Ferric Carboxymaltose and Erythropoiesis-Stimulating Agent Treatment Reduces the Rate of Blood Transfusion in Refractory Anemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Parameters and Measurements
2.2. Economic Evaluation
- 1 day of admission to day hospital (including nursing support and board): EUR 200;
- Cost of 1 unit of concentrated red blood cells or platelets: approximately EUR 180;
- Erythropoiesis-stimulating agent 80,000 U/I: approximately EUR 776/ampoule;
- Erythropoiesis-stimulating agent 40,000 U/I: approximately EUR 388/ampoule;
- Erythropoiesis-stimulating agent 30,000 U/I: approximately EUR 290/ampoule;
- Intravenous ferric gluconate: approximately EUR 15/dose;
- Intravenous ferric carboxymaltose: approximately EUR 272/dose.
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fenaux, P.; Haase, D.; Santini, V.; Sanz, G.F.; Platzbecker, U.; Mey, U.; on behalf of the ESMO Guidelines Committee. Myelodysplastic syndromes: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 142–156. [Google Scholar] [CrossRef] [PubMed]
- Gidaro, A.; Deliliers, G.L.; Gallipoli, P.; Arquati, M.; Wu, M.A.; Castelli, R. Laboratory and clinical risk Assesment to treat myelodysplatic syndromes. Clin. Chem. Lab. Med. 2016, 54, 1411–1426. [Google Scholar] [CrossRef] [PubMed]
- Killick, S.B.; Ingram, W.; Culligan, D.; Enright, H.; Kell, J.; Payne, E.M.; Krishnamurthy, P.; Kulasekararaj, A.; Raghavan, M.; Stanworth, S.J.; et al. British Society for Haematology guidelines for the management of adult myelodysplastic syndromes. Br. J. Haematol. 2021, 194, 267–281. [Google Scholar] [CrossRef] [PubMed]
- Castelli, R.; Schiavon, R.; Rossi, V.; Deliliers, G.L. Management of anemia in low-risk myelodysplastic syndromes treated with erythropoiesis-stimulating agents newer and older agents. Med. Oncol. 2018, 35, 76. [Google Scholar] [CrossRef]
- Castelli, R.; Schiavon, R.; Deliliers, G.L. The impact of anaemia, transfusion dependency, comorbidities and polypharmacy in elderly patients with low-risk myelodysplastic syndromes. Med. Oncol. 2018, 35, 33. [Google Scholar] [CrossRef] [PubMed]
- Kaka, S.; Jahangirnia, A.; Beauregard, N.; Davis, A.; Tinmouth, A.; Chin-Yee, N. Red blood cell transfusion in myelodysplastic syndromes: A systematic review. Transfus. Med. 2022, 32, 3–23. [Google Scholar] [CrossRef] [PubMed]
- Castelli, R.; Deliliers, G.L.; Colombo, R.; Moreo, G.; Gallipoli, P.; Pantaleo, G. Biosimilar epoetin in elderly patients with low-risk myelodysplastic syndromes improves anemia, quality of life, and brain function. Ann. Hematol. 2014, 93, 1523–1529. [Google Scholar] [CrossRef] [PubMed]
- Bohlius, J.; Bohlke, K.; Castelli, R.; Djulbegovic, B.; Lustberg, M.B.; Martino, M.; Mountzios, G.; Peswani, N.; Porter, L.; Tanaka, T.N.; et al. Management of cancer-associated anemia with erythropoiesis-stimulating agents: ASCO/ASH clinical practice guideline update. Blood Adv. 2019, 3, 1197–1210. [Google Scholar] [CrossRef]
- Bohlius, J.; Bohlke, K.; Castelli, R.; Djulbegovic, B.; Lustberg, M.B.; Martino, M.; Mountzios, G.; Peswani, N.; Porter, L.; Tanaka, T.N.; et al. Management of Cancer-Associated Anemia with Erythropoiesis-Stimulating Agents: ASCO/ASH Clinical Practice Guideline Update. J. Clin. Oncol. 2019, 37, 1336–1351. [Google Scholar] [CrossRef] [PubMed]
- Fenaux, P.; Santini, V.; Spiriti, M.A.A.; Giagounidis, A.; Schlag, R.; Radinoff, A.; Gercheva-Kyuchukova, L.; Anagnostopoulos, A.; Oliva, E.N.; Symeonidis, A.; et al. A phase 3 randomized, placebo-controlled study assessing the efficacy and safety of epoetin-α in anemic patients with low-risk MDS. Leukemia 2018, 32, 2648–2658. [Google Scholar] [CrossRef]
- Patnaik, M.M.; Santini, V. Targeting ineffective hematopoiesis in myelodysplastic syndromes. Am. J. Hematol. 2022, 97, 171–173. [Google Scholar] [CrossRef] [PubMed]
- Gabrilove, J.; Paquette, R.; Lyons, R.M.; Mushtaq, C.; Sekeres, M.A.; Tomita, D.; Dreiling, L. Phase 2, single-arm trial to evaluate the effectiveness of darbepoetin alfa for correcting anaemia in patients with myelodysplastic syndromes. Br. J. Haematol. 2008, 142, 379–393. [Google Scholar] [CrossRef] [PubMed]
- Grova, M.; Crispino, F.; Maida, M.; Renna, S.; Mannino, M.; Casà, A.; Rizzuto, G.; Macaluso, F.S.; Orlando, A. Effectiveness and safety of an on-demand ferric carboxymaltose infusion strategy in patients with inflammatory bowel disease: A real world experience. Eur. J. Gastroenterol. Hepatol. 2022, 34, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Harding, R.; Ataide, R.; Mwangi, M.N.; Simpson, J.A.; Mzembe, G.; Moya, E.; Truwah, Z.; Nkhwazi, B.C.; Mwabinga, M.; Nkhono, W.; et al. A Randomized controlled trial of the Effect of intraVenous iron on Anaemia in Malawian Pregnant women (REVAMP): Statistical analysis plan. Gates Open Res. 2021, 5, 174. [Google Scholar] [CrossRef]
- Kadioglu, N.; Kaplan, Z.A.O.; Sariaslan, S.; Celik, H.K.; Kisa, B.; Yenicesu, O.; Sarikaya, E.C.; Evliyaoglu, O.; Erkaya, S. A retrospective analysis of the women hospitalized and treated due to anemia caused by gynecological pathologies; the role of intravenous iron (ferric carboxymaltose) and blood transfusion in clinical practice. Minerva Obs. Gynecol. 2022. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.; Khan, M.S.; Friede, T.; Jankowska, E.A.; Fabien, V.; Goehring, U.M.; Dorigotti, F.; Metra, M.; Piña, I.L.; Coats, A.J.S.; et al. Health status improvement with ferric carboxymaltose in heart failure with reduced ejection fraction and iron deficiency. Eur. J. Heart. Fail. 2022. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Bazeley, J.W.; Wish, J.B. Recent and Emerging Therapies for Iron Deficiency in Anemia of CKD: A Review. Am. J. Kidney Dis. 2021. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Oliva, E.N.; Huey, K.; Deshpande, S.; Turner, M.; Chitnis, M.; Schiller, E.; Tang, D.; Yucel, A.; Hughes, C.; Shah, F. A Systematic Literature Review of the Relationship between Serum Ferritin and Outcomes in Myelodysplastic Syndromes. J. Clin. Med. 2022, 11, 895. [Google Scholar] [CrossRef] [PubMed]
- Santini, V.; Alessandrino, P.E.; Angelucci, E.; Barosi, G.; Billio, A.; Di Maio, M.; Finelli, C.; Locatelli, F.; Marchetti, M.; Morra, E.; et al. Italian Society of Hematology. Clinical management of myelodysplastic syndromes: Update of SIE, SIES, GITMO practice guidelines. Leuk. Res. 2010, 34, 1576–1588. [Google Scholar] [CrossRef]
- Giordano, G.; Cutuli, M.A.; Lucchesi, A.; Magnifico, I.; Venditti, N.; Vergalito, F.; Gasperi, M.; Di Marco, R. Iron Support in Erythropoietin Treatment in Myelodysplastic Syndrome Patients Affected by Low-Risk Refractory Anaemia: Real-Life Evidence from an Italian Setting. Acta Haematol. 2020, 143, 155–162. [Google Scholar] [CrossRef]
- Shepshelovich, D.; Rozen-Zvi, B.; Avni, T.; Gafter, U.; Gafter-Gvili, A. Intravenous versus Oral Iron Supplementation for the Treatment of Anemia in CKD: An Updated Systematic Review and Meta-analysis. Am. J. Kidney Dis. 2016, 68, 677–690. [Google Scholar] [CrossRef] [PubMed]
- Friedrisch, J.R.; Cançado, R.D. Intravenous ferric carboxymaltose for the treatment of iron deficiency anemia. Rev. Bras. Hematol. Hemoter. 2015, 37, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, F.; Borgonovo, K.; Cabiddu, M.; Lonati, V.; Barni, S. Addition of iron to erythropoiesis-stimulating agents in cancer patients: A meta-analysis of randomized trials. J. Cancer Res. Clin. Oncol. 2012, 138, 179–187. [Google Scholar] [CrossRef]
- Gafter-Gvili, A.; Rozen-Zvi, B.; Vidal, L.; Leibovici, L.; Vansteenkiste, J.; Gafter, U.; Shpilberg, O. Intravenous iron supplementation for the treatment of chemotherapy-induced anaemia—Systematic review and meta-analysis of randomised controlled trials. Acta Oncol. 2013, 52, 18–29. [Google Scholar] [CrossRef]
- Mhaskar, R.; Wao, H.; Miladinovic, B.; Kumar, A.; Djulbegovic, B. The role of iron in the management of chemotherapy-induced anemia in cancer patients receiving erythropoiesis-stimulating agents. Cochrane Database Syst. Rev. 2016, 2, CD009624. [Google Scholar] [CrossRef]
- Zoller, H.; Schaefer, B.; Glodny, B. Iron-induced hypophosphatemia: An emerging complication. Curr. Opin. Nephrol. Hypertens. 2017, 26, 266–275. [Google Scholar] [CrossRef] [PubMed]
Patients Overall (n = 113) | (A) Patients with Ferric Gluconate and ESAs (n = 43) | (B) Patients with Ferric Carboximaltose and ESAs (n = 38) | (C) Patients with ESAs Alone (n = 32) | A vs. B | A vs. C | B vs. C | |
---|---|---|---|---|---|---|---|
Gender | |||||||
Female | 52 (42.3%) | 18 (41.9%) | 23 (60.5%) | 11 (34.4%) | 0.12 | 0.63 | 0.03 |
Male | 71 (57.7%) | 25 (58.1%) | 15 (39.5%) | 21 (65.6%) | |||
Age (years) | 70 (66–74) | 70 (68–74) | 71.5 (66–76) | 68 (66–72) | 0.88 | 0.13 | 0.19 |
Basal hemoglobin (g/dL) | 8.4 (8.2–8.5) | 8.3 (8.2–8.5) | 8.4 (8.2–8.7) | 8.3 (8–8.5) | 0.16 | 0.51 | 0.006 |
Basal hemoglobin (g/dL) > 9 | 10 | 3 | 6 | 1 | 0.29 | 1 | 0.12 |
Hemoglobin (g/dL) after 4 weeks (one month) | 9.1 (8.6–9.5) | 9.4 (9.1–9.6) | 9.2 (8.6–9.5) | 8.5 (8–8.7) | 0.22 | <0.001 | <0.001 |
Hemoglobin (g/dL) > 9 after 4 weeks (one month) | 58 | 33 | 23 | 2 | 0.15 | <0.001 | <0.001 |
Hemoglobin (g/dL) after 28 weeks (six months) | 11.4 (10.5–12) | 12 (12–12.2) | 10.2 (9.2–11.1) | 8.7 (8.1–10) | <0.001 | <0.001 | <0.001 |
Hemoglobin (g/dL) > 10 after 28 weeks (six months) | 81 | 41 | 31 | 9 | 0.8 | <0.001 | <0.001 |
Number of transfusions | 37 | 8 | 4 | 25 | 0.36 | <0.001 | <0.001 |
Number of transfusions during the first 4 weeks | 27 | 8 | 4 | 15 | 0.36 | 0.012 | 0.001 |
Basal ferritin (ng/mL) | 12 (6–30) | 6 (4–12) | 30 (10–40) | 14 (10–30) | 0.096 | 1 | 0.379 |
Basal ferritin (ng/mL) > 40 | 29 | 7 | 11 | 11 | 0.19 | 0.1 | 0.79 |
Ferritin (ng/mL) after 4 weeks (one month) | 23 (14–48) | 20 (14–40) | 48 (20–69) | 20 (12–28) | 0.11 | 0.186 | 0.001 |
Ferritin (ng/mL) > 40 after 4 weeks (one month) | 58 | 15 | 25 | 9 | 0.008 | 0.62 | 0.002 |
Ferritin (ng/mL) after 28 weeks (six months) | 60 (40–120) | 60 (40–140) | 80 (57–131) | 42 (26–60) | 1 | 0.007 | 0.019 |
Ferritin (ng/mL) > 40 after 28 weeks (six months) | 91 | 37 | 32 | 18 | 1 | 0.007 | 0.016 |
Patients Overall (n = 113) | (A) Patients with Ferric Gluconate and ESAs (n = 43) | (B) Patients with Ferric Carboximaltose and ESAs (n = 38) | (C) Patients with ESAs Alone (n = 32) | A vs. B | A vs. C | B vs. C | |
---|---|---|---|---|---|---|---|
Day hospital | 299.000 | 240.800 | 53.200 | 5.000 | |||
Transfusion | 6.660 | 1.440 | 720 | 4.500 | |||
Iron | 90.412 | 18.060 | 72.352 | 0 | |||
EPO | 1.555.168 | 481.104 | 451.760 | 622.304 | |||
Total cost | 1.951.240 | 741.404 | 578.032 | 631.804 | |||
Expenditure for patient | 14.532 (11.816–20.556) | 14.532 (14.532–14.532) | 11.816 (11.816–23.480) | 20,556 (20,556–20,556) | p = 0.001 | p = 0.001 | p = 0.001 |
Four weeks (one month) expenditure for patient | 2076 (1688–2937) | 2076 (2076–2076) | 1688 (1688–3354) | 2.937 (2937–2937) | p = 0.001 | p = 0.001 | p = 0.001 |
One-week expenditure for patient | 519 (422–734) | 519 (519–519) | 422 (422–829) | 734 (734–734) | p = 0.001 | p = 0.001 | p = 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gidaro, A.; Delitala, A.P.; Berzuini, A.; Soloski, M.J.; Manca, P.; Castro, D.; Salvi, E.; Manetti, R.; Lambertenghi Deliliers, G.; Castelli, R. Ferric Carboxymaltose and Erythropoiesis-Stimulating Agent Treatment Reduces the Rate of Blood Transfusion in Refractory Anemia. J. Clin. Med. 2022, 11, 4744. https://doi.org/10.3390/jcm11164744
Gidaro A, Delitala AP, Berzuini A, Soloski MJ, Manca P, Castro D, Salvi E, Manetti R, Lambertenghi Deliliers G, Castelli R. Ferric Carboxymaltose and Erythropoiesis-Stimulating Agent Treatment Reduces the Rate of Blood Transfusion in Refractory Anemia. Journal of Clinical Medicine. 2022; 11(16):4744. https://doi.org/10.3390/jcm11164744
Chicago/Turabian StyleGidaro, Antonio, Alessandro Palmerio Delitala, Alessandra Berzuini, Mark J. Soloski, Pietro Manca, Dante Castro, Emanuele Salvi, Roberto Manetti, Giorgio Lambertenghi Deliliers, and Roberto Castelli. 2022. "Ferric Carboxymaltose and Erythropoiesis-Stimulating Agent Treatment Reduces the Rate of Blood Transfusion in Refractory Anemia" Journal of Clinical Medicine 11, no. 16: 4744. https://doi.org/10.3390/jcm11164744
APA StyleGidaro, A., Delitala, A. P., Berzuini, A., Soloski, M. J., Manca, P., Castro, D., Salvi, E., Manetti, R., Lambertenghi Deliliers, G., & Castelli, R. (2022). Ferric Carboxymaltose and Erythropoiesis-Stimulating Agent Treatment Reduces the Rate of Blood Transfusion in Refractory Anemia. Journal of Clinical Medicine, 11(16), 4744. https://doi.org/10.3390/jcm11164744