Low Intraoperative Cerebral Oxygen Saturation Is Associated with Acute Kidney Injury after Off-Pump Coronary Artery Bypass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. NIRS Measurement
2.3. Clinical Data Assessment
2.4. Perioperative Management
2.5. Endpoints
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosner, M.H.; Okusa, M.D. Acute Kidney Injury Associated with Cardiac Surgery. Clin. J. Am. Soc. Nephrol. 2006, 1, 19–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romagnoli, S.; Ricci, Z.; Ronco, C. Perioperative acute kidney injury: Prevention, early recognition, and supportive measures. Nephron 2018, 140, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Zarbock, A.; Küllmar, M.; Ostermann, M.; Lucchese, G.; Baig, K.; Cennamo, A.; Rajani, R.; McCorkell, S.; Arndt, C.; Wulf, H. Prevention of Cardiac Surgery–Associated Acute Kidney Injury by Implementing the KDIGO Guidelines in High-Risk Patients Identified by Biomarkers: The PrevAKI-Multicenter Randomized Controlled Trial. Anesth. Analg. 2021, 133, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Owens, G.E.; King, K.; Gurney, J.G.; Charpie, J.R. Low renal oximetry correlates with acute kidney injury after infant cardiac surgery. Pediatr. Cardiol. 2011, 32, 183–188. [Google Scholar] [CrossRef]
- Gaffney, A.M.; Sladen, R.N. Acute kidney injury in cardiac surgery. Curr. Opin. Anaesthesiol. 2015, 28, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Choi, D.-K.; Kim, W.-J.; Chin, J.-H.; Lee, E.-H.; Hahm, K.D.; Sim, J.Y.; Choi, I.C. Intraoperative renal regional oxygen desaturation can be a predictor for acute kidney injury after cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2014, 28, 564–571. [Google Scholar] [CrossRef]
- Ortega-Loubon, C.; Fernández-Molina, M.; Fierro, I.; Jorge-Monjas, P.; Carrascal, Y.; Gómez-Herreras, J.I.; Tamayo, E. Postoperative kidney oxygen saturation as a novel marker for acute kidney injury after adult cardiac surgery. J. Thorac. Cardiovasc. Surg. 2019, 157, 2340–2351.e3. [Google Scholar] [CrossRef]
- Naftalovich, R.; Chyu, D.; Denny, J.T.; Hasan, A.; Pantin, E.J. Does cerebral oximetry always measure brain tissue oxygen saturation? An anatomical study utilizing computed tomography. J. Anaesthesiol. Clin. Pharmacol. 2021, 37, 537. [Google Scholar] [CrossRef]
- Moerman, A.; Vandenplas, G.; Bové, T.; Wouters, P.F.; De Hert, S.G. Relation between mixed venous oxygen saturation and cerebral oxygen saturation measured by absolute and relative near-infrared spectroscopy during off-pump coronary artery bypass grafting. Br. J. Anaesth. 2013, 110, 258–265. [Google Scholar] [CrossRef] [Green Version]
- Heringlake, M.; Garbers, C.; Käbler, J.-H.; Anderson, I.; Heinze, H.; Schön, J.; Berger, K.-U.; Dibbelt, L.; Sievers, H.-H.; Hanke, T. Preoperative Cerebral Oxygen Saturation and Clinical Outcomes in Cardiac Surgery. Anesthesiology 2011, 114, 58–69. [Google Scholar] [CrossRef]
- Paquet, C.; Deschamps, A.; Denault, A.Y.; Couture, P.; Carrier, M.; Babin, D.; Levesque, S.; Piquette, D.; Lambert, J.; Tardif, J.-C. Baseline regional cerebral oxygen saturation correlates with left ventricular systolic and diastolic function. J. Cardiothorac. Vasc. Anesth. 2008, 22, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Balci, C.; Haftaci, E.; Kunt, A.T. Use of cerebral oxygen saturation and hemoglobin concentration to predict acute kidney injury after cardiac surgery. J. Int. Med. Res. 2018, 46, 1130–1137. [Google Scholar] [CrossRef] [PubMed]
- Bennett, S.R.; Abukhodair, A.W.; Alqarni, M.S.; Fernandez, J.A.; Fernandez, A.J.; Bennett, M.R. Outcomes in Cardiac Surgery Based on Preoperative, Mean Intraoperative and Stratified Cerebral Oximetry Values. Cureus 2021, 13, e17123. [Google Scholar] [CrossRef] [PubMed]
- Lassnigg, A.; Hiesmayr, M.; Keznickl, P.; Müllner, T.; Ehrlich, M.; Grubhofer, G. Cerebral oxygenation during cardiopulmonary bypass measured by near-infrared spectroscopy: Effects of hemodilution, temperature, and flow. J. Cardiothorac. Vasc. Anesth. 1999, 13, 544–548. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Ding, H.; Gong, Q.; Jia, Z.; Huang, L. Monitoring cerebral oxygen saturation during cardiopulmonary bypass using near-infrared spectroscopy: The relationships with body temperature and perfusion rate. J. Biomed. Opt. 2006, 11, 024016. [Google Scholar] [CrossRef] [PubMed]
- Tan, S. Cerebral oximetry in cardiac surgery. Hong Kong Med. J. 2008, 14, 220–225. [Google Scholar]
- Schwann, N.M.; Horrow, J.C.; Strong, M.D., III; Chamchad, D.; Guerraty, A.; Wechsler, A.S. Does off-pump coronary artery bypass reduce the incidence of clinically evident renal dysfunction after multivessel myocardial revascularization? Anesth. Analg. 2004, 99, 959–964. [Google Scholar] [CrossRef]
- Gamoso, M.G.; Phillips-Bute, B.; Landolfo, K.P.; Newman, M.F.; Stafford-Smith, M. Off-pump versus on-pump coronary artery bypass surgery and postoperative renal dysfunction. Anesth. Analg. 2000, 91, 1080–1084. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [Green Version]
- KDIGO AKI Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2012, 2, 1–138. [Google Scholar]
- Denault, A.; Deschamps, A.; Murkin, J.M. A proposed algorithm for the intraoperative use of cerebral near-infrared spectroscopy. Semin. Cardiothorac. Vasc. Anesth. 2007, 11, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Murkin, J.M. Cerebral oximetry: Monitoring the brain as the index organ. Anesthesiology 2011, 114, 12–13. [Google Scholar] [CrossRef] [PubMed]
- Murkin, J.M.; Adams, S.J.; Novick, R.J.; Quantz, M.; Bainbridge, D.; Iglesias, I.; Cleland, A.; Schaefer, B.; Irwin, B.; Fox, S. Monitoring brain oxygen saturation during coronary bypass surgery: A randomized, prospective study. Anesth. Analg. 2007, 104, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Vretzakis, G.; Georgopoulou, S.; Stamoulis, K.; Stamatiou, G.; Tsakiridis, K.; Zarogoulidis, P.; Katsikogianis, N.; Kougioumtzi, I.; Machairiotis, N.; Tsiouda, T. Cerebral oximetry in cardiac anesthesia. J. Thorac. Dis. 2014, 6 (Suppl. S1), S60–S69. [Google Scholar] [CrossRef] [PubMed]
- Green, D.W.; Kunst, G. Cerebral oximetry and its role in adult cardiac, non-cardiac surgery and resuscitation from cardiac arrest. Anaesthesia 2017, 72, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Raghunathan, K.; Kerr, D.; Xian, Y.; McCarthy, G.; Habib, R.; Nicoara, A.; Zhang, S.; Rankin, J.S.; Shaw, A.D. Cerebral Oximetry during Adult Cardiac Surgery is associated with Improved Postoperative Outcomes. J. Cardiothorac. Vasc. Anesth. 2022, 36, 3529–3542. [Google Scholar] [CrossRef]
Total (n =580) | Non-AKI (n = 437, 75.3%) | AKI (n = 143, 24.7%) | p-Value | |
---|---|---|---|---|
Patient characteristics | ||||
Age, years | 67 (61–73) | 67 (61–72) | 69 (63–75) | 0.004 |
Female, n | 132 (22.8%) | 93 (21.3%) | 39 (27.3%) | 0.138 |
Weight, kg | 66.0 (59.8–73.0) | 66.0 (60.0–72.8) | 64.0 (57.3–73.5) | 0.068 |
EuroSCORE II, % | 1.18 (0.80–2.00) | 1.10 (0.76–1.88) | 1.50 (1.00–2.19) | <0.001 |
Comorbid medical disease | ||||
Hypertension, n | 409 (70.5%) | 300 (68.7%) | 109 (76.2%) | 0.085 |
Diabetes mellitus, n | 291 (50.2%) | 213 (48.7%) | 78 (54.6%) | 0.228 |
Chronic kidney disease, n | 55 (9.5%) | 26 (6.0%) | 29 (20.3%) | <0.001 |
MI within 1 week, n | 69 (11.9%) | 42 (9.6%) | 27 (18.9%) | 0.003 |
MI within 1 month, n | 114 (19.7%) | 77 (17.6%) | 37 (25.9%) | 0.031 |
MI within 3 months, n | 120 (20.7%) | 83 (19.0%) | 37 (25.9%) | 0.078 |
Unstable angina, n | 189 (32.6%) | 143 (32.7%) | 46 (32.2%) | 0.902 |
Congestive HF, n | 97/575 (16.9%) | 70/433 (16.2%) | 27/142 (19.0%) | 0.432 |
LVEF < 40%, n | 79/574 (13.8%) | 51/431 (11.8%) | 28 (19.6%) | 0.020 |
Left main disease, n | 90 (15.5%) | 72 (16.5%) | 18 (12.6%) | 0.265 |
Cerebrovascular accident, n | 86 (14.8%) | 57 (13.0%) | 29 (20.3%) | 0.035 |
PAOD, n | 29 (5.0%) | 17 (3.9%) | 12 (8.4%) | 0.032 |
Liver cirrhosis, n | 5 (0.9%) | 3 (0.7%) | 2 (1.4%) | 0.601 |
Laboratory related | ||||
Creatinine, mg/dL | 0.88 (0.75–1.05) | 0.87 (0.75–1.03) | 0.92 (0.75–1.14) | 0.101 |
Anemia, n | 255 (44.0%) | 175 (40.1%) | 80 (55.9%) | <0.001 |
Alb, g/dL | 4.2 (3.8–4.4) | 4.2 (3.9–4.5) | 4.0 (3.7–4.2) | <0.001 |
CRP, mg/L | 1.5 (0.6–4.5) | 1.4 (0.5–4.2) | 1.6 (0.8–6.2) | 0.052 |
Medication | ||||
RAS, n | 320 (55.2%) | 241 (55.2%) | 79 (55.2%) | 0.984 |
Beta blocker, n | 318 (54.8%) | 237 (54.2%) | 81 (56.6%) | 0.615 |
Calcium channel blocker, n | 239 (41.3%) | 171 (39.2%) | 68 (47.6%) | 0.079 |
Statin, n | 490 (84.5%) | 374 (85.6%) | 116 (81.1%) | 0.201 |
Emergency surgery, n | 28 (4.8%) | 12 (2.8%) | 16 (11.2%) | <0.001 |
Intraoperative clinical data | ||||
Duration of surgery, min | 233 (210–252) | 233 (210–255) | 233 (215–248) | 0.885 |
Inotropic agent requirement, n | 76 (13.1%) | 49 (11.2%) | 27 (18.9%) | 0.018 |
Vasopressin requirement, n | 323 (55.7%) | 231 (52.9%) | 92 (64.3%) | 0.017 |
Transfusion (pRBC), n | 98 (16.9%) | 55 (12.6%) | 43 (30.1%) | <0.001 |
Cell saver volume, mL | 220 (210–246) | 220 (210–240) | 223 (212–250) | 0.178 |
Urine output, mL | 250 (150–380) | 250 (150–400) | 200 (90–360) | 0.001 |
Fluid intake, 100 mL | 19.0 (15.0–22.5) | 19.0 (15.0–22.5) | 19.0 (15.0–23.0) | 0.820 |
Cardiac index < 2.0 L/min/m2, n | 499 (86.0%) | 371 (84.9%) | 128 (89.5%) | 0.167 |
SvO2 < 65%, n | 145 (25.0%) | 100 (22.9%) | 45 (31.5%) | 0.040 |
Non-AKI (n = 437, 75.3%) | AKI (n = 143, 24.7%) | p-Value | AUC | |
---|---|---|---|---|
rScO2 data | ||||
Baseline rScO2, % | 61 ± 8 | 58 ± 9 | <0.001 | 0.593 |
Mean rScO2, % | 59 (54–64) | 55 (50–61) | <0.001 | 0.636 |
Lowest rScO2, % | 46 (40–52) | 42 (36–49) | <0.001 | 0.618 |
Maximal percent decrease of rScO2 from baseline, % | 24 (18–32) | 27 (19–36) | 0.029 | 0.561 |
AUT50, 10 min% | 0.7 (0–26.8) | 14.7 (0.1–71.4) | <0.001 | 0.620 |
AUT80%base, 10 min% | 1.3 (0–22.4) | 2.7 (0.1–31.1) | 0.116 | 0.543 |
rScO2 < 50%, n | 281 (64.3%) | 111 (77.6%) | 0.003 | 0.567 |
rScO2 < 80%base, n | 286 (65.5%) | 106 (74.1%) | 0.054 | 0.543 |
Variables * | Adjusted OR | 95% CI | p-Value |
---|---|---|---|
Age, per 1-year increase | 1.020 | 0.994–1.046 | 0.137 |
Chronic kidney disease, yes | 3.126 | 1.697–5.758 | <0.001 |
MI within 1 week, yes | 1.828 | 0.984–3.397 | 0.057 |
Anemia, yes | 0.828 | 0.513–1.338 | 0.442 |
Albumin, per 1 g/dL increase | 0.645 | 0.394–1.056 | 0.081 |
Emergency surgery, yes | 3.300 | 1.405–7.750 | 0.006 |
Transfusion (pRBC), yes | 1.641 | 0.948–2.841 | 0.077 |
Mean rScO2, per 1% increase | 0.964 | 0.937–0.990 | 0.008 |
Postoperative Outcome | High Mean rScO2 | Low Mean rScO2 * | p-Value |
---|---|---|---|
Acute kidney injury, n | 45 (16.1%) | 98 (32.6%) | <0.001 |
Stage of acute kidney injury ** | <0.001 | ||
Stage 1, n | 41(14.7%) | 85 (28.2%) | |
Stage 2, n | 2 (0.7%) | 5 (1.7%) | |
Stage 3, n | 2 (0.7%) | 8 (2.7%) | |
Cerebrovascular accident, n | 0 (0.0%) | 11 (3.7%) | 0.001 |
Delirium, n | 31 (11.1%) | 68 (22.6%) | <0.001 |
Re-operation, n | 4 (1.4%) | 6 (2.0%) | 0.754 |
Sternal infection, n | 2 (0.7%) | 6 (2.0%) | 0.289 |
Mechanical ventilation > 24 h, n | 10 (3.6%) | 9 (3.0%) | 0.688 |
Myocardial infarction, n | 6 (2.2%) | 12 (4.0%) | 0.203 |
30-day or in-hospital mortality, n | 1 (0.4%) | 7 (2.3%) | 0.070 |
Intensive care unit days, day | 3 (3–3) | 3 (3–4) | 0.007 |
Hospital days after surgery, day | 8 (7–10) | 9 (8–12) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, S.H.; Song, J.-W.; Shim, J.-K.; Soh, S.; Kwak, Y.-L. Low Intraoperative Cerebral Oxygen Saturation Is Associated with Acute Kidney Injury after Off-Pump Coronary Artery Bypass. J. Clin. Med. 2023, 12, 359. https://doi.org/10.3390/jcm12010359
Ko SH, Song J-W, Shim J-K, Soh S, Kwak Y-L. Low Intraoperative Cerebral Oxygen Saturation Is Associated with Acute Kidney Injury after Off-Pump Coronary Artery Bypass. Journal of Clinical Medicine. 2023; 12(1):359. https://doi.org/10.3390/jcm12010359
Chicago/Turabian StyleKo, Seo Hee, Jong-Wook Song, Jae-Kwang Shim, Sarah Soh, and Young-Lan Kwak. 2023. "Low Intraoperative Cerebral Oxygen Saturation Is Associated with Acute Kidney Injury after Off-Pump Coronary Artery Bypass" Journal of Clinical Medicine 12, no. 1: 359. https://doi.org/10.3390/jcm12010359
APA StyleKo, S. H., Song, J.-W., Shim, J.-K., Soh, S., & Kwak, Y.-L. (2023). Low Intraoperative Cerebral Oxygen Saturation Is Associated with Acute Kidney Injury after Off-Pump Coronary Artery Bypass. Journal of Clinical Medicine, 12(1), 359. https://doi.org/10.3390/jcm12010359