Performance of Acacia Gum as a Novel Additive in Thin Film Composite Polyamide RO Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. TFC Membrane Fabrication
2.3. Membrane Characterization and Testing
2.3.1. Surface Morphology and Porous Structure
2.3.2. Membrane Surface Charge and Hydrophilicity
2.3.3. Fourier Transform Infrared (FTIR)
2.3.4. Membrane Filtration Tests
2.3.5. Surface Morphology and Roughness
2.3.6. Membrane Chlorine Stability Tests
2.4. Seawater Sampling
3. Results
3.1. Membrane Morphology and Hydrophilicity
3.2. DSC Thermograms
3.3. Membrane Surface Charge
3.4. Surface Roughness
3.5. Filtration Tests
3.6. Fouling Tests
3.7. Stability of PA/AG Membranes
3.7.1. FTIR of the Permeate Samples
3.7.2. Chlorine Resistance
3.8. Membrane Performance with Seawater
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morgan, P.W.; Kwolek, S.L. Interfacial polycondensation. II. Fundamentals of polymer formation at liquid interfaces. J. Polym. Sci. Part A Polym. Chem. 1996, 34, 531–559. [Google Scholar] [CrossRef]
- Baroña, G.N.B.; Lim, J.; Choi, M.; Jung, B. Interfacial polymerization of polyamide-aluminosilicate SWNT nanocomposite membranes for reverse osmosis. Desalination 2013, 325, 138–147. [Google Scholar] [CrossRef]
- Cadotte, J.E.; Petersen, R.J.; Larson, R.E.; Erickson, E.E. A new thin-film composite seawater reverse osmosis membrane. Desalination 1980, 32, 25–31. [Google Scholar] [CrossRef]
- Tarboush, B.J.A.; Rana, D.; Matsuura, T.; Arafat, H.; Narbaitz, R. Preparation of thin-film-composite polyamide membranes for desalination using novel hydrophilic surface modifying macromolecules. J. Membr. Sci. 2008, 325, 166–175. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, G.-R. Graphene oxide (GO) as functional material in tailoring polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes. Desalination 2016, 394, 162–175. [Google Scholar] [CrossRef]
- Farahbakhsh, J.; Delnavaz, M.; Vatanpour, V. Investigation of raw and oxidized multiwalled carbon nanotubes in fabrication of reverse osmosis polyamide membranes for improvement in desalination and antifouling properties. Desalination 2017, 410, 1–9. [Google Scholar] [CrossRef]
- Chan, W.-F.; Marand, E.; Martin, S.M. Novel zwitterion functionalized carbon nanotube nanocomposite membranes for improved RO performance and surface anti-biofouling resistance. J. Membr. Sci. 2016, 509, 125–137. [Google Scholar] [CrossRef]
- Bowen, W.R.; Hilal, N.; Lovitt, R.W.; Sharif, A.O.; Williams, P.M. Atomic force microscope studies of membranes: Force measurement and imaging in electrolyte solutions. J. Membr. Sci. 1997, 126, 77–89. [Google Scholar] [CrossRef]
- Bowen, W.R.; Hilal, N.; Lovitt, R.W.; Williams, P.M. Atomic force microscope studies of membranes: Surface pore structures of Diaflo ultrafiltration membranes. J. Colloid Interface Sci. 1996, 180, 350–359. [Google Scholar] [CrossRef]
- Guillen-Burrieza, E.; Thomas, R.; Mansoor, B.; Johnson, D.; Hilal, N.; Arafat, H. Effect of dry-out on the fouling of PVDF and PTFE membranes under conditions simulating intermittent seawater membrane distillation (SWMD). J. Membr. Sci. 2013, 438, 126–139. [Google Scholar] [CrossRef]
- Seman, M.A.; Khayet, M.; Ali, Z.B.; Hilal, N. Reduction of nanofiltration membrane fouling by UV-initiated graft polymerization technique. J. Membr. Sci. 2010, 355, 133–141. [Google Scholar] [CrossRef]
- Alkhudhiri, A.; Darwish, N.; Hilal, N. Treatment of high salinity solutions: Application of air gap membrane distillation. Desalination 2012, 287, 55–60. [Google Scholar] [CrossRef]
- Khayet, M.; Suk, D.; Narbaitz, R.; Santerre, J.; Matsuura, T. Study on surface modification by surface-modifying macromolecules and its applications in membrane-separation processes. J. Appl. Polym. Sci. 2003, 89, 2902–2916. [Google Scholar] [CrossRef]
- Khayet, M. Membrane surface modification and characterization by X-ray photoelectron spectroscopy, atomic force microscopy and contact angle measurements. Appl. Surf. Sci. 2004, 238, 269–272. [Google Scholar] [CrossRef]
- Jeong, B.-H.; Hoek, E.M.; Yan, Y.; Subramani, A.; Huang, X.; Hurwitz, G.; Ghosh, A.K.; Jawor, A. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes. J. Membr. Sci. 2007, 294, 1–7. [Google Scholar] [CrossRef]
- Amini, M.; Jahanshahi, M.; Rahimpour, A. Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes. J. Membr. Sci. 2013, 435, 233–241. [Google Scholar] [CrossRef]
- Elimelech, M.; Zhu, X.; Childress, A.E.; Hong, S. Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. J. Membr. Sci. 1997, 127, 101–109. [Google Scholar] [CrossRef]
- Hirose, M.; Ito, H.; Kamiyama, Y. Effect of skin layer surface structures on the flux behaviour of RO membranes. J. Membr. Sci. 1996, 121, 209–215. [Google Scholar] [CrossRef]
- Kwak, S.Y.; Jung, S.G.; Yoon, Y.S.; Ihm, D.W. Details of surface features in aromatic polyamide reverse osmosis membranes characterized by scanning electron and atomic force microscopy. J. Polym. Sci. Part B Polym. Phys. 1999, 37, 1429–1440. [Google Scholar] [CrossRef]
- Rana, D.; Matsuura, T.; Narbaitz, R.; Feng, C. Development and characterization of novel hydrophilic surface modifying macromolecule for polymeric membranes. J. Membr. Sci. 2005, 249, 103–112. [Google Scholar] [CrossRef]
- Rana, D.; Matsuura, T.; Narbaitz, R. Novel hydrophilic surface modifying macromolecules for polymeric membranes: Polyurethane ends capped by hydroxy group. J. Membr. Sci. 2006, 282, 205–216. [Google Scholar] [CrossRef]
- Pham, V.A.; Santerre, J.P.; Matsuura, T.; Narbaitz, R.M. Application of surface modifying macromolecules in polyethersulfone membranes: Influence on PES surface chemistry and physical properties. J. Appl. Polym. Sci. 1999, 73, 1363–1378. [Google Scholar] [CrossRef]
- Zhang, L.; Chowdhury, G.; Feng, C.; Matsuura, T.; Narbaitz, R. Effect of surface-modifying macromolecules and membrane morphology on fouling of polyethersulfone ultrafiltration membranes. J. Appl. Polym. Sci. 2003, 88, 3132–3138. [Google Scholar] [CrossRef]
- Hamza, A.; Pham, V.; Matsuura, T.; Santerre, J. Development of membranes with low surface energy to reduce the fouling in ultrafiltration applications. J. Membr. Sci. 1997, 131, 217–227. [Google Scholar] [CrossRef]
- McCloskey, C.; Yip, C.; Santerre, J. Effect of fluorinated surface-modifying macromolecules on the molecular surface structure of a polyether poly (urethane urea). Macromolecules 2002, 35, 924–933. [Google Scholar] [CrossRef]
- Islam, A.M.; Phillips, G.O.; Sljivo, A.; Snowden, M.J.; Williams, P.A. A review of recent developments on the regulatory, structural and functional aspects of gum arabic. Food Hydrocoll. 1997, 11, 493–505. [Google Scholar] [CrossRef]
- Daoub, R.M.A.; Elmubarak, A.H.; Misran, M.; Hassan, E.A.; Osman, M.E. Characterization and functional properties of some natural Acacia gums. J. Saudi Soc. Agric. Sci. 2016, 17, 241–249. [Google Scholar] [CrossRef]
- Desplanques, S.; Renou, F.; Grisel, M.; Malhiac, C. Impact of chemical composition of xanthan and acacia gums on the emulsification and stability of oil-in-water emulsions. Food Hydrocoll. 2012, 27, 401–410. [Google Scholar] [CrossRef]
- Dickinson, E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocoll. 2003, 17, 25–39. [Google Scholar] [CrossRef]
- Dickinson, E. Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocoll. 2009, 23, 1473–1482. [Google Scholar] [CrossRef]
- Garti, N.; Leser, M.E. Emulsification properties of hydrocolloids. Polym. Adv. Technol. 2001, 12, 123–135. [Google Scholar] [CrossRef]
- Dickinson, E.; Elverson, D.J.; Murray, B.S. On the film-forming and emulsion-stabilizing properties of gum arabic: Dilution and flocculation aspects. Food Hydrocoll. 1989, 3, 101–114. [Google Scholar] [CrossRef]
- Gashua, I.B.; Williams, P.A.; Baldwin, T. Molecular characteristics, association and interfacial properties of gum Arabic harvested from both Acacia senegal and Acacia seyal. Food Hydrocoll. 2016, 61, 514–522. [Google Scholar] [CrossRef]
- Williams, P.A.; Phillips, G.O. Gum Arabic. In Handbook of Hydrocolloids, 2nd ed.; Woodhead Publishing: Sawston, Cambridge, UK, 2009; Volume 11, pp. 252–273. [Google Scholar]
- Manawi, Y.; Kochkodan, V.; Mahmoudi, E.; Johnson, D.J.; Mohammad, A.W.; Atieh, M.A. Characterization and Separation Performance of a Novel Polyethersulfone Membrane Blended with Acacia Gum. Sci. Rep. 2017, 7, 15831. [Google Scholar] [CrossRef] [PubMed]
- Kochkodan, V.; Hilal, N. A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination 2015, 356, 187–207. [Google Scholar] [CrossRef]
- Rajaeian, B.; Rahimpour, A.; Tade, M.O.; Liu, S. Fabrication and characterization of polyamide thin film nanocomposite (TFN) nanofiltration membrane impregnated with TiO2 nanoparticles. Desalination 2013, 313, 176–188. [Google Scholar] [CrossRef]
- Sorribas, S.; Gorgojo, P.; Téllez, C.; Coronas, J.; Livingston, A.G. High flux thin film nanocomposite membranes based on metal–organic frameworks for organic solvent nanofiltration. J. Am. Chem. Soc. 2013, 135, 15201–15208. [Google Scholar] [CrossRef]
- Niu, F.; Su, Y.; Liu, Y.; Wang, G.; Zhang, Y.; Yang, Y. Ovalbumin–gum arabic interactions: Effect of pH, temperature, salt, biopolymers ratio and total concentration. Colloids Surf. B Biointerfaces 2014, 113, 477–482. [Google Scholar] [CrossRef]
- Hurwitz, G.; Guillen, G.R.; Hoek, E.M.V. Probing polyamide membrane surface charge, zeta potential, wettability, and hydrophilicity with contact angle measurements. J. Membr. Sci. 2010, 349, 349–357. [Google Scholar] [CrossRef]
- Bellona, C.; Drewes, J.E.; Xu, P.; Amy, G. Factors affecting the rejection of organic solutes during NF/RO treatment—A literature review. Water Res. 2004, 38, 2795–2809. [Google Scholar] [CrossRef]
- Childress, A.E.; Elimelech, M. Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics. Environ. Sci. Technol. 2000, 34, 3710–3716. [Google Scholar] [CrossRef]
- Bellona, C.; Drewes, J.E. The role of membrane surface charge and solute physico-chemical properties in the rejection of organic acids by NF membranes. J. Membr. Sci. 2005, 249, 227–234. [Google Scholar] [CrossRef]
- Namvar-Mahboub, M.; Pakizeh, M.; Davari, S. Preparation and characterization of UZM-5/polyamide thin film nanocomposite membrane for dewaxing solvent recovery. J. Membr. Sci. 2014, 459, 22–32. [Google Scholar] [CrossRef]
- Lau, W.J.; Gray, S.; Matsuura, T.; Emadzadeh, D.; Chen, J.P.; Ismail, A.F. A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches. Water Res. 2015, 80, 306–324. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.K.; Jeong, B.-H.; Huang, X.; Hoek, E.M. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties. J. Membr. Sci. 2008, 311, 34–45. [Google Scholar] [CrossRef]
- Lind, M.L.; Ghosh, A.K.; Jawor, A.; Huang, X.; Hou, W.; Yang, Y.; Hoek, E.M. Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes. Langmuir 2009, 25, 10139–10145. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Tang, B.; Wu, P. Optimizing polyamide thin film composite membrane covalently bonded with modified mesoporous silica nanoparticles. J. Membr. Sci. 2013, 428, 341–348. [Google Scholar] [CrossRef]
- Yin, J.; Yang, Y.; Hu, Z.; Deng, B. Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling. J. Membr. Sci. 2013, 441, 73–82. [Google Scholar] [CrossRef]
- Do, V.T.; Tang, C.Y.; Reinhard, M.; Leckie, J.O. Degradation of polyamide nanofiltration and reverse osmosis membranes by hypochlorite. Environ. Sci. Technol. 2012, 46, 852–859. [Google Scholar] [CrossRef]
- Baker, R.W. Membrane Technology; Wiley Online Library: Hoboken, NJ, USA, 2000. [Google Scholar]
Element | Feed Seawater |
---|---|
X-coordinates | 214,548.34 |
Y-coordinates | 482,954.73 |
Latitude | 26.10147 |
Longitude | 51.362099 |
Temperature (°C) | 19 |
pH | 8.36 |
Turbidity (NTU) | 0.29 |
Electrical Conductivity () | 63.4 |
Total Organic Carbon (ppm) | 0.52 |
pH | Zeta Potential (mV) | |
---|---|---|
0 wt.% AG | 0.2 wt.% AG | |
3.2 | 13.6 | 9.6 |
3.7 | 4.0 | 2.6 |
5 | −28.6 | −24.6 |
6 | −37.4 | −41.5 |
7 | −43.3 | −50.5 |
8 | −45.5 | −51.3 |
8.5 | −45.4 | −50.1 |
Element | Feed Seawater | Brine | Permeate |
---|---|---|---|
Total Dissolved Solids (ppm) | 45,000 | 70,000 | 1400 |
Chlorides (ppm) | 27,877 | 36,273 | 840 |
Sulphates (ppm) | 3482.08 | 5286.4 | 39.03 |
Sodium (ppm) | 14,040.59 | 17,500 | 510 |
Potassium (ppm) | 500 | 700 | 22 |
Calcium (ppm) | 650 | 1350 | 25 |
Heavy Metals (ppb) | |||
Silicon (Si) | 309.85 | 553.2 | 23 |
Antimony (Sb) | 15.15 | 1 | 0.7 |
Barium (Ba) | 5.4 | 9 | 0.3 |
Strontium (Sr) | 5249 | 7799 | 148 |
Boron (B) | 30,480 | 38,060 | 6880 |
Molybdenum (Mo) | 14,050 | 23,350 | 1706 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manawi, Y.; Kochkodan, V.; Ismail, A.F.; Mohammad, A.W.; Ali Atieh, M. Performance of Acacia Gum as a Novel Additive in Thin Film Composite Polyamide RO Membranes. Membranes 2019, 9, 30. https://doi.org/10.3390/membranes9020030
Manawi Y, Kochkodan V, Ismail AF, Mohammad AW, Ali Atieh M. Performance of Acacia Gum as a Novel Additive in Thin Film Composite Polyamide RO Membranes. Membranes. 2019; 9(2):30. https://doi.org/10.3390/membranes9020030
Chicago/Turabian StyleManawi, Yehia, Viktor Kochkodan, Ahmad Fauzi Ismail, Abdul Wahab Mohammad, and Muataz Ali Atieh. 2019. "Performance of Acacia Gum as a Novel Additive in Thin Film Composite Polyamide RO Membranes" Membranes 9, no. 2: 30. https://doi.org/10.3390/membranes9020030
APA StyleManawi, Y., Kochkodan, V., Ismail, A. F., Mohammad, A. W., & Ali Atieh, M. (2019). Performance of Acacia Gum as a Novel Additive in Thin Film Composite Polyamide RO Membranes. Membranes, 9(2), 30. https://doi.org/10.3390/membranes9020030