Evaluation of Vaccine Strategies among Healthcare Workers during COVID-19 Omicron Outbreak in Taiwan
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Design
2.3. Participants
2.4. Immunizations, Blood Samplings and Monitoring of Adverse Events
2.5. Measurement of Neutralizing Antibody (nAb) and Anti-N Antibody to SARS-CoV-2
2.6. Statistical Analysis
3. Results
3.1. Reactogenicity of SARS-CoV-2 Vaccines of Different Platforms
3.2. Immunogenicity of SARS-CoV-2 Vaccines and Dynamics of Vaccine-Induced Neutralizing Antibody (nAb) against SARS-CoV-2
3.3. Factors Associated with the GMTs of Vaccine-Evoked nAb against SARS-CoV2
3.4. Effect of SARS-CoV-2 Vaccine Schedules against COVID-19 during the Omicron Epidemic
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gebru, A.A.; Birhanu, T.; Wendimu, E.; Ayalew, A.F.; Mulat, S.; Abasimel, H.Z.; Kazemi, A.; Tadesse, B.A.; Gebru, B.A.; Deriba, B.S.; et al. Global Burden of COVID-19: Situational Analyis and Review. Hum. Antibodies 2021, 29, 139–148. [Google Scholar] [CrossRef] [PubMed]
- WHO. Solidarity Trial Vaccines. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov/solidarity-trial-of-covid-19-vaccines (accessed on 29 January 2022).
- Ramasamy, M.N.; Minassian, A.M.; Ewer, K.J.; Flaxman, A.L.; Folegatti, P.M.; Owens, D.R.; Voysey, M.; Aley, P.K.; Angus, B.; Babbage, G.; et al. Safety and Immunogenicity of ChAdOx1 NCoV-19 Vaccine Administered in a Prime-Boost Regimen in Young and Old Adults (COV002): A Single-Blind, Randomised, Controlled, Phase 2/3 Trial. Lancet 2021, 396, 1979–1993. [Google Scholar] [CrossRef]
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and Efficacy of the ChAdOx1 NCoV-19 Vaccine (AZD1222) against SARS-CoV-2: An Interim Analysis of Four Randomised Controlled Trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Marc, G.P.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 MRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, S.-M.; Liu, M.-C.; Chen, Y.-H.; Lee, W.-S.; Hwang, S.-J.; Cheng, S.-H.; Ko, W.-C.; Hwang, K.-P.; Wang, N.-C.; Lee, Y.-L.; et al. Safety and Immunogenicity of CpG 1018 and Aluminium Hydroxide-Adjuvanted SARS-CoV-2 S-2P Protein Vaccine MVC-COV1901: Interim Results of a Large-Scale, Double-Blind, Randomised, Placebo-Controlled Phase 2 Trial in Taiwan. Lancet Respir. Med. 2021, 9, 1396–1406. [Google Scholar] [CrossRef]
- Heath, P.T.; Galiza, E.P.; Baxter, D.N.; Boffito, M.; Browne, D.; Burns, F.; Chadwick, D.R.; Clark, R.; Cosgrove, C.; Galloway, J.; et al. Safety and Efficacy of NVX-CoV2373 COVID-19 Vaccine. N. Engl. J. Med. 2021, 385, 1172–1183. [Google Scholar] [CrossRef]
- Goldberg, Y.; Mandel, M.; Bar-On, Y.M.; Bodenheimer, O.; Freedman, L.; Haas, E.J.; Milo, R.; Alroy-Preis, S.; Ash, N.; Huppert, A. Waning Immunity after the BNT162b2 Vaccine in Israel. N. Engl. J. Med. 2021, 385, e85. [Google Scholar] [CrossRef]
- Andrews, N.; Tessier, E.; Stowe, J.; Gower, C.; Kirsebom, F.; Simmons, R.; Gallagher, E.; Thelwall, S.; Groves, N.; Dabrera, G.; et al. Duration of Protection against Mild and Severe Disease by COVID-19 Vaccines. N. Engl. J. Med. 2022, 386, 340–350. [Google Scholar] [CrossRef]
- Lyke, K.E.; Atmar, R.L.; Islas, C.D.; Posavad, C.M.; Szydlo, D.; Chourdhury, R.P.; Deming, M.E.; Eaton, A.; Jackson, L.A.; Branche, A.R.; et al. Rapid Decline in Vaccine-Boosted Neutralizing Antibodies against SARS-CoV-2 Omicron Variant. Cell Rep. Med. 2022, 3, 100679. [Google Scholar] [CrossRef]
- Tian, D.; Sun, Y.; Xu, H.; Ye, Q. The Emergence and Epidemic Characteristics of the Highly Mutated SARS-CoV-2 Omicron Variant. J. Méd. Virol. 2022, 94, 2376–2383. [Google Scholar] [CrossRef]
- Lai, C.-C.; Ko, W.-C.; Chen, C.-J.; Chen, P.-Y.; Huang, Y.-C.; Lee, P.-I.; Hsueh, P.-R. COVID-19 Vaccines and Thrombosis with Thrombocytopenia Syndrome. Expert Rev. Vaccines 2021, 20, 1027–1035. [Google Scholar] [CrossRef] [PubMed]
- Paterlini, M. COVID-19: Sweden, Norway, and Finland Suspend Use of Moderna Vaccine in Young People “as a Precaution”. BMJ 2021, 375, n2477. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D. Omicron’s Molecular Structure Could Help Explain Its Global Takeover. Nature 2022, 602, 373–374. [Google Scholar] [CrossRef] [PubMed]
- Mannar, D.; Saville, J.W.; Zhu, X.; Srivastava, S.S.; Berezuk, A.M.; Tuttle, K.S.; Marquez, A.C.; Sekirov, I.; Subramaniam, S. SARS-CoV-2 Omicron Variant: Antibody Evasion and Cryo-EM Structure of Spike Protein–ACE2 Complex. Science 2022, 375, 760–764. [Google Scholar] [CrossRef]
- Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; Gallagher, E.; Gower, C.; Kall, M.; Groves, N.; O’Connell, A.-M.; et al. COVID-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N. Engl. J. Med. 2022, 386, 1532–1546. [Google Scholar] [CrossRef]
- Collie, S.; Champion, J.; Moultrie, H.; Bekker, L.-G.; Gray, G. Effectiveness of BNT162b2 Vaccine against Omicron Variant in South Africa. N. Engl. J. Med. 2021, 386, 494–496. [Google Scholar] [CrossRef]
- Chen, C.-J.; Yang, L.-Y.; Chang, W.-Y.; Huang, Y.-C.; Chiu, C.-H.; Shih, S.-R.; Huang, C.-G.; Huang, K.-Y.A. A Randomized Controlled Trial of Heterologous ChAdOx1 NCoV-19 and Recombinant Subunit Vaccine MVC-COV1901 against COVID-19. Nat. Commun. 2022, 13, 5466. [Google Scholar] [CrossRef]
- Wall, E.C.; Wu, M.; Harvey, R.; Kelly, G.; Warchal, S.; Sawyer, C.; Daniels, R.; Hobson, P.; Hatipoglu, E.; Ngai, Y.; et al. Neutralising Antibody Activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 Vaccination. Lancet 2021, 397, 2331–2333. [Google Scholar] [CrossRef]
- Atmar, R.L.; Lyke, K.E.; Deming, M.E.; Jackson, L.A.; Branche, A.R.; Sahly, H.M.E.; Rostad, C.A.; Martin, J.M.; Johnston, C.; Rupp, R.E.; et al. Homologous and Heterologous COVID-19 Booster Vaccinations. N. Engl. J. Med. 2022, 386, 1046–1057. [Google Scholar] [CrossRef]
- Munro, A.P.S.; Janani, L.; Cornelius, V.; Aley, P.K.; Babbage, G.; Baxter, D.; Bula, M.; Cathie, K.; Chatterjee, K.; Dodd, K.; et al. Safety and Immunogenicity of Seven COVID-19 Vaccines as a Third Dose (Booster) Following Two Doses of ChAdOx1 NCov-19 or BNT162b2 in the UK (COV-BOOST): A Blinded, Multicentre, Randomised, Controlled, Phase 2 Trial. Lancet 2021, 398, 2258–2276. [Google Scholar] [CrossRef]
- Bernal, J.L.; Andrews, N.; Gower, C.; Robertson, C.; Stowe, J.; Tessier, E.; Simmons, R.; Cottrell, S.; Roberts, R.; O’Doherty, M.; et al. Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca Vaccines on COVID-19 Related Symptoms, Hospital Admissions, and Mortality in Older Adults in England: Test Negative Case-Control Study. BMJ 2021, 373, n1088. [Google Scholar] [CrossRef]
- Grifoni, A.; Weiskopf, D.; Ramirez, S.I.; Mateus, J.; Dan, J.M.; Moderbacher, C.R.; Rawlings, S.A.; Sutherland, A.; Premkumar, L.; Jadi, R.S.; et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 2020, 181, 1489–1501.e15. [Google Scholar] [CrossRef] [PubMed]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic Inflammation in the Etiology of Disease across the Life Span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
Parameter | 30 Days after Second Immunization | 30 Days after Third Immunization | ||||
---|---|---|---|---|---|---|
Estimate | Standard Error | p Value | Estimate | Standard Error | p Value | |
Dose 1–3 Vaccination Schedule $, vs. MMM | ||||||
AAB | −3.0117 | 0.3166 | <0.0001 | −0.4251 | 0.0822 | <0.0001 |
AAG | −2.9765 | 0.2779 | <0.0001 | −1.1476 | 0.0981 | <0.0001 |
AAM | −3.0824 | 0.1861 | <0.0001 | −0.2947 | 0.0656 | <0.0001 |
AMB | −0.7316 | 0.4072 | 0.0729 | −0.2889 | 0.1417 | 0.0028 |
AMG | −0.6025 | 0.3893 | 0.1222 | −1.2444 | 0.1348 | <0.0001 |
AMM | −0.6973 | 0.2803 | 0.0131 | −0.2472 | 0.0977 | <0.0001 |
MMG | 0.15169 | 0.3835 | 0.6926 | −0.9047 | 0.1333 | <0.0001 |
Interval since V1 | 0.00404 | 0.0057 | 0.4793 | 0.0012 | 0.0008 | 0.1383 |
Gender female vs. male | 0.28022 | 0.0947 | 0.0032 | 0.0620 | 0.0331 | 0.0615 |
Age, in years | −0.0077 | 0.0038 | 0.0452 | −0.0011 | 0.0013 | 0.4196 |
Parameter | Negative for COVID-19 N= 318 | Positive for COVID-19 N = 299 | Hazard Ratio (HR) | 95% HR Confidence Limits | p |
---|---|---|---|---|---|
Female gender (%) | 220 (69.2) | 218 (72.9) | 1.160 | 0.893–1.507 | 0.2674 |
Age, years, mean ± standard deviation | 41.5 ± 11.3 | 42.7 ± 11.5 | 1.004 | 0.994–1.015 | 0.4464 |
Dose 4, vs. not immunized | |||||
Not immunized | 157 (49.4) | 205 (68.6) | … | … | … |
Medigen | 20 (6.29) | 9 (3.01) | 0.307 | 0.153–0.614 | 0.0008 |
Moderna | 98 (30.8) | 55 (18.4) | 0.372 | 0.275–0.505 | <0.0001 |
Moderna_BA1 | 9 (2.83) | 6 (2.01) | 0.191 | 0.077–0.473 | 0.0003 |
Novavax | 8 (2.52) | 5 (1.67) | 0.447 | 0.182–1.100 | 0.0796 |
Pfizer-BioNTech | 26 (8.18) | 19 (6.35) | 0.409 | 0.250–0.668 | 0.0004 |
$ Dose 1–3, vs. MMM | |||||
MMM | 56 (17.6) | 43 (14.4) | … | … | … |
AAB | 25 (7.86) | 23 (7.69) | 1.407 | 0.830–2.387 | 0.2051 |
AAG | 11 (3.46) | 16 (5.35) | 1.386 | 0.772–2.486 | 0.2740 |
AAM | 117 (36.8) | 117 (39.1) | 1.362 | 0.950–1.953 | 0.0924 |
AMB | 6 (1.89) | 7 (2.34) | 1.497 | 0.659–3.402 | 0.3350 |
AMG | 8 (2.52) | 8 (2.68) | 1.408 | 0.649–3.052 | 0.3863 |
AMM | 88 (27.7) | 80 (26.8) | 1.262 | 0.863–1.845 | 0.2304 |
MMB | 0 (0) | 2 (0.67) | 2.596 | 0.612–11.016 | 0.1957 |
MMG | 6 (1.89) | 3 (1.00) | 1.160 | 0.356–3.788 | 0.8052 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, M.-R.; Huang, C.-G.; Chiu, C.-H.; Chen, C.-J. Evaluation of Vaccine Strategies among Healthcare Workers during COVID-19 Omicron Outbreak in Taiwan. Vaccines 2024, 12, 1057. https://doi.org/10.3390/vaccines12091057
Lin M-R, Huang C-G, Chiu C-H, Chen C-J. Evaluation of Vaccine Strategies among Healthcare Workers during COVID-19 Omicron Outbreak in Taiwan. Vaccines. 2024; 12(9):1057. https://doi.org/10.3390/vaccines12091057
Chicago/Turabian StyleLin, Min-Ru, Chung-Guei Huang, Cheng-Hsun Chiu, and Chih-Jung Chen. 2024. "Evaluation of Vaccine Strategies among Healthcare Workers during COVID-19 Omicron Outbreak in Taiwan" Vaccines 12, no. 9: 1057. https://doi.org/10.3390/vaccines12091057
APA StyleLin, M.-R., Huang, C.-G., Chiu, C.-H., & Chen, C.-J. (2024). Evaluation of Vaccine Strategies among Healthcare Workers during COVID-19 Omicron Outbreak in Taiwan. Vaccines, 12(9), 1057. https://doi.org/10.3390/vaccines12091057