Analysis of Concentration Polarisation in Full-Size Spiral Wound Reverse Osmosis Membranes Using Computational Fluid Dynamics
Abstract
:1. Introduction
2. Model Development and Validation
2.1. Governing Equations
2.2. Geometry
2.2.1. Cross-Flow Flat Sheet Module
2.2.2. Geometry of a Full-Size RO Membrane Module
2.3. Model Setup
2.4. Model Validation
3. Results and Discussion
3.1. Model Validation
3.2. Impact of Feed Spacer on Lab Scale Flat Sheet Module
3.3. Impact of Spacer on Full-Size RO Module
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
permeability coefficient of water through the corresponding membrane (m·s−1·Pa−1) | |
effective membrane surface area for solution passage (m2) | |
permeability coefficient of inorganic salt (m·s−1) | |
D | diffusion coefficient (m2·s−1) |
δ | boundary layer thickness (m) |
concentration of the inorganic salt on the feed side of the membrane (kg·m−3) | |
concentration of the inorganic salt on the permeate side of the membrane (kg·m−3) | |
K | mass transfer coefficient |
permeate flux, (m3·m−2·s−1) | |
salt flux (kg·m−2·s−1) | |
fluid viscosity (kg·m−1·s−1) | |
pressure difference across both sides of the membrane (Pa) | |
osmotic pressure difference across both sides of the membrane (Pa) | |
pressure (Pa) | |
fluid density (kg·m−3) | |
S | source term |
fluid velocity vector (m·s−1) | |
corresponding effective computational domain volume (m3) | |
flow velocity (m·s−1) (u is the vector) |
Appendix A
References
- Fritzmann, C.; Löwenberg, J.; Wintgens, T.; Melin, T. State-of-the-art of reverse osmosis desalination. Desalination 2007, 216, 1–76. [Google Scholar] [CrossRef]
- Qasim, M.; Badrelzaman, M.; Darwish, N.N.; Darwish, N.A.; Hilal, N. Reverse osmosis desalination: A state-of-the-art review. Desalination 2019, 459, 59–104. [Google Scholar] [CrossRef] [Green Version]
- Mulder, J.; Mulder, C. Basic Principles of Membrane Technology, 2nd ed.; Kluwer Academic: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Fimbres-Weihs, G.; Wiley, D. Numerical study of mass transfer in three-dimensional spacer-filled narrow channels with steady flow. J. Membr. Sci. 2007, 306, 228–243. [Google Scholar] [CrossRef]
- Li, F.; Meindersma, W.; De Haan, A.; Reith, T. Optimization of commercial net spacers in spiral wound membrane modules. J. Membr. Sci. 2002, 208, 289–302. [Google Scholar] [CrossRef] [Green Version]
- Shakaib, M.; Hasani, S.; Mahmood, M. Study on the effects of spacer geometry in membrane feed channels using three-dimensional computational flow modeling. J. Membr. Sci. 2007, 297, 74–89. [Google Scholar] [CrossRef]
- Vrouwenvelder, J.S.; Picioreanu, C.; Kruithof, J.C.; Van Loosdrecht, M.C.M. Biofouling in spiral wound membrane systems: Three-dimensional CFD model based evaluation of experimental data. J. Membr. Sci. 2010, 346, 71–85. [Google Scholar] [CrossRef]
- Picioreanu, C.; Vrouwenvelder, J.; van Loosdrecht, M. Three-dimensional modeling of biofouling and fluid dynamics in feed spacer channels of membrane devices. J. Membr. Sci. 2009, 345, 340–354. [Google Scholar] [CrossRef]
- Schwinge, J.; Neal, P.R.; Wiley, D.E.; Fane, A.G. Estimation of foulant deposition across the leaf of a spiral-wound module. Desalination 2002, 146, 203–208. [Google Scholar] [CrossRef]
- Schwinge, J.; Wiley, D.E.; Fletcher, D. A CFD study of unsteady flow in narrow spacer-filled channels for spiral-wound mem-brane modules. Desalination 2002, 146, 195–201. [Google Scholar] [CrossRef]
- Schwinge, J.; Wiley, D.E.; Fletcher, D.F. Simulation of Unsteady Flow and Vortex Shedding for Narrow Spacer-Filled Channels. Ind. Eng. Chem. Res. 2003, 42, 4962–4977. [Google Scholar] [CrossRef]
- Ahmad, A.; Lau, K. Impact of different spacer filaments geometries on 2D unsteady hydrodynamics and concentration polarization in spiral wound membrane channel. J. Membr. Sci. 2006, 286, 77–92. [Google Scholar] [CrossRef]
- Cao, Z.; Wiley, D.E.; Fane, A.G. CFD simulations of net-type turbulence promoters in a narrow channel. J. Membr. Sci. 2001, 185, 157–176. [Google Scholar] [CrossRef]
- Ranade, V.V.; Kumar, A. Fluid dynamics of spacer filled rectangular and curvilinear channels. J. Membr. Sci. 2006, 271, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Koutsou, C.P.; Yiantsios, S.G.; Karabelas, A.J. A numerical and experimental study of mass transfer in spacer-filled channels: Effects of spacer geometrical characteristics and Schmidt number. J. Membr. Sci. 2009, 326, 234–251. [Google Scholar] [CrossRef]
- Koutsou, C.P.; Yiantsios, S.G.; Karabelas, A.J.A. Direct numerical simulation of flow in spacer-filled channels: Effect of spacer geometrical characteristics. J. Membr. Sci. 2007, 291, 53–69. [Google Scholar] [CrossRef]
- Ruiz-García, A.; de la Nuez Pestana, I. Feed spacer geometries and permeability coefficients. Effect on the performance in BWRO Spiral-wound membrane modules. Water 2019, 11, 152. [Google Scholar] [CrossRef] [Green Version]
- Toh, K.; Liang, Y.; Lau, W.; Weihs, G.F. A Review of CFD Modelling and Performance Metrics for Osmotic Membrane Processes. Membranes 2020, 10, 285. [Google Scholar] [CrossRef]
- Abdelbaky, M.M.A.; El-Refaee, M.M. A 3D CFD comparative study between torsioned and non-torsioned net-type feed spacer in reverse osmosis. SN Appl. Sci. 2019, 1, 1059. [Google Scholar] [CrossRef] [Green Version]
- Toh, K.; Liang, Y.; Lau, W.; Weihs, G.F. 3D CFD study on hydrodynamics and mass transfer phenomena for SWM feed spacer with different floating characteristics. Chem. Eng. Res. Des. 2020, 159, 36–46. [Google Scholar] [CrossRef]
- Haidari, A.; Heijman, S.; Uijttewaal, W.; van der Meer, W. Determining effects of spacer orientations on channel hydraulic conditions using PIV. J. Water Process. Eng. 2019, 31, 100820. [Google Scholar] [CrossRef]
- Radu, A.; van Steen, M.; Vrouwenvelder, J.; van Loosdrecht, M.; Picioreanu, C. Spacer geometry and particle deposition in spiral wound membrane feed channels. Water Res. 2014, 64, 160–176. [Google Scholar] [CrossRef]
- Ishigami, T.; Matsuyama, H. Numerical Modeling of Concentration Polarization in Spacer-filled Channel with Permeation across Reverse Osmosis Membrane. Ind. Eng. Chem. Res. 2015, 54, 1665–1674. [Google Scholar] [CrossRef]
- Gu, B.; Xu, X.Y.; Adjiman, C.S. A predictive model for spiral wound reverse osmosis membrane modules: The effect of winding geometry and accurate geometric details. Comput. Chem. Eng. 2017, 96, 248–265. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.Y.; Chapman, M.B.; Fimbres-Weihs, G.; Wiley, D.E. CFD modelling of electro-osmotic permeate flux enhancement on the feed side of a membrane module. J. Membr. Sci. 2014, 470, 378–388. [Google Scholar] [CrossRef]
- Wiley, D.E.; Fletcher, D.F. Techniques for computational fluid dynamics modelling of flow in membrane channels. J. Membr. Sci. 2003, 211, 127–137. [Google Scholar] [CrossRef]
- Schwinge, J.; Neal, P.R.; Wiley, D.E.; Fane, A.G. Spiral wound modules and spacers: Review and analysis. J. Membr. Sci. 2004, 242, 129–153. [Google Scholar] [CrossRef]
- Bucs, S.S.; Linares, R.V.; Marston, J.O.; Radu, A.I.; Vrouwenvelder, J.S.; Picioreanu, C. Experimental and numerical charac-terization of the water flow in spacer-filled channels of spiral-wound membranes. Water Res. 2015, 87, 299–310. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-L.; Tung, K.-L.; Lu, M.-Y.; Huang, S.-H. Mitigating the curvature effect of the spacer-filled channel in a spiral-wound membrane module. J. Membr. Sci. 2009, 329, 106–118. [Google Scholar] [CrossRef]
- Ranade, V.; Kumar, A. Comparison of flow structures in spacer-filled flat and annular channels. Desalination 2006, 191, 236–244. [Google Scholar] [CrossRef]
Experiment Number | Feed Pressure (MPa) | Feed Flowrate (mL/min) | Feed Concentration, NaCl (mg/L) | Experimental Permeate Flowrate (mL/min) | Simulated Permeate Flowrate (mL/min) | Error |
---|---|---|---|---|---|---|
1 | 1.8 | 169.68 | 4509.4 | 4.67 ± 0.1 | 4.50 | 3.58% |
2 | 1.4 | 177.24 | 4509.4 | 3.75 ± 0.08 | 3.67 | 2.08% |
3 | 1.7 | 177.24 | 2089.6 | 6.44 ± 0.17 | 6.16 | 4.44% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, W.; Zou, X.; Ji, X.; Zhou, R.; Zhao, K.; Wang, Y. Analysis of Concentration Polarisation in Full-Size Spiral Wound Reverse Osmosis Membranes Using Computational Fluid Dynamics. Membranes 2021, 11, 353. https://doi.org/10.3390/membranes11050353
Wei W, Zou X, Ji X, Zhou R, Zhao K, Wang Y. Analysis of Concentration Polarisation in Full-Size Spiral Wound Reverse Osmosis Membranes Using Computational Fluid Dynamics. Membranes. 2021; 11(5):353. https://doi.org/10.3390/membranes11050353
Chicago/Turabian StyleWei, Wenshu, Xiang Zou, Xinxiang Ji, Rulin Zhou, Kangkang Zhao, and Yuan Wang. 2021. "Analysis of Concentration Polarisation in Full-Size Spiral Wound Reverse Osmosis Membranes Using Computational Fluid Dynamics" Membranes 11, no. 5: 353. https://doi.org/10.3390/membranes11050353
APA StyleWei, W., Zou, X., Ji, X., Zhou, R., Zhao, K., & Wang, Y. (2021). Analysis of Concentration Polarisation in Full-Size Spiral Wound Reverse Osmosis Membranes Using Computational Fluid Dynamics. Membranes, 11(5), 353. https://doi.org/10.3390/membranes11050353