Use of Alteromonas sp. Ni1-LEM Supernatant as a Cleaning Agent for Reverse-Osmosis Membranes (ROMs) from a Desalination Plant in Northern Chile Affected by Biofouling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture Conditions of Alteromonas sp. Ni1-LEM and Supernatant Production
2.2. Reverse Osmosis Membrane (ROM) Selection
2.3. ROM Cleaning Treatments
2.4. ROMs Performance Evaluation
2.5. Evaluation of ROM Cleaning Treatments through AFM Microscopy
2.6. Statistical Analysis
3. Results
3.1. Water Permeability after Cleaning Treatments
3.2. Permeability Ratios of Different Cleaning Treatments
3.3. Permeate Water Conductivity and pH Values after Reverse-Osmosis Processing Using ROMs from Different Cleaning Treatments
3.4. Supernatant from Alteromonas sp. Ni1-LEM Restored Qualitative Aspects in ROMs from the Desalination Plant
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wahl, M. Marine epibiosis, I. Fouling and antifouling: Some basic aspects. Mar. Ecol. Prog. Ser. 1989, 58, 175–189. [Google Scholar] [CrossRef]
- Dobretsov, S.V.; Qian, P.Y. Effect of bacteria associated with the green alga Ulva reticulata on marine micro- and macrofouling. Biofouling 2002, 18, 217–218. [Google Scholar] [CrossRef]
- Christensen, B.E. The role of extracellular polysaccharides in biofilms. J. Biotechnol. 1989, 10, 181–202. [Google Scholar] [CrossRef]
- Flemming, H.C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Fitridge, I.; Dempster, T.; Guenther, J.; de Nys, R. The impact and control of biofouling in marine aquaculture: A review. Biofouling 2012, 28, 649–669. [Google Scholar] [CrossRef]
- Van der Hoek, J.P.; Hofman, J.A.; Bonné, P.A.C.; Nederlof, M.M.; Vrouwenvelder, H.S. RO treatment: Selection of a pretreatment scheme based on fouling characteristics and operating conditions based on environmental impact. Desalination 2000, 127, 89–101. [Google Scholar] [CrossRef]
- Maddah, H.; Chogle, A. Biofouling in reverse osmosis: Phenomena, monitoring, controlling and remediation. Appl. Water Sci. 2017, 7, 2637–2651. [Google Scholar] [CrossRef]
- Flemming, H.C.; Ridgway, H. Biofilm Control: Conventional and Alternative Approaches. In Marine and Industrial Biofouling; Springer Series on Biofilms; Springer: Berlin/Heidelberg, Germany, 2008; Volume 4, pp. 103–117. [Google Scholar] [CrossRef]
- Al-Ahmad, M.; Abdul Aleem, F.A.; Mutiri, A.; Ubaisy, A. Biofouling in RO membrane systems Part 1: Fundamentals and control. Desalination 2000, 132, 173–179. [Google Scholar] [CrossRef]
- Goh, P.S.; Lau, W.J.; Othman, M.H.D.; Ismail, A.F. Membrane fouling in desalination and its mitigation strategies. Desalination 2018, 425, 130–135. [Google Scholar] [CrossRef]
- Nagaraj, N.; Skillman, L.; Xie, Z.; Jiang, S.; Ho, G.; Li, D. Investigation of compounds that degrade biofilm polysaccharides on reverse osmosis membranes from a full scale desalination plant to alleviate biofouling. Desalination 2017, 403, 88–96. [Google Scholar] [CrossRef]
- Nagaraj, V.; Skillman, L.; Li, D.; Foreman, A.; Xie, Z.; Ho, G. Characterization of extracellular polysaccharides from bacteria isolated from a full-scale desalination plant. Desalination 2017, 418, 9–18. [Google Scholar] [CrossRef]
- Tunkal, R.I.; Jamal, M.T.; Abdulrahman, I.; Pugazhendi, A.; Satheesh, S. Antifouling Activity of Bacterial Extracts Associated with Soft Coral and Macroalgae from the Red Sea. Oceanol. Hydrobiol. Stud. 2022, 51, 325–336. [Google Scholar] [CrossRef]
- Adnan, M.; Alshammari, E.; Patel, M.; Ashraf, S.A.; Khan, S.; Hadi, S. Significance and Potential of Marine Microbial Natural Bioactive Compounds against Biofilms/Biofouling: Necessity for Green Chemistry. PeerJ 2018, 6, e5049. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Xu, B.; Ng, T.C.A.; He, M.; Shi, X.; Ng, H.Y. Feasibility of Implementing Quorum Quenching Technology to Mitigate Membrane Fouling in MBRs Treating Phenol-Rich Pharmaceutical Wastewater: Application of Rhodococcus Sp. BH4 and Quorum Quenching Consortium. Bioresour. Technol. 2022, 358, 127389. [Google Scholar] [CrossRef]
- Mehmood, C.T.; Waheed, H.; Tan, W.; Xiao, Y. Photocatalytic Quorum Quenching: A New Antifouling and in-Situ Membrane Cleaning Strategy for an External Membrane Bioreactor Coupled to UASB. J. Environ. Chem. Eng. 2021, 9, 105470. [Google Scholar] [CrossRef]
- Alemán-Vega, M.; Sánchez-Lozano, I.; Hernández-Guerrero, C.J.; Hellio, C.; Quintana, E.T. Exploring Antifouling Activity of Biosurfactants Producing Marine Bacteria Isolated from Gulf of California. Int. J. Mol. Sci. 2020, 21, 6068. [Google Scholar] [CrossRef]
- Abdulrahman, I.; Jamal, M.T.; Pugazhendi, A.; Dhavamani, J.; Satheesh, S. Antibiofilm Activity of Secondary Metabolites from Bacterial Endophytes of Red Sea Soft Corals. Int. Biodeterior. Biodegrad. 2022, 173, 105462. [Google Scholar] [CrossRef]
- Bachosz, K.; Vu, M.T.; Nghiem, L.D.; Zdarta, J.; Nguyen, L.N.; Jesionowski, T. Enzyme-Based Control of Membrane Biofouling for Water and Wastewater Purification: A Comprehensive Review. Environ. Technol. Innov. 2022, 25, 102106. [Google Scholar] [CrossRef]
- Meshram, P.; Dave, R.; Joshi, H.; Dharani, G.; Kirubagaran, R.; Venugopalan, V.P. A Fence That Eats the Weed: Alginate Lyase Immobilization on Ultrafiltration Membrane for Fouling Mitigation and Flux Recovery. Chemosphere 2016, 165, 144–151. [Google Scholar] [CrossRef]
- Lahiri, D.; Nag, M.; Dey, A.; Sarkar, T.; Ray, R.R.; Rebezov, M.; Shariati, M.A.; Thiruvengadam, M.; Simal-Gandara, J. Immobilized Enzymes as Potent Antibiofilm Agent. Biotechnol. Prog. 2022, 38, e3281. [Google Scholar] [CrossRef]
- Khani, M.; Hansen, M.F.; Knøchel, S.; Rasekh, B.; Ghasemipanah, K.; Zamir, S.M.; Nosrati, M.; Burmølle, M. Antifouling Potential of Enzymes Applied to Reverse Osmosis Membranes. SSRN Electron. J. 2022. in-press pre-proofs. [Google Scholar] [CrossRef]
- Köse-Mutlu, B.; Ergön-Can, T.; Koyuncu, I.; Lee, C.H. Quorum Quenching for Effective Control of Biofouling in Membrane Bioreactor: A Comprehensive Review of Approaches, Applications, and Challenges. Environ. Eng. Res. 2019, 24, 543–558. [Google Scholar] [CrossRef]
- Zapata, M.; Silva, F.; Luza, Y.; Wilkens, M.; Riquelme, C. The inhibitory effect of biofilms produced by wild bacterial isolates to the larval settlement of the fouling ascidia Ciona intestinalis and Pyura praeputialis. Electron. J. Biotechnol. 2007, 10, 117–126. [Google Scholar] [CrossRef]
- Silva-Aciares, F.; Riquelme, C. Inhibition of attachment of some fouling diatoms and settlement of Ulva lactuca zoospores by film-forming bacterium and their extracellular products isolated from biofouled substrata in northern Chile. Electron. J. Biotechnol. 2008, 11, 60–70. [Google Scholar] [CrossRef]
- Infante, C.; Castillo, F.; Pérez, V.; Riquelme, C. Inhibition of Nitzschia ovalis biofilm settlement by a bacterial bioactive compound through alteration of EPS and epiphytic bacteria. Electron. J. Biotechnol. 2018, 33, 1–10. [Google Scholar] [CrossRef]
- Vera-Villalobos, H.; Pérez, V.; Contreras, F.; Alcayaga, V.; Avalos, V.; Riquelme, C.; Silva-Aciares, F. Characterization and removal of biofouling from reverse osmosis membranes (ROMs) from a desalination plant in Northern Chile, using Alteromonas sp. Ni1-LEM supernatant. Biofouling 2020, 36, 505–515. [Google Scholar] [CrossRef]
- Asadollahi, M.; Bastani, D.; Musavi, S.A. Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: A review. Desalination 2017, 420, 330–383. [Google Scholar] [CrossRef]
- Idais, R.H.; Abuhabib, A.A.; Hamzah, S. Recent Advances in Measuring and Controlling Biofouling of Seawater Reverse Osmosis SWRO: A Review. In Osmotically Driven Membrane Processes; Intechopen: London, UK, 2021. [Google Scholar] [CrossRef]
- Maitreya, A.; Pal, S.; Qureshi, A.; Reyed, R.M.; Purohit, H.J. Nitric oxide–secreting probiotics as sustainable bio-cleaners for reverse osmosis membrane systems. Environ. Sci. Pollut. Res. 2022, 29, 4911–4929. [Google Scholar] [CrossRef]
- Criscuoli, A.; Carnevale, M.C. Desalination by vacuum membrane distillation: The role of cleaning on the permeate conductivity. Desalination 2015, 365, 213–219. [Google Scholar] [CrossRef]
- Ruiz-García, A.; Ruiz-Saavedra, E. 80,000h operational experience and performance analysis of a brackish water reverse osmosis desalination plant. Assessment of membrane replacement cost. Desalination 2015, 375, 81–88. [Google Scholar] [CrossRef]
- Du, J.; Wang, C.; Zhao, Z.; Chen, R.; Zhang, P.; Cui, F. Effect of Vacuum Ultraviolet/Ozone Pretreatment on Alleviation of Ultrafiltration Membrane Fouling Caused by Algal Extracellular and Intracellular Organic Matter. Chemosphere 2022, 305, 135455. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.Q.; Wu, X.; Huo, H.W.; Zhao, Q.B.; Zheng, Y.M.; Xie, Z. Designing Triple-Layer Superhydrophobic/Hydrophobic/Hydrophilic Nanofibrous Membrane via Electrohydrodynamic Technique for Enhanced Anti-Fouling and Anti-Wetting in Wastewater Treatment by Membrane Distillation. JMS Lett. 2022, 2, 100030. [Google Scholar] [CrossRef]
- Efremov, Y.M.; Okajima, T.; Raman, A. Measuring viscoelasticity of soft biological samples using atomic force microscopy. Soft Matter 2019, 16, 64–81. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.Y.; Jung, S.G.; Yoon, Y.S.; Ihm, D.W. Details of surface features in aromatic polyamide reverse osmosis membranes characterized by scanning electron and atomic force microscopy. J. Polym. Sci. B. Polym. Phys. 1999, 37, 1429–1449. [Google Scholar] [CrossRef]
- Pang, C.M.; Hong, P.; Guo, H.; Liu, W.T. Biofilm formation characteristics of bacterial isolates retrieved from a reverse osmosis membrane. Environ. Sci. Technol. 2005, 39, 7541–7550. [Google Scholar] [CrossRef]
- Chichirova, N.D.; Chichirov, A.A.; Saitov, S.R. Atomic force microscopy and IR spectrometry application in detecting the type and nature of contaminants on reverse osmosis membrane elements. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 288, No 1, 012007. [Google Scholar] [CrossRef]
- Chen, D.; Liu, T.; Kang, J.; Xu, R.; Cao, Y.; Xiang, M. Enhancing the Permeability and Antifouling Properties of Polyamide Composite Reverse Osmosis Membrane by Surface Modification with Zwitterionic Amino Acid L-Arginine. Adv. Mater. Interfaces 2019, 6, 1900706. [Google Scholar] [CrossRef]
- Choi, S.J.; Kim, S.; Im, S.J.; Jang, A.; Hwang, D.S.; Kang, S. Ionic Fluid as a Novel Cleaning Agent for the Control of Irreversible Fouling in Reverse Osmosis Membrane Processes. Water Res. 2022, 224, 119063. [Google Scholar] [CrossRef]
- Powell, L.C.; Hilal, N.; Wright, C.J. Atomic force microscopy study of the biofouling and mechanical properties of virgin and industrially fouled reverse osmosis membranes. Desalination 2017, 404, 313–321. [Google Scholar] [CrossRef]
- Seubert, E.L.; Caron, D.A. Impact of Algal Blooms and Their Toxins on Reverse Osmosis Desalination Plant Operations. In Sustainable Desalination Handbook: Plant Selection, Design and Implementation; Butterworth-Heinemann: Oxford, UK, 2018; pp. 489–504. [Google Scholar] [CrossRef]
Treatment Abbreviation | 1st Rinse Step (58 psi -15 min) | Wash Step 1 (58 psi) (R: 30 min I: 15 min) X4 | 2nd Rinse Step (58 psi -15 min) | Wash Step 2 (58 psi) (R: 30 min I: 15 min) X4 | 3rd Rinse Step (58 psi -15 min) |
---|---|---|---|---|---|
ROM-M9 | R: 0.1% EDTA pH 12 at 35 °C | M9 media at RT | R: permeate water at RT | M9 media at RT | R: permeate water at RT |
ROM-QT | R: 0.1% EDTA pH 12 at 35 °C | STPP 0.67 w/v, EDTA 0.6% w/v pH 12 at 35 °C | R: permeate water at RT | 1% citric acid w/v at RT | R: permeate water at RT |
ROM-SN | R: 0.1% EDTA pH 12 at 35 °C | Alteromonas sp. Ni1-LEM supernatant at RT | R: permeate water at RT | Alteromonas sp. Ni1-LEM supernatant at RT | R: permeate water at RT |
ROM-QTAl-SN | R: 0.1% EDTA pH 12 at 35 °C | STPP 0.67 w/v, EDTA 0.6% w/v pH 12 at 35 °C | R: permeate water at RT | Alteromonas sp. Ni1-LEM supernatant at RT | R: permeate water at RT |
ROM-SN-QTac | R: 0.1% EDTA pH 12 at 35 °C | Alteromonas sp. Ni1-LEM supernatant at RT | R: permeate water at RT | 1% citric acid w/v at RT | R: permeate water at RT |
ROM-BF | Fouled reverse osmosis membrane without cleaning treatment | ||||
ROM-CT | Brand new reverse osmosis membrane without cleaning treatment |
Treatments | Average Pi (L·m−2·h−1·bar−1) | ED |
---|---|---|
ROM-CT | 0.5272 * | ±0.0016 |
ROM-SN | 0.3747 * | ±0.0026 |
ROM-SN-QTac | 0.3642 * | ±0.0014 |
ROM-QT | 0.3625 * | ±0.0044 |
ROM-QTAl-SN | 0.3620 * | ±0.0017 |
ROM-M9 | 0.2765 | ±0.0046 |
ROM-BF | 0.2733 | ±0.0051 |
Treatments | Water Permeability Recovery (PR) | ED |
---|---|---|
ROM-CT | 1.0 * | 0 |
ROM-SN | 0.7205 * | ±0.0038 |
ROM-SN-QTAc | 0.6926 * | ±0.0046 |
ROM-QT | 0.6873 * | ±0.0064 |
ROM-QTAl-SN | 0.6866 * | ±0.0039 |
ROM-M9 | 0.5390 | ±0.0048 |
ROM-BF | 0.5310 | ±0.0081 |
Treatments | Average Conductivity (µS·cm−1) | ED |
---|---|---|
ROM-CT | 434.77 * | ±4.64 |
ROM-SN | 469.517 * | ±4.26 |
ROM-M9 | 479.717 * | ±3.34 |
ROM-SN-QTAc | 487.893 * | ±2.06 |
ROM-QT | 490.675 * | ±2.21 |
ROM-BF | 511.25 | ±1.49 |
ROM-QTAl-SN | 528.253 * | ±4.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vera-Villalobos, H.; Riquelme, C.; Silva-Aciares, F. Use of Alteromonas sp. Ni1-LEM Supernatant as a Cleaning Agent for Reverse-Osmosis Membranes (ROMs) from a Desalination Plant in Northern Chile Affected by Biofouling. Membranes 2023, 13, 454. https://doi.org/10.3390/membranes13050454
Vera-Villalobos H, Riquelme C, Silva-Aciares F. Use of Alteromonas sp. Ni1-LEM Supernatant as a Cleaning Agent for Reverse-Osmosis Membranes (ROMs) from a Desalination Plant in Northern Chile Affected by Biofouling. Membranes. 2023; 13(5):454. https://doi.org/10.3390/membranes13050454
Chicago/Turabian StyleVera-Villalobos, Hernán, Carlos Riquelme, and Fernando Silva-Aciares. 2023. "Use of Alteromonas sp. Ni1-LEM Supernatant as a Cleaning Agent for Reverse-Osmosis Membranes (ROMs) from a Desalination Plant in Northern Chile Affected by Biofouling" Membranes 13, no. 5: 454. https://doi.org/10.3390/membranes13050454
APA StyleVera-Villalobos, H., Riquelme, C., & Silva-Aciares, F. (2023). Use of Alteromonas sp. Ni1-LEM Supernatant as a Cleaning Agent for Reverse-Osmosis Membranes (ROMs) from a Desalination Plant in Northern Chile Affected by Biofouling. Membranes, 13(5), 454. https://doi.org/10.3390/membranes13050454