Efficacy, Safety and Predictive Biomarkers of Oncolytic Virus Therapy in Solid Tumors: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Methods
2.1. Study Design and Registration
2.2. Eligibility Criteria
- Population: Patients with any form of cancer treated with an oncolytic virus (OV), either as monotherapy or in combination with other treatments.
- Intervention: Administration of a genetically engineered or naturally occurring OV (e.g., T-VEC, adenovirus, reovirus, vaccinia, measles virus).
- Outcomes: Must report at least one of the following:
- ○
- ORR;
- ○
- PFS;
- ○
- OS;
- ○
- Biomarker levels.
- Study Types: Randomized controlled trials (Phase II and Phase III).
- Observational studies, cohort studies, case reports, reviews, editorials, and conference abstracts.
- Preclinical in vitro or animal studies without human data.
- Studies without sufficient data for extraction or quantitative analysis.
2.3. Information Sources and Search Strategy
2.4. Study Selection
2.5. Data Extraction
2.6. Risk of Bias Assessment
2.7. Data Synthesis and Statistical Analysis
2.8. Ethics and Data Availability
3. Results
3.1. Qualitative Synthesis
3.1.1. Study Characteristics
3.1.2. Quality Assessment
3.2. Efficacy
3.2.1. Melanoma
3.2.2. Hepatocellular Carcinoma (HCC)
3.2.3. Colorectal and Pancreatic Cancers
3.2.4. Lung Cancers
3.2.5. Other Solid Tumors
3.3. Safety
3.4. Qualitative Synthesis of Biomarker Trends in Oncolytic Virus (OV) Therapy
3.5. Immune Activation in the Tumor Microenvironment
3.6. Viral Replication and Host Immune Recognition
3.7. Systemic Immune Modulation
3.8. Molecular Markers of Tumor Suppression
3.9. Tumor Burden and Lesion-Level Response
3.10. Emerging Surrogate Clinical Biomarkers
3.11. Quantitative Synthesis
Progression-Free Survival
3.12. Sub-Group Analysis of PFS
3.12.1. PFS in Melanoma Patients Treated with T-VEC
3.12.2. PFS in Non-Melanoma Solid Tumors Patients with Non–T-VEC Oncolytic Virus
3.12.3. PFS in Solid Tumors Patients with Treated Primarily with Oncolytic Reovirus (Pelareorep)
3.13. Overall Survival
3.14. Subgroup Analysis of OS
3.14.1. OS in Melanoma Patients Treated with T-VEC
3.14.2. OS in Non-Melanoma Solid Tumors Patients Treated with Non-T-VEC
3.14.3. OS in Solid Tumors Patients with Treated Primarily with Oncolytic Reovirus (Pelareorep)
Objective Response Rate (ORR)
3.15. Subgroup Analysis of ORR
3.15.1. ORR in Melanoma Patients Treated with T-VEC
3.15.2. ORR in Non-Melanoma Solid Tumors Patients Treated with Non-T-VEC
3.15.3. ORR in Solid Tumors Patients with Treated Primarily with Oncolytic Reovirus (Pelareorep)
4. Discussion
4.1. Clinical Efficacy: Interpreting Patterns Beyond Statistics
4.2. OV–Immune System Interplay: Explaining Therapeutic Variability
4.3. The Role of Biomarkers: From Correlation to Stratification
4.3.1. Immune Biomarkers
4.3.2. Molecular/Genomic Biomarkers
4.3.3. Surrogate Clinical Biomarkers
4.4. OV Combinations: Clarifying Synergy and Resistance
4.5. Safety Implications: Balancing Potency and Tolerability
4.6. Implications for Clinical Translation and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Tanani, M.; Rabbani, S.A.; Babiker, R.; El-Tanani, Y.; Satyam, S.M.; Porntaveetus, T. Emerging Multifunctional Biomaterials for Addressing Drug Resistance in Cancer. Biology 2025, 14, 497. [Google Scholar] [CrossRef] [PubMed]
- El-Tanani, M.; Rabbani, S.A.; Satyam, S.M.; Rangraze, I.R.; Wali, A.F.; El-Tanani, Y.; Aljabali, A.A. Deciphering the role of cancer stem cells: Drivers of tumor evolution, therapeutic resistance, and precision medicine strategies. Cancers 2025, 17, 382. [Google Scholar] [CrossRef] [PubMed]
- El-Tanani, M.; Satyam, S.M.; Rabbani, S.A.; Obeidat, R.M.; El-Tanani, Y.; Aljabali, A.A.; Hatahet, T. Decoding oncogenic secrets of regulator of chromosome condensation 1: A breakthrough mechanistic evidence from breast and lung cancer models. PLoS ONE 2025, 20, e0319748. [Google Scholar] [CrossRef] [PubMed]
- Satyam, S.M.; El-Tanani, M.; Rabbani, S.A.; Aljabali, A.A.; El-Tanani, Y.; Patoulias, D.; Rizzo, M. Steatotic Shadows: The Dark Link Between Metabolic Dysfunction-associated Steatotic Liver Disease and Cancer Risk. Curr. Pharm. Des. 2025. [Google Scholar] [CrossRef]
- El-Tanani, M.; Rangraze, I.; Rabbani, S.A.; Rizzo, M.; Parvez, S.; Ahmed Khan, M. The Role of Immunotherapy in Enhancing Surgical Outcomes for Melanoma Patients. World J. Surg. Surg. Res. 2024, 7, 1567. [Google Scholar]
- Yan, Z.; Zhang, Z.; Chen, Y.; Xu, J.; Wang, J.; Wang, Z. Enhancing cancer therapy: The integration of oncolytic virus therapy with diverse treatments. Cancer Cell Int. 2024, 24, 242. [Google Scholar] [CrossRef]
- Lin, D.; Shen, Y.; Liang, T. Oncolytic virotherapy: Basic principles, recent advances and future directions. Signal Transduct. Target. Ther. 2023, 8, 156. [Google Scholar] [CrossRef]
- Jhawar, S.R.; Thandoni, A.; Bommareddy, P.K.; Hassan, S.; Kohlhapp, F.J.; Goyal, S.; Schenkel, J.M.; Silk, A.W.; Zloza, A. Oncolytic viruses—Natural and genetically engineered cancer immunotherapies. Front. Oncol. 2017, 7, 202. [Google Scholar] [CrossRef]
- Sinkovics, J.G.; Horvath, J.C. Natural and genetically engineered viral agents for oncolysis and gene therapy of human cancers. Arch. Immunol. et Ther. Exp. 2008, 56, 1–59. [Google Scholar] [CrossRef]
- Hemminki, O.; Santos, J.M.D.; Hemminki, A. Oncolytic viruses for cancer immunotherapy. J. Hematol. Oncol. 2020, 13, 1–15. [Google Scholar] [CrossRef]
- Babiker, R.; Wali, A.F.; El-Tanani, M.; Rabbani, S.A.; Rangraze, I.; Satyam, S.M.; Patni, M.A.; El-Tanani, Y. Comparative Efficacy of Immune Checkpoint Inhibitors and Therapeutic Vaccines in Solid Tumors: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Vaccines 2025, 13, 423. [Google Scholar] [CrossRef] [PubMed]
- Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 2019, 18, 197–218. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, G.R.; Mostafavi, S.; Bastan, S.; Ebrahimi, N.; Gharibvand, R.S.; Eskandari, N. Immunologic tumor microenvironment modulators for turning cold tumors hot. Cancer Commun. 2024, 44, 521–553. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Xie, D.; Yang, L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct. Target. Ther. 2022, 7, 117. [Google Scholar] [CrossRef]
- Yang, L.; Hu, Q.; Huang, T. Breast Cancer Treatment Strategies Targeting the Tumor Microenvironment: How to Convert “Cold” Tumors to “Hot” Tumors. Int. J. Mol. Sci. 2024, 25, 7208. [Google Scholar] [CrossRef]
- Bommareddy, P.K.; Patel, A.; Hossain, S.; Kaufman, H.L. Talimogene laherparepvec (T-VEC) and other oncolytic viruses for the treatment of melanoma. Am. J. Clin. Dermatol. 2017, 18, 1–15. [Google Scholar] [CrossRef]
- Harrington, K.J.; Puzanov, I.; Hecht, J.R.; Hodi, F.S.; Szabo, Z.; Murugappan, S.; Kaufman, H.L. Clinical development of talimogene laherparepvec (T-VEC): A modified herpes simplex virus type-1–derived oncolytic immunotherapy. Expert Rev. Anticancer Ther. 2015, 15, 1389–1403. [Google Scholar] [CrossRef]
- Grigg, C.; Blake, Z.; Gartrell, R.; Sacher, A.; Taback, B.; Saenger, Y. Talimogene laherparepvec (T-Vec) for the treatment of melanoma and other cancers. In Seminars in Oncology; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Malogolovkin, A.; Gasanov, N.; Egorov, A.; Weener, M.; Ivanov, R.; Karabelsky, A. Combinatorial approaches for cancer treatment using oncolytic viruses: Projecting the perspectives through clinical trials outcomes. Viruses 2021, 13, 1271. [Google Scholar] [CrossRef]
- Cattaneo, R.; Miest, T.; Shashkova, E.V.; Barry, M.A. Reprogrammed viruses as cancer therapeutics: Targeted, armed and shielded. Nat. Rev. Microbiol. 2008, 6, 529–540. [Google Scholar] [CrossRef]
- Wodarz, D. Viruses as antitumor weapons: Defining conditions for tumor remission. Cancer Res. 2001, 61, 3501–3507. [Google Scholar]
- Vryza, P.; Fischer, T.; Mistakidi, E.; Zaravinos, A. Tumor mutation burden in the prognosis and response of lung cancer patients to immune-checkpoint inhibition therapies. Transl. Oncol. 2023, 38, 101788. [Google Scholar] [CrossRef]
- Yi, J.; Lin, P.; Li, Q.; Zhang, A.; Kong, X. A new strategy for treating colorectal cancer: Regulating the influence of intestinal flora and oncolytic virus on interferon. Mol. Ther.-Oncolytics 2023, 30, 254–274. [Google Scholar] [CrossRef]
- Farrukh, H.; El-Sayes, N.; Mossman, K. Mechanisms of PD-L1 regulation in malignant and virus-infected cells. Int. J. Mol. Sci. 2021, 22, 4893. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Chen, K.; Qian, L.; Wang, P. Oncolytic virotherapy reverses the immunosuppressive tumor microenvironment and its potential in combination with immunotherapy. Cancer Cell Int. 2021, 21, 262. [Google Scholar] [CrossRef]
- Apolonio, J.S.; de Souza Gonçalves, V.L.; Santos, M.L.C.; Luz, M.S.; Souza, J.V.S.; Pinheiro, S.L.R.; de Souza, W.R.; Loureiro, M.S.; de Melo, F.F. Oncolytic virus therapy in cancer: A current review. World J. Virol. 2021, 10, 229. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.; Ricci, A.D.; Brandi, G. PD-L1, TMB, MSI, and other predictors of response to immune checkpoint inhibitors in biliary tract cancer. Cancers 2021, 13, 558. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Stein, J.E.; Rimm, D.L.; Wang, D.W.; Bell, J.M.; Johnson, D.B.; Sosman, J.A.; Schalper, K.A.; Anders, R.A.; Wang, H.; et al. Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: A systematic review and meta-analysis. JAMA Oncol. 2019, 5, 1195–1204. [Google Scholar] [CrossRef] [PubMed]
- Chiu, M.; Armstrong, E.J.L.; Jennings, V.; Foo, S.; Crespo-Rodriguez, E.; Bozhanova, G.; Patin, E.C.; McLaughlin, M.; Mansfield, D.; Baker, G.; et al. Combination therapy with oncolytic viruses and immune checkpoint inhibitors. Expert Opin. Biol. Ther. 2020, 20, 635–652. [Google Scholar] [CrossRef]
- Twumasi-Boateng, K.; Pettigrew, J.L.; Kwok, Y.E.; Bell, J.C.; Nelson, B.H. Oncolytic viruses as engineering platforms for combination immunotherapy. Nat. Rev. Cancer 2018, 18, 419–432. [Google Scholar] [CrossRef]
- Xie, R.; Bi, X.; Shang, B.; Zhou, A.; Shi, H.; Shou, J. Efficacy and safety of oncolytic viruses in advanced or metastatic cancer: A network meta-analysis. Virol. J. 2021, 18, 1–12. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, Z.; Zhang, Y.; Huang, X.; Liu, Q. Efficacy and safety of oncolytic viruses in randomized controlled trials: A systematic review and meta-analysis. Cancers 2020, 12, 1416. [Google Scholar] [CrossRef]
- Jiang, S.; Chai, H.; Tang, Q.; Shi, Z.; Zhou, L. Clinical advances in oncolytic virus therapy for malignant glioma: A systematic review. Discov. Oncol. 2023, 14, 183. [Google Scholar] [CrossRef]
- Zou, P.; Tang, R.; Luo, M. Oncolytic virotherapy, alone or in combination with immune checkpoint inhibitors, for advanced melanoma: A systematic review and meta-analysis. Int. Immunopharmacol. 2020, 78, 106050. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shen, Y.; Tang, T.; Tang, Z.; Song, W.; Yang, Z.; Zhang, X.; Wang, M.; Bai, X.; Liang, T. Oncolytic virus combined with traditional treatment versus traditional treatment alone in patients with cancer: A meta-analysis. Int. J. Clin. Oncol. 2020, 25, 1901–1913. [Google Scholar] [CrossRef] [PubMed]
- Ades, A.E.; Lu, G.; Higgins, J.P.T. The interpretation of random-effects meta-analysis in decision models. Med. Decis. Mak. 2005, 25, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Langan, D. Estimating the Heterogeneity Variance in a Random-Effects Meta-Analysis. Ph.D. Dissertation, University of York, York, UK, 2015. [Google Scholar]
- Gaia Saracini, A.; Held, L. Addressing Outcome Reporting Bias in Meta-analysis: A Selection Model Perspective. arXiv 2024, arXiv:2408.05747. [Google Scholar]
- Schlag, P.; Manasterski, M.; Gerneth, T.; Hohenberger, P.; Dueck, M.; Herfarth, C.; Liebrich, W.; Schirrmacher, V. Active specific immunotherapy with Newcastle-diseasevirus-modified autologous tumor cells following resection of liver metastases in colorectal cancer: First evaluation of clinical response of a phase II-trial. Cancer Immunol. Immunother. 1992, 35, 325–330. [Google Scholar] [CrossRef]
- Chesney, J.A.; Puzanov, I.; Collichio, F.A.; Singh, P.; Milhem, M.M.; Glaspy, J.; Hamid, O.; Ross, M.; Friedlander, P.; Garbe, C.; et al. Talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone for advanced melanoma: 5-year final analysis of a multicenter, randomized, open-label, phase II trial. J. Immunother. Cancer 2023, 11, e006270. [Google Scholar] [CrossRef]
- Chesney, J.A.; Ribas, A.; Long, G.V.; Kirkwood, J.M.; Dummer, R.; Puzanov, I.; Hoeller, C.; Gajewski, T.F.; Gutzmer, R.; Rutkowski, P.; et al. Randomized, double-blind, placebo-controlled, global phase III trial of talimogene laherparepvec combined with pembrolizumab for advanced melanoma. J. Clin. Oncol. 2023, 41, 528–540. [Google Scholar] [CrossRef]
- Andtbacka, R.H.; Agarwala, S.S.; Ollila, D.W.; Hallmeyer, S.; Milhem, M.; Amatruda, T.; Nemunaitis, J.J.; Harrington, K.J.; Chen, L.; Shilkrut, M.; et al. Cutaneous head and neck melanoma in OPTiM, a randomized phase 3 trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor for the treatment of unresected stage IIIB/IIIC/IV melanoma. Head Neck 2016, 38, 1752–1758. [Google Scholar] [CrossRef]
- Andtbacka, R.H.; Collichio, F.; Harrington, K.J.; Middleton, M.R.; Downey, G.; Öhrling, K.; Kaufman, H.L. Final analyses of OPTiM: A randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III–IV melanoma. J. Immunother. Cancer 2019, 7, 1–11. [Google Scholar] [CrossRef]
- Andtbacka, R.H.; Ross, M.; Puzanov, I.; Milhem, M.; Collichio, F.; Delman, K.A.; Amatruda, T.; Zager, J.S.; Cranmer, L.; Hsueh, E.; et al. Patterns of clinical response with talimogene laherparepvec (T-VEC) in patients with melanoma treated in the OPTiM phase III clinical trial. Ann. Surg. Oncol. 2016, 23, 4169–4177. [Google Scholar] [CrossRef]
- Chesney, J.; Puzanov, I.; Collichio, F.; Singh, P.; Milhem, M.M.; Glaspy, J.; Hamid, O.; Ross, M.; Friedlander, P.; Garbe, C.; et al. Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J. Clin. Oncol. 2018, 36, 1658–1667. [Google Scholar] [CrossRef]
- Wallack, M.K.; Sivanandham, M.; Balch, C.M.; Urist, M.M.; Bland, K.I.; Murray, D.; Robinson, W.A.; Flaherty, L.E.; Richards, J.M.; Bartolucci, A.A.; et al. A phase III randomized, doúble-blind, multiinstitutional trial of vaccinia melanoma oncolysate-active specific immunotherapy for patients with stage II melanoma. Cancer 1995, 75, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Wallack, M.K.; Sivanandham, M.; Ditaranto, K.; Shaw, P.; Balch, C.M.; Urist, M.M.; Bland, K.I.; Murray, D.; Robinson, W.A.; Flaherty, L.; et al. Increased survival of patients treated with a vaccinia melanoma oncolysate vaccine: Second interim analysis of data from a phase III, multi-institutional trial. Ann. Surg. 1997, 226, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Habib, N.; Salama, H.; Abd El Latif Abu Median, A.; Isac Anis, I.; Abd Al Aziz, R.A.; Sarraf, C.; Mitry, R.; Havlik, R.; Seth, P.; Hartwigsen, J.; et al. Clinical trial of E1B-deleted adenovirus (dl1520) gene therapy for hepatocellular carcinoma. Cancer Gene Ther. 2002, 9, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.; Reid, T.; Ruo, L.; Breitbach, C.J.; Rose, S.; Bloomston, M.; Cho, M.; Lim, H.Y.; Chung, H.C.; Kim, C.W.; et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat. Med. 2013, 19, 329–336. [Google Scholar] [CrossRef]
- Moehler, M.; Heo, J.; Lee, H.C.; Tak, W.Y.; Chao, Y.; Paik, S.W.; Yim, H.J.; Byun, K.S.; Baron, A.; Ungerechts, G.; et al. Vaccinia-based oncolytic immunotherapy Pexastimogene Devacirepvec in patients with advanced hepatocellular carcinoma after sorafenib failure: A randomized multicenter Phase IIb trial (TRAVERSE). Oncoimmunology 2019, 8, 1615817. [Google Scholar] [CrossRef]
- Tian, G.; Liu, J.; Zhou, J.S.R.; Chen, W. Multiple hepatic arterial injections of recombinant adenovirus p53 and 5-fluorouracil after transcatheter arterial chemoembolization for unresectable hepatocellular carcinoma: A pilot phase II trial. Anti-Cancer Drugs 2009, 20, 389–395. [Google Scholar] [CrossRef]
- Yang, Z.X.; Wang, D.; Wang, G.; Zhang, Q.H.; Liu, J.M.; Peng, P.; Liu, X.H. Clinical study of recombinant adenovirus-p53 combined with fractionated stereotactic radiotherapy for hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 2010, 136, 625–630. [Google Scholar] [CrossRef]
- Jonker, D.J.; Tang, P.A.; Kennecke, H.; Welch, S.A.; Cripps, M.C.; Asmis, T.; Chalchal, H.; Tomiak, A.; Lim, H.; Ko, Y.J.; et al. A randomized phase II study of FOLFOX6/bevacizumab with or without pelareorep in patients with metastatic colorectal cancer: IND. 210, a Canadian Cancer Trials Group Trial. Clin. Color. Cancer 2018, 17, 231–239.e7. [Google Scholar] [CrossRef]
- Bradbury, P.A.; Morris, D.G.; Nicholas, G.; Tu, D.; Tehfe, M.; Goffin, J.R.; Shepherd, F.A.; Gregg, R.W.; Rothenstein, J.; Lee, C.; et al. Canadian Cancer Trials Group (CCTG) IND211: A randomized trial of pelareorep (Reolysin) in patients with previously treated advanced or metastatic non-small cell lung cancer receiving standard salvage therapy. Lung Cancer 2018, 120, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Villalona-Calero, M.A.; Lam, E.; Otterson, G.A.; Zhao, W.; Timmons, M.; Subramaniam, D.; Hade, E.M.; Gill, G.M.; Coffey, M.; Selvaggi, G.; et al. Oncolytic reovirus in combination with chemotherapy in metastatic or recurrent non–small cell lung cancer patients with K RAS-activated tumors. Cancer 2016, 122, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.-S.; Ma, J.-G.; Xing, L.-N. Efficacy and safety of recombinant human adenovirus p53 combined with chemoradiotherapy in the treatment of recurrent nasopharyngeal carcinoma. Anti-Cancer Drugs 2017, 28, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.J.; Zhang, S.W.; Chen, C.B.; Xiao, S.W.; Sun, Y.; Liu, C.Q.; Su, X.; Li, D.M.; Xu, G.; Xu, B.; et al. Effect of recombinant adenovirus-p53 combined with radiotherapy on long-term prognosis of advanced nasopharyngeal carcinoma. J. Clin. Oncol. 2009, 27, 799–804. [Google Scholar] [CrossRef]
- Schenk, E.L.; Mandrekar, S.J.; Dy, G.K.; Aubry, M.C.; Tan, A.D.; Dakhil, S.R.; Sachs, B.A.; Nieva, J.J.; Bertino, E.; Hann, C.L.; et al. A randomized double-blind phase II study of the Seneca Valley Virus (NTX-010) versus placebo for patients with extensive-stage SCLC (ES SCLC) who were stable or responding after at least four cycles of platinum-based chemotherapy: North Central Cancer Treatment Group (Alliance) N0923 Study. J. Thorac. Oncol. 2020, 15, 110–119. [Google Scholar]
- Bernstein, V.; Ellard, S.L.; Dent, S.F.; Tu, D.; Mates, M.; Dhesy-Thind, S.K.; Panasci, L.; Gelmon, K.A.; Salim, M.; Song, X.; et al. A randomized phase II study of weekly paclitaxel with or without pelareorep in patients with metastatic breast cancer: Final analysis of Canadian Cancer Trials Group IND. 213. Breast Cancer Res. Treat. 2018, 167, 485–493. [Google Scholar] [CrossRef]
- Noonan, A.M.; Farren, M.R.; Geyer, S.M.; Huang, Y.; Tahiri, S.; Ahn, D.; Mikhail, S.; Ciombor, K.K.; Pant, S.; Aparo, S.; et al. Randomized phase 2 trial of the oncolytic virus pelareorep (Reolysin) in upfront treatment of metastatic pancreatic adenocarcinoma. Mol. Ther. 2016, 24, 1150–1158. [Google Scholar] [CrossRef]
- Cohn, D.E.; Sill, M.W.; Walker, J.L.; O’Malley, D.; Nagel, C.I.; Rutledge, T.L.; Bradley, W.; Richardson, D.L.; Moxley, K.M.; Aghajanian, C. Randomized phase IIB evaluation of weekly paclitaxel versus weekly paclitaxel with oncolytic reovirus (Reolysin®) in recurrent ovarian, tubal, or peritoneal cancer: An NRG Oncology/Gynecologic Oncology Group study. Gynecol. Oncol. 2017, 146, 477–483. [Google Scholar] [CrossRef]
- Eigl, B.J.; Chi, K.; Tu, D.; Hotte, S.J.; Winquist, E.; Booth, C.M.; Canil, C.; Potvin, K.; Gregg, R.; North, S.; et al. A randomized phase II study of pelareorep and docetaxel or docetaxel alone in men with metastatic castration resistant prostate cancer: CCTG study IND 209. Oncotarget 2018, 9, 8155. [Google Scholar] [CrossRef]
- Freytag, S.O.; Stricker, H.; Lu, M.; Elshaikh, M.; Aref, I.; Pradhan, D.; Levin, K.; Kim, J.H.; Peabody, J.; Siddiqui, F.; et al. Prospective randomized phase 2 trial of intensity modulated radiation therapy with or without oncolytic adenovirus-mediated cytotoxic gene therapy in intermediate-risk prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 268–276. [Google Scholar] [CrossRef]
- Kelly, C.M.; Antonescu, C.R.; Bowler, T.; Munhoz, R.; Chi, P.; Dickson, M.A.; Gounder, M.M.; Keohan, M.L.; Movva, S.; Dholakia, R.; et al. Objective response rate among patients with locally advanced or metastatic sarcoma treated with talimogene laherparepvec in combination with pembrolizumab: A phase 2 clinical trial. JAMA Oncol. 2020, 6, 402–408. [Google Scholar] [CrossRef]
- Westphal, M.; Ylä-Herttuala, S.; Martin, J.; Warnke, P.; Menei, P.; Eckland, D.; Kinley, J.; Kay, R.; Ram, Z. Adenovirus-mediated gene therapy with sitimagene ceradenovec followed by intravenous ganciclovir for patients with operable high-grade glioma (ASPECT): A randomised, open-label, phase 3 trial. Lancet Oncol. 2013, 14, 823–833. [Google Scholar] [CrossRef]
- Khuri, F.R.; Nemunaitis, J.; Ganly, I.; Arseneau, J.; Tannock, I.F.; Romel, L.; Gore, M.; Ironside, J.; MacDougall, R.H.; Heise, C.; et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat. Med. 2000, 6, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Chen, W.J.; Xiao, S.W.; Li, X.F.; Xu, G.; Pan, J.J.; Zhang, S.W. Effect and safety of recombinant adenovirus-p53 transfer combined with radiotherapy on long-term survival of locally advanced cervical cancer. Hum. Gene Ther. 2016, 27, 1008–1014. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Li, X.; Hong, L.J.; Xie, R.; Zhao, H.L.; Li, K.; Wang, H.H.; Shin, W.D.; Shen, H.J. Advanced malignant pleural or peritoneal effusion in patients treated with recombinant adenovirus p53 injection plus cisplatin. J. Int. Med. Res. 2008, 36, 1273–1287. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, H.L.; Amatruda, T.; Reid, T.; Gonzalez, R.; Glaspy, J.; Whitman, E.; Harrington, K.; Nemunaitis, J.; Zloza, A.; Wolf, M.; et al. Systemic versus local responses in melanoma patients treated with talimogene laherparepvec from a multi-institutional phase II study. J. Immunother. Cancer 2016, 4, 1–8. [Google Scholar] [CrossRef]
- Malvehy, J.; Samoylenko, I.; Schadendorf, D.; Gutzmer, R.; Grob, J.J.; Sacco, J.J.; Gorski, K.S.; Anderson, A.; Pickett, C.A.; Liu, K.; et al. Talimogene laherparepvec upregulates immune-cell populations in non-injected lesions: Findings from a phase II, multicenter, open-label study in patients with stage IIIB–IVM1c melanoma. J. Immunother. Cancer 2021, 9, e001621. [Google Scholar] [CrossRef]
- Galanis, E.; Markovic, S.N.; Suman, V.J.; Nuovo, G.J.; Vile, R.G.; Kottke, T.J.; Nevala, W.K.; Thompson, M.A.; Lewis, J.E.; Rumilla, K.M.; et al. Phase II trial of intravenous administration of Reolysin® (Reovirus Serotype-3-dearing Strain) in patients with metastatic melanoma. Mol. Ther. 2012, 20, 1998–2003. [Google Scholar] [CrossRef]
- Lindsey, K.R.; Gritz, L.; Sherry, R.; Abati, A.; Fetsch, P.A.; Goldfeder, L.C.; Gonzales, M.I.; Zinnack, K.A.; Rogers-Freezer, L.; Haworth, L.; et al. Evaluation of prime/boost regimens using recombinant poxvirus/tyrosinase vaccines for the treatment of patients with metastatic melanoma. Clin. Cancer Res. 2006, 12, 2526–2537. [Google Scholar] [CrossRef]
- Voit, C.; Kron, M.; Schwürzer-Voit, M.; Sterry, W. Intradermal injection of Newcastle disease virus-modified autologous melanoma cell lysate and interleukin-2 for adjuvant treatment of melanoma patients with resectable stage III disease: Adjuvante Therapie von Melanompatienten im Stadium III mit einer Kombination aus Newcastle-disease-Virus-modifiziertem Tumorzelllysat und Interleukin-2. JDDG J. Der Dtsch. Dermatol. Ges. 2003, 1, 120–125. [Google Scholar]
- Lu, W.; Zheng, S.; Li, X.F.; Huang, J.J.; Zheng, X.; Li, Z. Intra-tumor injection of H101, a recombinant adenovirus, in combination with chemotherapy in patients with advanced cancers: A pilot phase II clinical trial. World J. Gastroenterol. WJG 2004, 10, 3634. [Google Scholar] [CrossRef] [PubMed]
- Harrington, K.J.; Andtbacka, R.H.; Collichio, F.; Downey, G.; Chen, L.; Szabo, Z.; Kaufman, H.L. Efficacy and safety of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in patients with stage IIIB/C and IVM1a melanoma: Subanalysis of the phase III OPTiM trial. OncoTargets Ther. 2016, 9, 7081–7093. [Google Scholar] [CrossRef] [PubMed]
- Cerullo, V.; Diaconu, I.; Kangasniemi, L.; Rajecki, M.; Escutenaire, S.; Koski, A.; Romano, V.; Rouvinen, N.; Tuuminen, T.; Laasonen, L.; et al. Immunological effects of low-dose cyclophosphamide in cancer patients treated with oncolytic adenovirus. Mol. Ther. 2011, 19, 1737–1746. [Google Scholar] [CrossRef]
- Ribas, A.; Dummer, R.; Puzanov, I.; VanderWalde, A.; Andtbacka, R.H.; Michielin, O.; Olszanski, A.J.; Malvehy, J.; Cebon, J.; Fernandez, E.; et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 2017, 170, 1109–1119.e10. [Google Scholar] [CrossRef]
- Schwarze, J.K.; Tijtgat, J.; Awada, G.; Cras, L.; Vasaturo, A.; Bagnall, C.; Forsyth, R.; Dufait, I.; Tuyaerts, S.; Van Riet, I.; et al. Intratumoral administration of CD1c (BDCA-1)+ and CD141 (BDCA-3)+ myeloid dendritic cells in combination with talimogene laherparepvec in immune checkpoint blockade refractory advanced melanoma patients: A phase I clinical trial. J. Immunother. Cancer 2022, 10, e005141. [Google Scholar] [CrossRef]
- Shoushtari, A.N.; Olszanski, A.J.; Nyakas, M.; Hornyak, T.J.; Wolchok, J.D.; Levitsky, V.; Kuryk, L.; Hansen, T.B.; Jäderberg, M. Pilot study of ONCOS-102 and pembrolizumab: Remodeling of the tumor microenvironment and clinical outcomes in anti–PD-1–resistant advanced melanoma. Clin. Cancer Res. 2023, 29, 100–109. [Google Scholar] [CrossRef]
- Garcia, M.; Moreno, R.; Gil-Martin, M.; Cascallo, M.; de Olza, M.O.; Cuadra, C.; Piulats, J.M.; Navarro, V.; Domenech, M.; Alemany, R.; et al. A phase 1 trial of oncolytic adenovirus ICOVIR-5 administered intravenously to cutaneous and uveal melanoma patients. Hum. Gene Ther. 2019, 30, 352–364. [Google Scholar] [CrossRef]
- Mahalingam, D.; Wilkinson, G.A.; Eng, K.H.; Fields, P.; Raber, P.; Moseley, J.L.; Cheetham, K.; Coffey, M.; Nuovo, G.; Kalinski, P.; et al. Pembrolizumab in combination with the oncolytic virus pelareorep and chemotherapy in patients with advanced pancreatic adenocarcinoma: A phase Ib study. Clin. Cancer Res. 2020, 26, 71–81. [Google Scholar] [CrossRef]
- Stahlie, E.H.; Franke, V.; Zuur, C.L.; Klop, W.M.; van der Hiel, B.; Van de Wiel, B.A.; Wouters, M.W.; Schrage, Y.M.; van Houdt, W.J.; van Akkooi, A.C. T-VEC for stage IIIB-IVM1a melanoma achieves high rates of complete and durable responses and is associated with tumor load: A clinical prediction model. Cancer Immunol. Immunother. 2021, 70, 2291–2300. [Google Scholar] [CrossRef]
- Soliman, H.; Hogue, D.; Han, H.; Mooney, B.; Costa, R.; Lee, M.C.; Niell, B.; Williams, A.; Chau, A.; Falcon, S.; et al. A phase I trial of talimogene laherparepvec in combination with neoadjuvant chemotherapy for the treatment of nonmetastatic triple-negative breast cancer. Clin. Cancer Res. 2021, 27, 1012–1018. [Google Scholar] [CrossRef] [PubMed]
- Karimi, N.; Moghaddam, S.J. KRAS-Mutant lung cancer: Targeting molecular and immunologic pathways, therapeutic advantages and restrictions. Cells 2023, 12, 749. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Liu, H.; de Silva, T.; Xue, Y.; Mohamud, Y.; Ng, C.S.; Qu, J.; Zhang, J.; Jia, W.W.; Lockwood, W.W.; et al. Coxsackievirus type B3 is a potent oncolytic virus against KRAS-mutant lung adenocarcinoma. Mol. Ther.-Oncolytics 2019, 14, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.K.; Hong, J.; Yun, C.-O. Oncolytic viruses and immune checkpoint inhibitors: Preclinical developments to clinical trials. Int. J. Mol. Sci. 2020, 21, 8627. [Google Scholar] [CrossRef]
- Sivanandam, V.; LaRocca, C.J.; Chen, N.G.; Fong, Y.; Warner, S.G. Oncolytic viruses and immune checkpoint inhibition: The best of both worlds. Mol. Ther.-Oncolytics 2019, 13, 93–106. [Google Scholar] [CrossRef]
- LaRocca, C.J.; Warner, S.G. Oncolytic viruses and checkpoint inhibitors: Combination therapy in clinical trials. Clin. Transl. Med. 2018, 7, 35. [Google Scholar] [CrossRef]
- Lovatt, C.; Parker, A.L. Oncolytic viruses and immune checkpoint inhibitors: The “hot” new power couple. Cancers 2023, 15, 4178. [Google Scholar] [CrossRef]
- Gao, P.; Ding, G.; Wang, L. The efficacy and safety of oncolytic viruses in the treatment of intermediate to advanced solid tumors: A systematic review and meta-analysis. Transl. Cancer Res. 2021, 10, 4290. [Google Scholar] [CrossRef]
- Pishesha, N.; Harmand, T.J.; Ploegh, H.L. A guide to antigen processing and presentation. Nat. Rev. Immunol. 2022, 22, 751–764. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Author & Year | Tumor Type | Trial Phase/Type | Population Studied | N (Patients) | Intervention | Control | Primary Outcomes | Secondary Outcomes |
---|---|---|---|---|---|---|---|---|
Schenk et al., 2020 [58] | Extensive stage small cell lung cancer (ES SCLC) | Randomized, double-blind Phase II trial | ES SCLC patients who were stable/responded after platinum-based chemo | 50 (26 NTX010; 24 placebo) | Single dose of NTX010 (Seneca Valley Virus) | Placebo | PFS as primary endpoint | Viral clearance, neutralizing antibody formation; OS |
Heo et al., 2013 [49] | Hepatocellular carcinoma (liver cancer) | Randomized Phase 2 dose finding trial | Subjects with advanced hepatocellular carcinoma | 30 | Intravenous vaccinia virus JX594 (PexaVec) at low vs. high dose | Randomization between two dose levels (low dose vs. high dose) | Intrahepatic tumor responses and dose dependent effects as determined by imaging response metrics | Safety and immune stimulation endpoints (e.g., GMCSF expression) |
Jonker, 2018 [53] | Metastatic colorectal cancer | Randomized Phase 2 trial | Treatment naïve patients with metastatic colorectal cancer | 103 (51 per arm) | FOLFOX6/bevacizumab plus Pelareorep (oncolytic reovirus) | FOLFOX6/bevacizumab alone | Primary endpoint: PFS | Secondary endpoints: OS, ORR, quality of life |
Kaufman hl et al., 2016 [69] | Advanced melanoma (stage IIIC/IV) | Multi-institutional Phase 2 single arm trial | Patients with stage IIIC or IV melanoma (treated by TVEC) | 50 | Intra-lesional TVEC | None (all patients received TVEC; analysis compared injected vs. non injected lesions) | Lesion response rates in both directly injected and uninjected lesions; assessment of systemic effect via lesion shrinkage | Time to response (median response time per lesion type) |
Malvehy et al., 2021 [70] | Melanoma (stage IIIB–IVM1c) | Phase 2 multicenter, open label study | Patients with unresectable melanoma (stage IIIB–IVM1c) | 112 enrolled (111 treated; subset available for biomarker analysis) | Intralesional TVEC | None (single arm study) | Objective response rates (e.g., overall response: 28% and complete response: 14% overall; 32%/18% in stage IIIB–IVM1a subgroup) and evaluation of immune cell density changes in noninjected lesions | Exploratory analyses of changes in specific immune-cell subsets in noninjected lesions |
Moehler et al., 2019 [50] | Advanced HCC | Phase IIb, randomized, multicenter trial (TRAVERSE) | Patients with advanced HCC following sorafenib failure | Not specified | Vaccinia based oncolytic immunotherapy Pexastimogene Devacirepvec (PexaVec) | Control arm (standard care/control treatment) | Efficacy endpoints (e.g., OS, ORR, disease control) and safety | Secondary outcomes: PFS, safety, and immune endpoints |
Noonan et al., 2016 [60] | metastatic pancreatic adenocarcinoma | Randomized Phase 2 trial | Treatment naïve patients with metastatic pancreatic adenocarcinoma | 73 evaluable (36 in Arm A, 37 in Arm B) | Combination of carboplatin/paclitaxel with pelareorep (oncolytic reovirus) (Arm A) | Carboplatin/paclitaxel alone (Arm B) | Primary endpoint: PFS | Secondary endpoints: OS, ORR, and assessment of immunologic biomarkers (cytokine levels, immune cell subsets) |
Andtbacka rhi et al. (2016) [42] | Unresectable stage IIIB–IV melanoma | Phase III (OPTiM trial; post hoc lesion-level analysis) | Patients with unresectable melanoma treated with T-VEC | (N = 295 in T-VEC arm) | Intralesional TVEC | Subcutaneous GMCSF (in OPTiM) | Durable response rate; lesion level reduction of ≥50% in size | Analysis of patterns (e.g., appearance of new lesions or ≥25% increase before response [PPR]); correlation with OS |
Bernstein et al. (2018) [59] | Metastatic breast cancer | Randomized Phase II | Women with previously treated metastatic breast cancer | N = 74 | Weekly paclitaxel plus pelareorep (oncolytic reovirus) | Weekly paclitaxel alone | Primary endpoint: PFS | Secondary endpoints: OS, ORR, CTC counts, safety |
Bradbury et al. (2018) [54] | Advanced/metastatic non-small cell lung cancer (NSCLC) | Randomized Phase II | Patients with advanced/metastatic NSCLC after first-line chemotherapy | N = 166 | Second line chemotherapy (pemetrexed [for nonsquamous] or docetaxel [for squamous]) plus pelareorep | Chemotherapy alone | Primary endpoint: PFS | Secondary endpoints: OS, ORR, exploratory translational analyses |
Chesney et al. (2018) [45] | Advanced, unresectable melanoma | Randomized Phase II (open-label) | Patients with advanced melanoma | (N = 198; 98 in combination arm, 100 in ipilimumab arm) | Intralesional TVEC in combination with ipilimumab | Ipilimumab alone | Primary endpoint: ORR by immune related response criteria | Secondary endpoints: Lesion responses (including responses in uninjected lesions) and safety |
Chesney ja et al. (2023) [41] | Advanced unresectable melanoma (stage IIIB–IVM1c) | Phase III, randomized, double-blind, placebo-controlled | Patients with unresectable melanoma | (PD-1 naïve; total N = 692, with 346 per arm) | Intralesional TVEC plus pembrolizumab | Placebo plus pembrolizumab | Dual primary endpoints: PFS (per mRECIST by blinded independent review) and OS | Secondary endpoints: ORR, CRR, durable response rate, safety |
Cohn et al. (2017) [61] | Recurrent or persistent epithelial ovarian, tubal, or peritoneal carcinoma | Randomized Phase IIB | Women with recurrent or persistent ovarian, tubal, or peritoneal cancer | (N = 108 evaluable) | Weekly paclitaxel plus oncolytic reovirus (Reolysin) | Weekly paclitaxel alone | Primary endpoint: PFS | Secondary endpoints: ORR, toxicity, and correlative biomarker analyses |
Freytag et al. (2014) [63] | Intermediate risk prostate cancer | Prospective Randomized Phase II | Men with intermediate-risk prostate cancer | N = 44; 21 in experimental arm, 23 in control | Intensity modulated radiation therapy (IMRT) combined with oncolytic adenovirus-mediated cytotoxic gene therapy (OAMCGT) | IMRT only | Primary endpoint: Acute toxicity (<90 days) and 2-year prostate biopsy positivity | Secondary endpoints: Quality of life (QOL), freedom from biochemical/clinical failure, freedom from metastases, survival |
Galanis et al. (2012) [71] | Metastatic melanoma | Phase II, single-arm | Patients with metastatic melanoma | 21 | Intravenous administration of Reolysin® (3 × 1010 TCID50 on days 1–5 every 28 days) | None | Primary endpoint: Antitumor effect (clinical benefit rate) and toxicity profile | Secondary endpoints: Median time to progression (45 days) and median OS (165 days) |
Lindsey et al., 2006 [72] | Metastatic melanoma | Randomized Phase II (three-arm design plus a sequential cohort trial) | 64 | Recombinant poxvirus vaccines (vaccinia and fowlpox vectors) encoding full-length tyrosinase; administered either alone or with concurrent (low or high dose) IL2, or sequential high dose IL2 in the second trial | Vaccine-alone arm served as comparator within the trial | Objective clinical response (tumor shrinkage) and immunologic response (measured in vitro) | Assessment of lesional regression (mixed and minor responses) | |
Voit et al., 2003 [73] | Resectable Stage III melanoma (adjuvant setting) | Phase II trial (adjuvant immunotherapy) | Patients with melanoma | 20 patients | Intradermal injection of NDV-modified autologous melanoma cell lysate combined with interleukin2 | Matched-pair control (patients managed with surgery alone) | Induction of DTH response and reduction in tumor recurrence rate | Safety/tolerability and immunologic profile |
Habib et al., 2002 [48] | Hepatocellular carcinoma (HCC) | Open-label, randomized Phase I/II trial | Patients with HCC | 10 patients | E1Bdeleted adenovirus (dl1520) gene therapy for HCC | Percutaneous ethanol injection (PEI) | Tumor response (partial response vs. progression) and safety | Evaluation of toxicity and complications |
Wallack et al., 1995 [46] | Stage II melanoma (surgical adjuvant setting) | Phase III randomized, double-blind, multi-institutional trial | Patients with melanoma | 250 patients (104 VMO; 113 placebo) | Vaccinia melanoma oncolysate (VMO) vaccine administered post-surgery | Placebo vaccinia virus (identical virus given as control) | Increase in DFI and OS in the adjuvant setting | Immunologic evaluation (DTH skin test) and safety/tolerability |
Wallack et al., 1997 [47] | Stage II melanoma (surgical adjuvant setting) | Phase III randomized multi-institutional trial—Second interim analysis | Patients with melanoma | Subset details from same trial as [46] | Vaccinia melanoma oncolysate (VMO) vaccine | Placebo vaccinia virus | Primary endpoints: OS and DFS | Retrospective subset analyses to identify groups with survival benefit |
Schlag et al., 1992 [39] | Colorectal cancer with liver metastases | Phase II trial (adjuvant active specific immunotherapy) | Patients with Colorectal cancer | 23 patients | Autologous, irradiated tumor cell vaccine incubated with 32 HU Newcastle disease virus (NDV); administered intradermally | Matched-pair control (surgery only) | Primary endpoints: DTH response enhancement and reduction in tumor recurrence rate | Safety and immunologic tolerance; comparison of DTH to standard antigens |
Chesney et al., 2023 [40] | Advanced unresectable melanoma | Multicenter, randomized, open-label Phase II trial | Patients with melanoma | 198 patients (98 in T-VEC plus ipilimumab arm; 100 in ipilimumab alone arm) | Intralesional TVEC combined with intravenous ipilimumab (3 mg/kg, up to 4 doses) | Ipilimumab alone | Primary endpoint: Investigator-assessed ORR per immune-related criteria | Secondary endpoints: DRR, duration of response (DOR), median PFS, OS, and safety |
Villalona-calero et al., 2016 [55] | Metastatic/recurrent NSCLC with KRAS-activated tumors | Phase II trial | Patients with metastatic/recurrent NSCLC harboring Ras pathway activation | 37 | Paclitaxel + carboplatin + Reolysin® (IV) | No formal control (single-arm study) | Primary: Tumor response (RECIST) and tolerability | Secondary: OS exploratory biomarker analyses |
Lu et al., 2004 [74] | Advanced refractory malignant tumors (various solid tumors) | Intratumoral H101 (recombinant adenovirus) + standard chemotherapy | Internal control: Non injected lesions in the same patients | Primary: Objective response in injected lesions | Secondary: Comparison of non-injected lesion responses, safety | |||
Khuri et al., 2000 [66] | Recurrent squamous cell carcinoma of the head and neck | Phase II controlled trial | Patients with recurrent head and neck SCC | 37 enrolled; 30 evaluable for response | Intratumoral ONYX-015 + IV cisplatin and 5fluorouracil | Intrapatient control: Non injected tumor masses (treated with chemotherapy alone) | Primary: Tumor responses (injected lesions) | Secondary: Duration of response, safety/tolerability, demonstration of viral replication |
Ma et al., 2017 [56] | Recurrent nasopharyngeal carcinoma (NPC) | Randomized Phase II trial | Patients with recurrent NPC; 162 total (54 per treatment arm across 3 arms) | 162 (54 in each of 3 groups) | Recombinant human adenovirus p53 (rAdp53) + chemoradiotherapy (CRT) | Two control groups: CRT alone and rAdp53 alone | Primary: Objective response rate (CR + PR) by RECIST | Secondary: Changes in serum tumor markers, toxicity, PFS, and 3-year survival rate |
Harrington et al., 2016 [75] | Unresectable stage IIIB–IVM1a melanoma (OPTiM subgroup) | Subgroup analysis from a Phase III trial | Patients with stage IIIB–IVM1a melanoma; 249 patients in subgroup | 249 (from OPTiM subgroup) | Intralesional TVEC (administered per protocol) | Subcutaneous recombinant GMCSF | Primary: DRR and ORR in stage IIIB–IVM1a melanoma | Secondary: CR rate, duration of response, and safety |
Kelly et al., 2020 [64] | Locally advanced or metastatic sarcoma | Phase 2, single-institution open-label trial | Patients with advanced sarcoma refractory to standard systemic therapy | 20 | Intratumoral TVEC (4 mL; first dose at 106 PFU/mL then 108 PFU/mL) + intravenous pembrolizumab (200 mg flat dose every 3 weeks) | None (single arm) | Primary: ORR at 24 weeks by RECIST | Secondary: Best ORR by immune-related RECIST, PFS, OS, safety |
Eigl et al., 2018 [62] | Metastatic castration-resistant prostate cancer (mCRPC) | Randomized Phase II trial | Men with mCRPC | 85 | Docetaxel (75 mg/m2 IV on day 1 every 21-day cycle) + pelareorep (Reolysin®) | Docetaxel (75 mg/m2 IV on day 1 every 21-day cycle) + prednisone 5 mg twice daily | Primary: 12-week lack of disease progression (LPD rate) | Secondary: OS |
Cerullo et al. (2011) [76] | Advanced solid tumors (refractory) | Phase I/II (non-randomized) | Patients with Advanced solid tumors (refractory) | 42 vs. 8 | Oncolytic adenovirus + low-dose cyclophosphamide | Oncolytic adenovirus alone | Safety, Treg reduction | PFS, OS, disease control rate |
Yang et al. (2010) [52] | Hepatocellular carcinoma (HCC) | Phase II (RCT) | Patients with HCC | 20 vs. 20 | rAd-p53 + fractionated stereotactic RT (fSRT) | fSRT alone | Tumor response, survival rates | Toxicity |
Tian et al. (2009) [51] | Unresectable HCC | Pilot Phase II (RCT) | Patients with HCC | 23 vs. 23 | rAd-p53 + 5-FU after TACE | TACE alone | Efficacy (TTP, OS) | Toxicity, biomarker expression |
Pan et al. (2009) [57] | Nasopharyngeal carcinoma (NPC) | Phase II (RCT) | Patients with NPC | 42 vs. 40 | rAd-p53 + RT | RT alone | Loco regional control, survival | Toxicity |
Dong et al. (2008) [68] | Malignant pleural/peritoneal effusion (various cancers) | Patients different cancers | 27 vs. 21 | rAd-p53 + cisplatin | Cisplatin alone | Effusion control, Karnofsky score improvement | Toxicity | |
Xing Su et al. (2016) [67] | Locally Advanced Cervical Cancer | Randomized Controlled Phase 2 | Patients with Locally Advanced Cervical Cancer | 69 (PRT) vs. 35 (RT) | rAd-p53 + Radiotherapy | Radiotherapy alone | Safety 5-year OS and PFS | Loco regional recurrence rate Distant metastasis rate |
Manfred Westphal et al. (2013) [65] | Glioblastoma Multiforme | Phase 3 (ASPECT Trial) | Patients with Glioblastoma Multiforme | 124 (sitimagene) vs. 126 (standard) | Sitimagene ceradenovec + ganciclovir | Standard care (surgery + radiotherapy) | Time to death or re-intervention (composite endpoint) | OS Safety |
Biomarker Category | Specific Biomarker | Change During Treatment | Reported In |
---|---|---|---|
Immune Cell Infiltration | CD8+ T cells | ↑ | Ribas et al. (2017), Shoushtari et al. (2023), Schwarze et al. (2022) [77,78,79] |
PD-L1 expression | ↑ | Ribas et al. (2017), Schwarze et al. (2022) [77,78] | |
IFN-γ gene expression | ↑ | Shoushtari et al. (2023), Schwarze et al. (2022) [78,79] | |
Viral Biomarkers | Viral replication | ↑ | Schenk et al. (2020), Garcia et al. (2018) [58,80] |
Neutralizing antibodies | ↑ | Schenk et al. (2020), Garcia et al. (2018) [58,80] | |
Cytokines & Peripheral Markers | CTLA4+ Tregs | ↓ | Noonan et al. (2016), Mahalingam et al. (2020) [60,81] |
Cytotoxic T cells (e.g., CD8+) | ↑ | Noonan et al. (2016), Mahalingam et al. (2020) [60,81] | |
Memory T-cell subsets | ↑ | Mahalingam et al. (2020) [81] | |
Genetic/Molecular Signatures | p53 mRNA, p21, Bax (pro-apoptotic) | ↑ | Yang et al. (2010), Tian et al. (2009), Pan et al. (2009) [51,52,57] |
VEGF (angiogenesis marker) | ↓ | Yang et al. (2010), Pan et al. (2009) [52,57] | |
Tumor Burden Surrogates | Tumor size/volume | ↓ | Andtbacka et al. (2016), Stahlie et al. (2021) [42,82] |
Lesion-level response (uninjected tumor) | ↑ | Andtbacka et al. (2016), Stahlie et al. (2021) [42,82] | |
Surrogate Clinical Biomarkers | Circulating Tumor Cells (CTCs) | ↓ | Bernstein et al. (2018), Soliman et al. (2020) [59,83] |
Residual Cancer Burden (RCB) | ↓ | Bernstein et al. (2018), Soliman et al. (2020) [59,83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Tanani, M.; Rabbani, S.A.; Patni, M.A.; Babiker, R.; Satyam, S.M.; Rangraze, I.R.; Wali, A.F.; El-Tanani, Y.; Porntaveetus, T. Efficacy, Safety and Predictive Biomarkers of Oncolytic Virus Therapy in Solid Tumors: A Systematic Review and Meta-Analysis. Vaccines 2025, 13, 1070. https://doi.org/10.3390/vaccines13101070
El-Tanani M, Rabbani SA, Patni MA, Babiker R, Satyam SM, Rangraze IR, Wali AF, El-Tanani Y, Porntaveetus T. Efficacy, Safety and Predictive Biomarkers of Oncolytic Virus Therapy in Solid Tumors: A Systematic Review and Meta-Analysis. Vaccines. 2025; 13(10):1070. https://doi.org/10.3390/vaccines13101070
Chicago/Turabian StyleEl-Tanani, Mohamed, Syed Arman Rabbani, Mohamed Anas Patni, Rasha Babiker, Shakta Mani Satyam, Imran Rashid Rangraze, Adil Farooq Wali, Yahia El-Tanani, and Thantrira Porntaveetus. 2025. "Efficacy, Safety and Predictive Biomarkers of Oncolytic Virus Therapy in Solid Tumors: A Systematic Review and Meta-Analysis" Vaccines 13, no. 10: 1070. https://doi.org/10.3390/vaccines13101070
APA StyleEl-Tanani, M., Rabbani, S. A., Patni, M. A., Babiker, R., Satyam, S. M., Rangraze, I. R., Wali, A. F., El-Tanani, Y., & Porntaveetus, T. (2025). Efficacy, Safety and Predictive Biomarkers of Oncolytic Virus Therapy in Solid Tumors: A Systematic Review and Meta-Analysis. Vaccines, 13(10), 1070. https://doi.org/10.3390/vaccines13101070