A Gel Polymer Electrolyte Reinforced Membrane for Lithium-Ion Batteries via the Simultaneous-Irradiation of the Electron Beam
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Fabrication
2.3. Characterizations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, H.; Zhou, M.-Y.; Lin, C.-E.; Zhu, B.-K. Progress in polymeric separators for lithium ion batteries. RSC Adv. 2015, 5, 89848–89860. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mahdavi, H. Recent Development of Polyolefin-Based Microporous Separators for Li-Ion Batteries: A Review. Chem Rec 2020, 20, 570–595. [Google Scholar] [CrossRef]
- Zhang, S.S. A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources 2007, 164, 351–364. [Google Scholar] [CrossRef]
- Song, Y.; Sheng, L.; Wang, L.; Xu, H.; He, X. From separator to membrane: Separators can function more in lithium ion batteries. Electrochem. Commun. 2021, 124, 106948. [Google Scholar] [CrossRef]
- Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 2014, 7, 3857–3886. [Google Scholar] [CrossRef]
- Li, L.; Wang, F.; Li, J.; Yang, X.; You, J. Electrochemical performance of gel polymer electrolyte with ionic liquid and PUA/PMMA prepared by ultraviolet curing technology for lithium-ion battery. Int. J. Hydrogen Energy 2017, 42, 12087–12093. [Google Scholar] [CrossRef]
- Zhu, M.; Wu, J.; Wang, Y.; Song, M.; Long, L.; Siyal, S.H.; Yang, X.; Sui, G. Recent advances in gel polymer electrolyte for high-performance lithium batteries. J. Energy Chem. 2019, 37, 126–142. [Google Scholar] [CrossRef]
- Wang, Z.; Xiang, H.; Wang, L.; Xia, R.; Nie, S.; Chen, C.; Wang, H. A paper-supported inorganic composite separator for high-safety lithium-ion batteries. J. Membr. Sci. 2018, 553, 10–16. [Google Scholar] [CrossRef]
- Li, D.; Shi, D.; Feng, K.; Li, X.; Zhang, H. Poly (ether ether ketone)(PEEK) porous membranes with super high thermal stability and high rate capability for lithium-ion batteries. J. Membr. Sci. 2017, 530, 125–131. [Google Scholar] [CrossRef]
- Choi, J.-A.; Kim, S.H.; Kim, D.-W. Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators. J. Power Sources 2010, 195, 6192–6196. [Google Scholar] [CrossRef]
- Hou, J.; Jang, W.; Kim, S.; Kim, J.-H.; Byun, H. Rapid formation of polyimide nanofiber membranes via hot-press treatment and their performance as Li-ion battery separators. RSC Adv. 2018, 8, 14958–14966. [Google Scholar] [CrossRef]
- Tong, Y.; Xu, Y.; Chen, D.; Xie, Y.; Chen, L.; Que, M.; Hou, Y. Deformable and flexible electrospun nanofiber-supported cross-linked gel polymer electrolyte membranes for high safety lithium-ion batteries. RSC Adv. 2017, 7, 22728–22734. [Google Scholar] [CrossRef]
- Li, H.; Ma, X.-T.; Shi, J.-L.; Yao, Z.-K.; Zhu, B.-K.; Zhu, L.-P. Preparation and properties of poly (ethylene oxide) gel filled polypropylene separators and their corresponding gel polymer electrolytes for Li-ion batteries. Electrochim. Acta 2011, 56, 2641–2647. [Google Scholar] [CrossRef]
- Li, Y.-J.; Fan, C.-Y.; Zhang, J.-P.; Wu, X.-L. A promising PMHS/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. Dalton Trans. 2018, 47, 14932–14937. [Google Scholar] [CrossRef]
- Gu, Q.-Q.; Xue, H.-J.; Li, Z.-W.; Song, J.-C.; Sun, Z.-Y. High-performance polyethylene separators for lithium-ion batteries modified by phenolic resin. J. Power Sources 2021, 483, 229155. [Google Scholar] [CrossRef]
- Jin, L.; Ahmed, F.; Ryu, T.; Yoon, S.; Zhang, W.; Lee, Y.; Kim, D.; Jang, H.; Kim, W. Highly conductive and flexible gel polymer electrolyte with bis (fluorosulfonyl) imide lithium salt via UV curing for Li-ion batteries. Membranes 2019, 9, 139. [Google Scholar] [CrossRef]
- Gupta, H.; Singh, R.K. Energy Storage Battery Systems-Fundamentals and Applications; IntechOpen: London, UK, 2020; pp. 1–19. [Google Scholar]
- Yang, M.; Li, W.; Wang, G.; Zhang, J. Preparation and characterization of a novel microporous PE membrane supporting composite gel polymer electrolyte. Solid State Ionics 2005, 176, 2829–2834. [Google Scholar] [CrossRef]
- Sohn, J.-Y.; Im, J.-S.; Shin, J.; Nho, Y.-C. PVDF-HFP/PMMA-coated PE separator for lithium ion battery. J. Solid State Electrochem. 2012, 16, 551–556. [Google Scholar] [CrossRef]
- Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef]
- Clough, R. High-energy radiation and polymers: A review of commercial processes and emerging applications. Nucl. Instrum. Methods Phys. Res. Sect. B 2001, 185, 8–33. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Song, J.-M.; Sohn, J.-Y.; Nho, Y.-C.; Shin, J.-H. Evaluation of the Effect of Solvent on the Preparation of PVBC-g-ETFE Film by a Pre-irradiation Method. Polymer 2011, 35, 610–614. [Google Scholar]
- Deng, B.; Li, J.; Hou, Z.; Yao, S.; Shi, L.; Liang, G.; Sheng, K. Microfiltration membranes prepared from polyethersulfone powder grafted with acrylic acid by simultaneous irradiation and their pH dependence. Radiat. Phys. Chem. 2008, 77, 898–906. [Google Scholar] [CrossRef]
- Nasef, M.; Zubir, N.; Ismail, A.; Khayet, M.; Dahlan, K.; Saidi, H.; Rohani, R.; Ngah, T.; Sulaiman, N. PSSA pore-filled PVDF membranes by simultaneous electron beam irradiation: Preparation and transport characteristics of protons and methanol. J. Membr. Sci. 2006, 268, 96–108. [Google Scholar] [CrossRef]
- Li, Z.; Wei, J.; Shan, F.; Yang, J.; Wang, X. PVDF/PMMA brushes membrane for lithium-ion rechargeable batteries prepared via preirradiation grafting technique. J. Polym. Sci. Part B Polym. Phys. 2008, 46, 751–758. [Google Scholar] [CrossRef]
- Gwon, S.-J.; Choi, J.-H.; Sohn, J.-Y.; An, S.-J.; Ihm, Y.-E.; Nho, Y.-C. Radiation grafting of methyl methacrylate onto polyethylene separators for lithium secondary batteries. Nucl. Instrum. Methods Phys. Res. Sect. B 2008, 266, 3387–3391. [Google Scholar] [CrossRef]
- Jung, M.-J.; Park, M.-S.; Lee, Y.-S. Effects of e-beam irradiation on the chemical, physical, and electrochemical properties of activated carbons for electric double-layer capacitors. J. Nanomater. 2015, 2015, 240264. [Google Scholar] [CrossRef]
- Puhova, I.V.; Rubtsov, K.V.; Kurzina, I.; Kazakov, A.V.; Medovnik, A.V. Modification of polymer materials by electron beam treatment. Key Eng. Mater. 2015, 670, 118–125. [Google Scholar] [CrossRef]
- Sharif, J.; Mohamad, S.F.; Othman, N.A.F.; Bakaruddin, N.A.; Osman, H.N.; Güven, O. Graft copolymerization of glycidyl methacrylate onto delignified kenaf fibers through pre-irradiation technique. Radiat. Phys. Chem. 2013, 91, 125–131. [Google Scholar] [CrossRef]
- Park, I.K.; Cha, W.J.; Lee, C.H. Saline water electrolysis membranes prepared via the simultaneous irradiation of electron-beam. ECS Trans. 2020, 98, 665–672. [Google Scholar] [CrossRef]
- Cha, W.J.; Lee, C.H. Sulfonated poly (arylene ether copolymer)-g-sulfonated Polystyrene Membrane Prepared Via E-beam Irradiation and Their Saline Water Electrolysis Application. Membr. J. 2016, 26, 458–462. [Google Scholar] [CrossRef]
- Lamberti, M.; Escher, F. Aluminium Foil as a Food Packaging Material in Comparison with Other Materials. Food Rev. Int. 2007, 23, 407–433. [Google Scholar] [CrossRef]
- Chan, K.W.; Cook, K.D. Mass spectrometric study of interactions between poly (ethylene glycols) and alkali metals in solution. Macromolecules 1983, 16, 1736–1740. [Google Scholar] [CrossRef]
- Izatt, R.M.; Bradshaw, J.S.; Nielsen, S.A.; Lamb, J.D.; Christensen, J.J.; Sen, D. Thermodynamic and kinetic data for cation-macrocycle interaction. Chem. Rev 1985, 85, 271–339. [Google Scholar] [CrossRef]
- Izatt, R.M.; Pawlak, K.; Bradshaw, J.S.; Bruening, R.L. Thermodynamic and kinetic data for macrocycle interactions with cations and anions. Chem. Rev. 1991, 91, 1721–2085. [Google Scholar] [CrossRef]
- Lee, C.H.; VanHouten, D.; Lane, O.; McGrath, J.E.; Hou, J.; Madsen, L.A.; Spano, J.; Wi, S.; Cook, J.; Xie, W. Disulfonated poly (arylene ether sulfone) random copolymer blends tuned for rapid water permeation via cation complexation with poly (ethylene glycol) oligomers. Chem. Mater. 2011, 23, 1039–1049. [Google Scholar] [CrossRef]
- Okada, T. Efficient evaluation of poly (oxyethylene) complex formation with alkali-metal cations. Macromolecules 1990, 23, 4216–4219. [Google Scholar] [CrossRef]
- Li, W.; Pang, Y.; Liu, J.; Liu, G.; Wang, Y.; Xia, Y. A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Adv. 2017, 7, 23494–23501. [Google Scholar] [CrossRef]
- Zhang, S.; Cao, J.; Shang, Y.; Wang, L.; He, X.; Li, J.; Zhao, P.; Wang, Y. Nanocomposite polymer membrane derived from nano TiO 2-PMMA and glass fiber nonwoven: High thermal endurance and cycle stability in lithium ion battery applications. J. Mater. Chem. A 2015, 3, 17697–17703. [Google Scholar] [CrossRef]
- Li, Y.; Dillard, D.A.; Case, S.W.; Ellis, M.W.; Lai, Y.-H.; Gittleman, C.S.; Miller, D.P. Fatigue and creep to leak tests of proton exchange membranes using pressure-loaded blisters. J. Power Sources 2009, 194, 873–879. [Google Scholar] [CrossRef]
- Dillard, D.A.; Li, Y.; Grohs, J.R.; Case, S.W.; Ellis, M.W.; Lai, Y.-H.; Budinski, M.K.; Gittleman, C.S. On the use of pressure-loaded blister tests to characterize the strength and durability of proton exchange membranes. J. Fuel Cell Sci. Technol. 2009, 6, 031014. [Google Scholar] [CrossRef]
- Li, G.H.; Lee, C.H.; Lee, Y.M.; Cho, C.G. Preparation of poly (vinyl phosphate-b-styrene) copolymers and its blend with PPO as proton exchange membrane for DMFC applications. Solid State Ionics 2006, 177, 1083–1090. [Google Scholar] [CrossRef]
- Ahn, J.H.; You, T.-S.; Lee, S.-M.; Esken, D.; Dehe, D.; Huang, Y.-C.; Kim, D.-W. Hybrid separator containing reactive, nanostructured alumina promoting in-situ gel electrolyte formation for lithium-ion batteries with good cycling stability and enhanced safety. J. Power Sources 2020, 472, 228519. [Google Scholar] [CrossRef]
- Rafiz, K.; Lin, J.Y. Safe Li-ion batteries enabled by completely inorganic electrode-coated silicalite separators. Sustainable Energy Fuels 2020, 4, 5783–5794. [Google Scholar] [CrossRef]
- Hwang, S.S.; Cho, C.G.; Kim, H. Room temperature cross-linkable gel polymer electrolytes for lithium ion batteries by in situ cationic polymerization of divinyl ether. Electrochem. Commun. 2010, 12, 916–919. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, J.; Park, I.K.; Cha, W.J.; Lee, C.H. A Gel Polymer Electrolyte Reinforced Membrane for Lithium-Ion Batteries via the Simultaneous-Irradiation of the Electron Beam. Membranes 2021, 11, 219. https://doi.org/10.3390/membranes11030219
Hou J, Park IK, Cha WJ, Lee CH. A Gel Polymer Electrolyte Reinforced Membrane for Lithium-Ion Batteries via the Simultaneous-Irradiation of the Electron Beam. Membranes. 2021; 11(3):219. https://doi.org/10.3390/membranes11030219
Chicago/Turabian StyleHou, Jian, In Kee Park, Woo Ju Cha, and Chang Hyun Lee. 2021. "A Gel Polymer Electrolyte Reinforced Membrane for Lithium-Ion Batteries via the Simultaneous-Irradiation of the Electron Beam" Membranes 11, no. 3: 219. https://doi.org/10.3390/membranes11030219
APA StyleHou, J., Park, I. K., Cha, W. J., & Lee, C. H. (2021). A Gel Polymer Electrolyte Reinforced Membrane for Lithium-Ion Batteries via the Simultaneous-Irradiation of the Electron Beam. Membranes, 11(3), 219. https://doi.org/10.3390/membranes11030219