, S.M.; Young, E.W.; Ostbye, T.; Wolfe, R.A.; Hulbert-Shearon, T.; Jones, C.A.; Bloembergen, W.E. Predictors of Loss of Residual Renal Function among New Dialysis Patients. J. Am. Soc. Nephrol. 2000, 11, 556–564. [Google Scholar] [CrossRef]
- Tetta, C.; Roy, T.; Gatti, E.; Cerutti, S. The Rise of Hemodialysis Machines: New Technologies in Minimizing Cardiovascular Complications. Expert Rev. Cardiovasc. Ther. 2011, 9, 155–164. [Google Scholar]
- Liakopoulos, V.; Roumeliotis, S.; Gorny, X.; Dounousi, E.; Mertens, P.R. Oxidative Stress in Hemodialysis Patients: A Review of the Literature. Oxid. Med. Cell. Longev. 2017, 2017, 3081856. [Google Scholar]
- Krediet, R.T.; Zweers, M.M.; van Westrhenen, R.; Zegwaard, A.; Struijk, D.G. Effects of Reducing the Lactate and Glucose Content of PD Solutions on the Peritoneum. Is the Future GLAD? NDT Plus 2008, 1, iv56–iv62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimak, E.; Solski, J.; Janicka, L.; Ksaziek, A.; Janicki, K. Concentration of Lp(a) and Other Apolipoproteins in Predialysis, Hemodialysis, Chronic Ambulatory Peritoneal Dialysis and Post-Transplant Patients. Clin. Chem. Lab. Med. 2000, 38, 421–425. [Google Scholar] [CrossRef]
- Johnson, D.W.; Armstrong, K.; Campbell, S.B.; Mudge, D.W.; Hawley, C.M.; Coombes, J.S.; Prins, J.B.; Isbel, N.M. Metabolic Syndrome in Severe Chronic Kidney Disease: Prevalence, Predictors, Prognostic Significance and Effects of Risk Factor Modification. Nephrology 2007, 12, 391–398. [Google Scholar] [PubMed]
- Voora, S.; Adey, D.B. Management of Kidney Transplant Recipients by General Nephrologists: Core Curriculum 2019. Am. J. Kidney Dis. 2019, 73, 866–879. [Google Scholar] [CrossRef] [PubMed]
- Stępniewska, J.; Dołęgowska, B.; Popińska, M.; Sałata, D.; Budkowska, M.; Gołembiewska, E.; Myślak, M.; Domański, M.; Marchelek-Myśliwiec, M.; Ciechanowski, K. Prooxidative-Antioxidative Balance of Cells in Different Types of Renal Replacement Therapy. Blood Purif. 2014, 37, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Dawnay, A.; Millar, D.J. The Pathogenesis and Consequences of AGE Formation in Uraemia and Its Treatment. Cell. Mol. Biol. 1998, 44, 1081–1094. [Google Scholar]
- Henning, B.F.; Holzhausen, H.; Tepel, M. Continuous Reduction of Plasma Paraoxonase Activity with Increasing Dialysis Vintage in Hemodialysis Patients. Ther. Apher. Dial. 2010, 14, 572–576. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Ikizler, T.A. Let Them Eat during Dialysis: An Overlooked Opportunity to Improve Outcomes in Maintenance Hemodialysis Patients. J. Ren. Nutr. 2013, 23, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Kędzierska-Kapuza, K.; Szczuko, U.; Stolińska, H.; Bakaloudi, D.R.; Wierzba, W.; Szczuko, M. Demand for Water-Soluble Vitamins in a Group of Patients with CKD versus Interventions and Supplementation-A Systematic Review. Nutrients 2023, 15, 860. [Google Scholar] [CrossRef]
- Weir, M.R.; Fink, J.C. Safety of Medical Therapy in Patients with Chronic Kidney Disease and End-Stage Renal Disease. Curr. Opin. Nephrol. Hypertens. 2014, 23, 306–313. [Google Scholar] [CrossRef]
- Liakopoulos, V.; Roumeliotis, S.; Bozikas, A.; Eleftheriadis, T.; Dounousi, E. Antioxidant Supplementation in Renal Replacement Therapy Patients: Is There Evidence? Oxid. Med. Cell. Longev. 2019, 2019, 9109473. [Google Scholar] [PubMed] [Green Version]
Authors [Ref No.] | Year | Country | Subject No. | Age | Unit | Healthy Controls | CRF without RRT | CRF with Hemodialysis | CRF with Peritoneal Dialysis | CRF with Renal Transplantation |
---|---|---|---|---|---|---|---|---|---|---|
Paraoxonase | ||||||||||
Schiavon [65] | 1996 | Italy | 264 | 56 | U/L | 146.3 ± 51.0 | – | 93.0 ± 32.2 | – | – |
Hasselwander [64] | 1998 | Northern Ireland | 78 | 54 | U/L | 139.5 ± 36.1 | – | 95.7 ± 26.8 | – | – |
Paragh [63] | 1999 | Hungary | 342 | 48 | U/mL | 188.1 ± 59.0 | – | 101.4 ± 30.1 | – | 161.5 ± 35.4 |
Itahara [62] | 2000 | Japan | 232 | 65 | μmol/min/L | 155.0 ± 57.0 | – | 97.0 ± 43.0 | – | – |
Juretić [61] | 2001 | Croatia | 214 | 39 | U/L | 251.0 ± 143.0 | – | 167.0 ± 105.0 | – | – |
Ak [58] | 2002 | Turkey | 55 | 44 | nmol/min/mL | 30.9 ± 19.4 | – | 14.4 ± 11.0 | – | – |
Schiavon [59] | 2002 | Italy | 166 | 61 | U/L | 110.0 ± 160.0 | – | 73.5 ± 91.0 | – | – |
Suehiro [60] | 2002 | Japan | 184 | 64 | μmol/min/L | 153.4 ± 54.7 | – | 94.7 ± 43.3 | – | – |
Dirican [56] | 2004 | Turkey | 98 | 47 | U/L | 178.0 ± 79.0 | 140.0 ± 65.0 | 128.0 ± 51.0 | – | – |
Sutherland [57] | 2004 | New Zealand | 19 | 48 | μmol/mL/min | 88.0 ± 16.0 | – | 56.0 ± 16.0 | – | – |
Kalogerakis [55] | 2005 | New Zealand | 45 | 61 | U/mL | 125.2 ± 24.0 | – | 87.8 ± 25.7 | – | – |
Jurek [53] | 2006 | Poland | 60 | 60 | U/L | 73.5 ± 43.3 | – | 42.7 ± 27.9 | – | – |
Krishnaswamy [54] | 2006 | Greece | 75 | 35–65 | U/L | 137.0 ± 18.7 | – | 88.0 ± 14.4 | 130.0 ± 16.5 | – |
Dirican [50] | 2007 | Turkey | 126 | 47 | U/L | 200.1 ± 98.3 | – | 124.7 ± 51.4 | – | – |
Gugliucci [51] | 2007 | USA | 52 | 62 | U/L | 86.2 ± 25.2 | – | 50.1 ± 23.1 | – | – |
Horoz [52] | 2007 | Turkey | 72 | 48 | U/L | 258.7 ± 38.8 | – | 146.8 ± 30.1 | – | – |
Atamer [42] | 2008 | Turkey | 60 | 53 | U/L | 376.2 ± 72.4 | 231.1 ± 34.0 | – | – | – |
Dronca [43] | 2008 | Romania | 50 | 51 | U/L | 572.6 ± 78.7 | 258.3 ± 42.5 | – | – | – |
Ferretti [44] | 2008 | Italy | 92 | 66 | U/mL | 2316.9 ± 225.3 | – | 476.3 ± 52.4 | – | – |
Göçmen [45] | 2008 | Turkey | 85 | 42 | U/L | 486.5 ± 24.6 | – | – | 392.7 ± 21.4 | – |
Lahrach [46] | 2008 | Morocco | 209 | 45 | U/mL | 138.3 ± 82.5 | – | 117.0 ± 84.6 | – | – |
Prakash [47] | 2008 | India | 130 | 53 | U/L | 192.5 ± 31.3 | 88.7 ± 38.9 | 60.0 ± 36.5 | – | – |
Saeed [48] | 2008 | Egypt | 90 | 42 | U/L | 180.6 ± 27.7 | 141.7 ± 22.4 | 133.2 ± 19.2 | – | – |
Senol [49] | 2008 | Turkey | 56 | 41 | U/L | 215.0 ± 108.0 | – | 113.0 ± 51.0 | – | – |
Moradi [39] | 2009 | USA | 45 | 51 | Ku/L | 108.4 ± 11.7 | – | 94.8 ± 33.0 | – | – |
Paragh [40] | 2009 | Hungary | 1326 | 48 | U/L | 111.1 ± 6.2 | – | – | – | 124.0 ± 14.3 |
Varga [41] | 2009 | Hungary | 355 | 47 | U/L | 188.0 ± 62.0 | – | 64.6 ± 16.2 | – | 110.1 ± 23.6 |
Abdin [35] | 2010 | Egypt | 50 | 54 | U/mL | 39.7 ± 12.4 | 14.3 ± 6.1 | – | – | – |
Moradi [37] | 2010 | USA | 32 | 53 | Ku/L | 150.4 ± 44.7 | – | 95.7 ± 38.6 | – | – |
Rajković [38] | 2010 | Croatia | 158 | 56 | U/L | 274.0 ± 148.5 | – | 159.0 ± 97.8 | – | – |
Emre [28] | 2011 | Turkey | 54 | 38 | U/mL | – | – | – | 62.1 ± 41.6 | 107.6 ± 82.7 |
Gugliucci [29] | 2011 | Japan | 91 | 63 | U/L | 357.0 ± 189.5 | – | 87.1 ± 20.5 | – | – |
Horoz [30] | 2011 | Turkey | 71 | 49 | U/L | 245.0 ± 64.5 | – | 78.0 ± 63.0 | – | – |
Johnson-Davis [31] | 2011 | USA | 47 | 18–84 | U/L | 281.3 ± 154.5 | – | 114.0 ± 58.4 | 192.9 ± 130.6 | – |
Kimak [32] | 2011 | Poland | 193 | 46 | U/L | 142.0 ± 122.0 | – | 78.0 ± 63.5 | – | 115.0 ± 109.8 |
Kuchta [33] | 2011 | Poland | 157 | 58 | U/L | 170.0 ± 95.8 | 113.5 ± 48.4 | 120.0 ± 62.8 | 100.0 ± 65.5 | – |
Cacciagiú [23] | 2012 | Argentina | 85 | 50 | U/mL | 357.0 ± 189.5 | – | 276.0 ± 211.5 | – | – |
Gbandjaba [25] | 2012 | Morocco | 175 | 60 | U/mL | 68.9 ± 99.5 | – | 39.7 ± 33.9 | – | – |
Ribeiro [27] | 2012 | Portugal | 205 | 66 | nmol of p-nitrophenol/mL/min | 466.8 ± 53.0 | – | 362.6 ± 51.8 | – | – |
Sztanek [24] | 2012 | USA | 249 | 52 | U/L | 99.4 ± 46.6 | – | 46.8 ± 17.4 | – | 70.2 ± 27.6 |
Kolarz [21] | 2013 | Poland | 155 | 54 | U/L | – | – | 144.9 ± 34.2 | 79.0 ± 7.0 | – |
Locsey [22] | 2013 | Hungary | 258 | 60 | U/L | 137.0 ± 82.1 | – | 58.0 ± 36.7 | – | 81.0 ± 46.5 |
Abdallah [19] | 2017 | Egypt | 96 | 57 | U/L | 164.3 ± 61.5 | – | 82.1 ± 31.6 | – | – |
Coimbra [16] | 2019 | Portugal | 216 | 71 | nmol of p-nitrophenol/mL/min | 413.0 ± 30.0 | – | 405.0 ± 41.5 | – | – |
Suematsu [18] | 2019 | USA | 523 | 55 | kU/L | 135.2 ± 77.2 | – | 77.2 ± 35.8 | – | – |
Sridevi [17] | 2021 | India | 123 | 20–60 | U/L | 383.0 ± 41.5 | 160.1 ± 9.4 | 188.4 ± 65.8 | – | – |
Jose [13] | 2022 | India | 152 | 51 | U/L | 360.0 ± 24.7 | 146.2 ± 80.6 | – | – | – |
Szentimrei [15] | 2022 | Hungary | 147 | 49 | U/L | 83.0 ± 30.0 | – | 46.0 ± 33.3 | 55.7 ± 32.0 | – |
Arylesterase | ||||||||||
Hasselwander [64] | 1998 | Northern Ireland | 78 | 54 | U/L | 64.3 ± 17.0 | – | 50.4 ± 14.9 | – | – |
Paragh [63] | 1999 | Hungary | 342 | 48 | U/mL | 125.0 ± 8.8 | – | 75.0 ± 14.4 | 95.0 ± 16.3 | – |
Itahara [62] | 2000 | Japan | 232 | 65 | mmol/min/L | 92.0 ± 22.0 | – | 71.0 ± 20.0 | – | – |
Juretić [61] | 2001 | Croatia | 214 | 39 | kU/L | 106.0 ± 38.0 | – | 52.0 ± 18.0 | – | – |
Suehiro [60] | 2002 | Japan | 184 | 64 | mmol/min/L | 91.4 ± 22.0 | – | 71.8 ± 20.4 | – | – |
Dirican [56] | 2004 | Turkey | 98 | 47 | kU/L | 84.0 ± 28.0 | 66.0 ± 19.0 | 63.0 ± 21.0 | – | – |
Jurek [53] | 2006 | Poland | 58 | 60 | U/mL | 175.5 ± 35.3 | – | 70.4 ± 15.3 | – | – |
Dirican [56] | 2007 | Turkey | 126 | 47 | kU/L | 74.1 ± 16.4 | 86.4 ± 31.3 | – | – | – |
Horoz [52] | 2007 | Turkey | 72 | 49 | kU/L | 148.9 ± 22.8 | – | 90.5 ± 45.3 | – | – |
Dronca [43] | 2008 | Romania | 50 | 51 | U/L | 93.4 ± 5.5 | 58.4 ± 1.9 | – | – | – |
Saeed [48] | 2008 | Egypt | 90 | 42 | kU/L | 103.7 ± 14.8 | 78.2 ± 18.2 | 77.3 ± 12.7 | – | – |
Senol [49] | 2008 | Turkey | 56 | 41 | kU/L | 75.0 ± 34.0 | – | 48.0 ± 15.0 | – | – |
Paragh [40] | 2009 | Hungary | 1326 | 47 | U/mL | 85.5 ± 2.5 | – | – | – | 87.1 ± 5.3 |
Kannampuzha [36] | 2010 | Canada | 30 | 41 | U/mL | 189.2 ± 20.4 | – | 128.0 ± 18.8 | – | – |
Emre [28] | 2011 | Turkey | 54 | 38 | U/mL | – | – | – | 27.1 ± 23.3 | 45.8 ± 19.7 |
Gugliucci [29] | 2011 | Japan | 91 | 63 | U/L | 176.6 ± 22.3 | – | 146.5 ± 30.8 | – | – |
Horoz [30] | 2011 | Turkey | 71 | 49 | U/L | 237.0 ± 15.8 | – | 134.0 ± 39.0 | – | – |
Mahrooz [26] | 2012 | Iran | 49 | 56 | μU/mL | 46.8 ± 26.9 | – | 50.0 ± 18.0 | – | – |
Locsey [22] | 2013 | Hungary | 258 | 60 | U/L | 90.4 ± 20.7 | – | 103.7 ± 12.8 | – | 96.3 ± 16.2 |
Gugliucci [20] | 2014 | Japan | 84 | 63 | U/L | 175.2 ± 32.2 | – | 146.2 ± 31.1 | – | – |
Szentimrei [15] | 2022 | Hungary | 214 | 49 | U/L | 133.3 ± 29.7 | – | 111.8 ± 24.5 | 132.6 ± 30.1 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, J.; Kotani, K.; Iwazu, Y.; Gugliucci, A. Paraoxonase 1 Activity and Renal Replacement Therapy for Chronic Renal Failure: A Meta-Analysis. J. Clin. Med. 2023, 12, 5123. https://doi.org/10.3390/jcm12155123
Watanabe J, Kotani K, Iwazu Y, Gugliucci A. Paraoxonase 1 Activity and Renal Replacement Therapy for Chronic Renal Failure: A Meta-Analysis. Journal of Clinical Medicine. 2023; 12(15):5123. https://doi.org/10.3390/jcm12155123
Chicago/Turabian StyleWatanabe, Jun, Kazuhiko Kotani, Yoshitaka Iwazu, and Alejandro Gugliucci. 2023. "Paraoxonase 1 Activity and Renal Replacement Therapy for Chronic Renal Failure: A Meta-Analysis" Journal of Clinical Medicine 12, no. 15: 5123. https://doi.org/10.3390/jcm12155123
APA StyleWatanabe, J., Kotani, K., Iwazu, Y., & Gugliucci, A. (2023). Paraoxonase 1 Activity and Renal Replacement Therapy for Chronic Renal Failure: A Meta-Analysis. Journal of Clinical Medicine, 12(15), 5123. https://doi.org/10.3390/jcm12155123