Association between MANBA Gene Variants and Chronic Kidney Disease in a Korean Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Basic Characteristics
2.3. Definition of Chronic Kidney Disease
2.4. Genotyping
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Association Analysis of the MANBA Gene Variants with CKD and Kidney Function-Related Traits
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Levey, A.S.; Atkins, R.; Coresh, J.; Cohen, E.P.; Collins, A.J.; Eckardt, K.U.; Nahas, M.E.; Jaber, B.L.; Jadoul, M.; Levin, A.; et al. Chronic kidney disease as a global public health problem: Approaches and initiatives—A position statement from Kidney Disease Improving Global Outcomes. Kidney Int. 2007, 72, 247–259. [Google Scholar] [CrossRef] [Green Version]
- Tonelli, M.; Wiebe, N.; Culleton, B.; House, A.; Rabbat, C.; Fok, M.; McAlister, F.; Garg, A.X. Chronic kidney disease and mortality risk: A systematic review. J. Am. Soc. Nephrol. 2006, 17, 2034–2047. [Google Scholar] [CrossRef] [Green Version]
- Carney, E.F. The impact of chronic kidney disease on global health. Nat. Rev. Nephrol. 2020, 16, 251. [Google Scholar] [CrossRef] [Green Version]
- Parmar, M.S. Chronic renal disease. BMJ 2002, 325, 85–90. [Google Scholar] [CrossRef]
- MacCluer, J.W.; Scavini, M.; Shah, V.O.; Cole, S.A.; Laston, S.L.; Voruganti, V.S.; Paine, S.S.; Eaton, A.J.; Comuzzie, A.G.; Tentori, F.; et al. Heritability of measures of kidney disease among zuni Indians: The Zuni Kidney Project. Am. J. Kidney Dis. 2010, 56, 289–302. [Google Scholar] [CrossRef] [Green Version]
- Langefeld, C.D.; Beck, S.R.; Bowden, D.W.; Rich, S.S.; Wagenknecht, L.E.; Freedman, B.I. Heritability of GFR and albuminuria in Caucasians with type 2 diabetes mellitus. Am. J. Kidney Dis. 2004, 43, 796–800. [Google Scholar] [CrossRef]
- Smyth, L.J.; Duffy, S.; Maxwell, A.P.; McKnight, A.J. Genetic and epigenetic factors influencing chronic kidney disease. Am. J. Physiol.-Ren. 2014, 307, F757–F776. [Google Scholar] [CrossRef] [Green Version]
- Wuttke, M.; Li, Y.; Li, M.; Sieber, K.B.; Feitosa, M.F.; Gorski, M.; Tin, A.; Wang, L.; Chu, A.Y.; Hoppmann, A.; et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat. Genet. 2019, 51, 957–972. [Google Scholar] [CrossRef] [Green Version]
- Okada, Y.; Sim, X.; Go, M.J.; Wu, J.Y.; Gu, D.; Takeuchi, F.; Takahashi, A.; Maeda, S.; Tsunoda, T.; Chen, P.; et al. Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations. Nat. Genet. 2012, 44, 904–909. [Google Scholar] [CrossRef] [Green Version]
- Morris, A.P.; Le, T.H.; Wu, H.; Akbarov, A.; van der Most, P.J.; Hemani, G.; Smith, G.D.; Mahajan, A.; Gaulton, K.J.; Nadkarni, G.N.; et al. Trans-ethnic kidney function association study reveals putative causal genes and effects on kidney-specific disease aetiologies. Nat. Commun. 2019, 10, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, C.; Huang, S.; Park, J.; Park, Y.; Ko, Y.A.; Seasock, M.J.; Bryer, J.S.; Xu, X.X.; Song, W.C.; Palmer, M.; et al. Renal compartment-specific genetic variation analyses identify new pathways in chronic kidney disease. Nat. Med. 2018, 24, 1721–1731. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.A.; Yi, H.G.; Qiu, C.X.; Huang, S.Z.; Park, J.; Ledo, N.; Kottgen, A.; Li, H.Z.; Rader, D.J.; Pack, M.A.; et al. Genetic-Variation-Driven Gene-Expression Changes Highlight Genes with Important Functions for Kidney Disease. Am. J. Hum. Genet. 2017, 100, 940–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard, M.F.; Murakami, Y.; Pagnamenta, A.T.; Daumer-Haas, C.; Fischer, B.; Hecht, J.; Keays, D.A.; Knight, S.J.; Kolsch, U.; Kruger, U.; et al. Mutations in PGAP3 impair GPI-anchor maturation, causing a subtype of hyperphosphatasia with mental retardation. Am. J. Hum. Genet. 2014, 94, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Araki, T.; Hayashi, M.; Nakanishi, K.; Morishima, N.; Saruta, T. Caspase-9 takes part in programmed cell death in developing mouse kidney. Nephron Exp. Nephrol. 2003, 93, e117–e124. [Google Scholar] [CrossRef]
- Gu, X.; Yang, H.; Sheng, X.; Ko, Y.A.; Qiu, C.; Park, J.; Huang, S.; Kember, R.; Judy, R.L.; Park, J.; et al. Kidney disease genetic risk variants alter lysosomal beta-mannosidase (MANBA) expression and disease severity. Sci. Transl. Med. 2021, 13, eaaz1458. [Google Scholar] [CrossRef]
- Bedilu, R.; Nummy, K.A.; Cooper, A.; Wevers, R.; Smeitink, J.; Kleijer, W.J.; Friderici, K.H. Variable clinical presentation of lysosomal beta-mannosidosis in patients with null mutations. Mol. Genet. Metab. 2002, 77, 282–290. [Google Scholar] [CrossRef]
- Sabourdy, F.; Labauge, P.; Stensland, H.M.; Nieto, M.; Garces, V.L.; Renard, D.; Castelnovo, G.; de Champfleur, N.; Levade, T. A MANBA mutation resulting in residual beta-mannosidase activity associated with severe leukoencephalopathy: A possible pseudodeficiency variant. BMC Med. Genet. 2009, 10, 84. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Han, B.G.; KoGES Group. Cohort Profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. Int. J. Epidemiol. 2017, 46, 1350. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.; Kim, Y.J.; Han, S.; Hwang, M.Y.; Shin, D.M.; Park, M.Y.; Lu, Y.; Yoon, K.; Jang, H.M.; Kim, Y.K.; et al. The Korea Biobank Array: Design and identification of coding variants associated with blood biochemical traits. Sci. Rep. 2019, 9, 1382. [Google Scholar] [CrossRef] [Green Version]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Romagnani, P.; Remuzzi, G.; Glassock, R.; Levin, A.; Jager, K.J.; Tonelli, M.; Massy, Z.; Wanner, C.; Anders, H.J. Chronic kidney disease. Nat. Rev. Dis. Primers 2017, 3, 17088. [Google Scholar] [CrossRef]
- Thomas, R.; Kanso, A.; Sedor, J.R. Chronic kidney disease and its complications. Prim. Care 2008, 35, 329–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Go, A.S.; Chertow, G.M.; Fan, D.; McCulloch, C.E.; Hsu, C.Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 2004, 351, 1296–1305. [Google Scholar] [CrossRef] [PubMed]
- National Kidney, F. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am. J. Kidney Dis. 2003, 42, S1–S201. [Google Scholar] [CrossRef]
- Bikbov, B.; Purcell, C.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [Green Version]
- Fraser, S.D.; Blakeman, T. Chronic kidney disease: Identification and management in primary care. Pragmat. Obs. Res. 2016, 7, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Pattaro, C.; Teumer, A.; Gorski, M.; Chu, A.Y.; Li, M.; Mijatovic, V.; Garnaas, M.; Tin, A.; Sorice, R.; Li, Y.; et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat. Commun. 2016, 7, 10023. [Google Scholar] [CrossRef]
- Pattaro, C.; Kottgen, A.; Teumer, A.; Garnaas, M.; Boger, C.A.; Fuchsberger, C.; Olden, M.; Chen, M.H.; Tin, A.; Taliun, D.; et al. Genome-wide association and functional follow-up reveals new loci for kidney function. PLoS Genet. 2012, 8, e1002584. [Google Scholar] [CrossRef] [Green Version]
- Kottgen, A.; Glazer, N.L.; Dehghan, A.; Hwang, S.J.; Katz, R.; Li, M.; Yang, Q.; Gudnason, V.; Launer, L.J.; Harris, T.B.; et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat. Genet. 2009, 41, 712–717. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Quantitative Trait Analysis | Case-Control Analysis for CKD | ||
---|---|---|---|---|
Controls | Cases | p-Value * | ||
Number of participants | 58,700 | 30,813 | 1130 | |
Gender [men (%)] | 20,293 (34.57) | 9170 (29.76) | 528 (46.73) | <0.001 |
Age (M years ± SD) | 53.8 ± 8.02 | 52.27 ± 7.53 | 60.92 ± 6.91 | <0.001 |
Height (M cm ± SD) | 160.72 ± 7.93 | 160.10 ± 7.76 | 161.10 ± 8.02 | <0.001 |
Weight (M kg ± SD) | 61.89 ± 9.89 | 60.95 ± 9.65 | 64.46 ± 10.09 | <0.001 |
BMI (M kg/m2 ± SD) | 23.67 ± 2.52 | 23.57 ± 2.66 | 24.76 ± 2.87 | 0.557 |
eGFR (mL/min/1.73 m2) | 91.22 ± 16.54 | 103.35 ± 11.82 | 53.80 ± 9.69 | <0.001 |
BUN (mg/dL) | 14.44 ± 3.76 | 13.73 ± 3.54 | 18.87 ± 4.67 | <0.001 |
Uric acid (mg/dL) | 4.68 ± 1.25 | 4.38 ± 1.13 | 5.96 ± 1.59 | <0.001 |
Creatinine (mg/dL) | 0.80 ± 0.17 | 0.71 ± 0.11 | 1.22 ± 0.20 | <0.001 |
No. | SNP | Minor Allele | MAF | Function | CKD | eGFR | Creatinine | Uric Acid | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OR (95%CI) | p-Value | β ± S.E | p-Value | β ± S.E | p-Value | β ± S.E | p-Value | |||||
1 | rs4496586 | C | 0.488 | Intron | 0.87 (0.80–0.95) | 2.61 × 10−3 | 0.565 ± 0.093 | 1.43 × 10−9 | −0.0042 ± 0.00073 | 1.04 × 10−8 | −0.019 ± 0.006 | 1.83 × 10−3 |
2 | rs223497 | C | 0.450 | Intron | 0.88 (0.81–0.97) | 6.10 × 10−3 | 0.406 ± 0.094 | 1.55 × 10−5 | −0.0034 ± 0.00073 | 3.91 × 10−6 | −0.013 ± 0.006 | 0.037 |
3 | rs223489 * | G | 0.357 | Intron | 0.88 (0.80–0.97) | 7.08 × 10−3 | 0.599 ± 0.098 | 9.42 × 10−10 | −0.0047 ± 0.00076 | 6.72 × 10−10 | −0.017 ± 0.006 | 8.61 × 10−3 |
4 | rs34768739 | GA | 0.455 | Intron | 0.89 (0.81–0.97) | 7.65 × 10−3 | 0.586 ± 0.094 | 3.86 × 10−10 | −0.0042 ± 0.00073 | 9.15 × 10−9 | −0.018 ± 0.006 | 3.18 × 10−3 |
5 | rs34642884 | GC | 0.471 | Intron | 0.89 (0.82–0.97) | 9.30 × 10−3 | 0.535 ± 0.093 | 1.05 × 10−8 | −0.0039 ± 0.00073 | 6.87 × 10−8 | −0.019 ± 0.006 | 2.07 × 10−3 |
6 | rs1054037 | T | 0.472 | Intron | 0.89 (0.82–0.98) | 0.012 | 0.530 ± 0.093 | 1.41 × 10−8 | −0.0039 ± 0.00073 | 8.63 × 10−8 | −0.019 ± 0.006 | 2.36 × 10−3 |
7 | rs6847587 * | G | 0.455 | Intron | 0.90 (0.82–0.98) | 0.014 | 0.569 ± 0.094 | 1.22 × 10−9 | −0.0041 ± 0.00073 | 2.46 × 10−8 | −0.018 ± 0.006 | 3.13 × 10−3 |
8 | rs227361 * | C | 0.451 | Intron | 0.90 (0.82–0.98) | 0.015 | 0.571 ± 0.094 | 1.13 × 10−9 | −0.0041 ± 0.00073 | 2.62 × 10−8 | −0.019 ± 0.006 | 2.15 × 10−3 |
9 | rs228611 * | G | 0.468 | Intron | 0.90 (0.82–0.98) | 0.016 | 0.483 ± 0.094 | 2.51 × 10−7 | −0.0035 ± 0.00073 | 1.85 × 10−6 | −0.016 ± 0.006 | 9.43 × 10−3 |
10 | rs147730991 | T | 0.014 | Intron | 1.44 (1.05–1.98) | 0.022 | −0.396 ± 0.394 | 0.315 | 0.0042 ± 0.00307 | 0.175 | −0.020 ± 0.026 | 0.429 |
11 | rs36126232 | CT | 0.402 | Intron | 0.90 (0.82–0.99) | 0.023 | 0.401 ± 0.096 | 2.76 × 10−5 | −0.0036 ± 0.00075 | 1.92 × 10−6 | −0.016 ± 0.006 | 0.012 |
12 | rs223498 | C | 0.453 | Intron | 0.91 (0.83–0.99) | 0.034 | 0.389 ± 0.094 | 3.49 × 10−5 | −0.0030 ± 0.00073 | 3.14 × 10−5 | −0.010 ± 0.006 | 0.111 |
13 | rs223487 | C | 0.254 | Intron | 0.90 (0.81–0.99) | 0.035 | 0.616 ± 0.107 | 9.73 × 10−9 | −0.0045 ± 0.00084 | 7.10 × 10−8 | −0.017 ± 0.007 | 0.016 |
14 | rs11097790 | C | 0.384 | Intron | 0.91 (0.83–0.99) | 0.038 | 0.432 ± 0.097 | 7.66 × 10−6 | −0.0029 ± 0.00075 | 9.06 × 10−5 | −0.012 ± 0.006 | 0.055 |
15 | rs12650217 | C | 0.4637 | Intron | 0.92 (0.84–1.00) | 0.054 | 0.355 ± 0.094 | 1.50 × 10−4 | −0.0028 ± 0.00073 | 1.46 × 10−4 | −0.0099 ± 0.0061 | 0.106 |
16 | rs78905355 | C | 0.01218 | Intron | 0.69 (0.46–1.05) | 0.084 | 1.586 ± 0.423 | 1.80 × 10−4 | −0.0123 ± 0.00330 | 1.92 × 10−4 | −0.0220 ± 0.0277 | 0.427 |
17 | rs11454438 | CA | 0.4807 | Intron | 1.08 (0.99–1.17) | 0.102 | −0.400 ± 0.094 | 1.92 × 10−5 | 0.0029 ± 0.00073 | 6.02 × 10−5 | 0.0123 ± 0.0061 | 0.044 |
18 | rs223503 | G | 0.2466 | Intron | 0.93 (0.84–1.03) | 0.185 | 0.477 ± 0.108 | 1.08 × 10−5 | −0.0032 ± 0.00084 | 1.36 × 10−4 | −0.0099 ± 0.0071 | 0.164 |
19 | rs170563 * | C | 0.2613 | Intron | 0.94 (0.85–1.04) | 0.213 | 0.480 ± 0.107 | 6.92 × 10−6 | −0.0033 ± 0.00083 | 7.33 × 10−5 | −0.0110 ± 0.0070 | 0.116 |
20 | rs227374 | A | 0.2572 | Intron | 0.95 (0.86–1.05) | 0.321 | 0.459 ± 0.107 | 1.86 × 10−5 | −0.0032 ± 0.00083 | 1.52 × 10−4 | −0.0108 ± 0.0070 | 0.123 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-R.; Jin, H.-S.; Eom, Y.-B. Association between MANBA Gene Variants and Chronic Kidney Disease in a Korean Population. J. Clin. Med. 2021, 10, 2255. https://doi.org/10.3390/jcm10112255
Kim H-R, Jin H-S, Eom Y-B. Association between MANBA Gene Variants and Chronic Kidney Disease in a Korean Population. Journal of Clinical Medicine. 2021; 10(11):2255. https://doi.org/10.3390/jcm10112255
Chicago/Turabian StyleKim, Hye-Rim, Hyun-Seok Jin, and Yong-Bin Eom. 2021. "Association between MANBA Gene Variants and Chronic Kidney Disease in a Korean Population" Journal of Clinical Medicine 10, no. 11: 2255. https://doi.org/10.3390/jcm10112255
APA StyleKim, H.-R., Jin, H.-S., & Eom, Y.-B. (2021). Association between MANBA Gene Variants and Chronic Kidney Disease in a Korean Population. Journal of Clinical Medicine, 10(11), 2255. https://doi.org/10.3390/jcm10112255