Senolytic Vaccines from the Central and Peripheral Tolerance Perspective
Abstract
1. Introduction
2. Central Tolerance for Senescent Antigens
3. Peripheral Tolerance for Senescent Antigens
4. The Current State of the Senotherapeutic Approaches
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vaupel, J.W.; Villavicencio, F.; Bergeron-Boucher, M.-P. Demographic Perspectives on the Rise of Longevity. Proc. Natl. Acad. Sci. USA 2021, 118, e2019536118. [Google Scholar] [CrossRef] [PubMed]
- Global Health Estimates: Life Expectancy and Leading Causes of Death and Disability. Available online: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates (accessed on 30 November 2024).
- Crimmins, E.M. Lifespan and Healthspan: Past, Present, and Promise. Gerontologist 2015, 55, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.J. The Longevity Economy. Lancet Healthy Longev. 2021, 2, e828–e835. [Google Scholar] [CrossRef]
- Harinath, G.; Zalzala, S.; Nyquist, A.; Wouters, M.; Isman, A.; Moel, M.; Verdin, E.; Kaeberlein, M.; Kennedy, B.; Bischof, E. The Role of Quality of Life Data as an Endpoint for Collecting Real-World Evidence within Geroscience Clinical Trials. Ageing Res. Rev. 2024, 97, 102293. [Google Scholar] [CrossRef]
- Wu, R.; Sun, F.; Zhang, W.; Ren, J.; Liu, G.-H. Targeting Aging and Age-Related Diseases with Vaccines. Nat. Aging 2024, 4, 464–482. [Google Scholar] [CrossRef] [PubMed]
- Ghattas, M.; Dwivedi, G.; Lavertu, M.; Alameh, M.-G. Vaccine Technologies and Platforms for Infectious Diseases: Current Progress, Challenges, and Opportunities. Vaccines 2021, 9, 1490. [Google Scholar] [CrossRef]
- Muhs, A.; Hickman, D.T.; Pihlgren, M.; Chuard, N.; Giriens, V.; Meerschman, C.; van der Auwera, I.; van Leuven, F.; Sugawara, M.; Weingertner, M.-C.; et al. Liposomal Vaccines with Conformation-Specific Amyloid Peptide Antigens Define Immune Response and Efficacy in APP Transgenic Mice. Proc. Natl. Acad. Sci. USA 2007, 104, 9810–9815. [Google Scholar] [CrossRef]
- Hickman, D.T.; López-Deber, M.P.; Ndao, D.M.; Silva, A.B.; Nand, D.; Pihlgren, M.; Giriens, V.; Madani, R.; St-Pierre, A.; Karastaneva, H.; et al. Sequence-Independent Control of Peptide Conformation in Liposomal Vaccines for Targeting Protein Misfolding Diseases. J. Biol. Chem. 2011, 286, 13966–13976. [Google Scholar] [CrossRef]
- Rafii, M.S.; Sol, O.; Mobley, W.C.; Delpretti, S.; Skotko, B.G.; Burke, A.D.; Sabbagh, M.N.; Yuan, S.H.; Rissman, R.A.; Pulsifer, M.; et al. Safety, Tolerability, and Immunogenicity of the ACI-24 Vaccine in Adults with Down Syndrome: A Phase 1b Randomized Clinical Trial. JAMA Neurol. 2022, 79, 565–574. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wang, P.-N.; Chiu, M.-J.; Finstad, C.L.; Lin, F.; Lynn, S.; Tai, Y.-H.; De Fang, X.; Zhao, K.; Hung, C.-H.; et al. UB-311, a Novel UBITh® Amyloid β Peptide Vaccine for Mild Alzheimer’s Disease. Alzheimer’s Dement. 2017, 3, 262–272. [Google Scholar] [CrossRef]
- Yu, H.J.; Dickson, S.P.; Wang, P.-N.; Chiu, M.-J.; Huang, C.-C.; Chang, C.-C.; Liu, H.; Hendrix, S.B.; Dodart, J.-C.; Verma, A.; et al. Safety, Tolerability, Immunogenicity, and Efficacy of UB-311 in Participants with Mild Alzheimer’s Disease: A Randomised, Double-Blind, Placebo-Controlled, Phase 2a Study. EBioMedicine 2023, 94, 104665. [Google Scholar] [CrossRef]
- Davtyan, H.; Ghochikyan, A.; Petrushina, I.; Hovakimyan, A.; Davtyan, A.; Cribbs, D.H.; Agadjanyan, M.G. The MultiTEP Platform-Based Alzheimer’s Disease Epitope Vaccine Activates a Broad Repertoire of T Helper Cells in Nonhuman Primates. Alzheimer’s Dement. 2014, 10, 271–283. [Google Scholar] [CrossRef] [PubMed]
- Lacosta, A.-M.; Pascual-Lucas, M.; Pesini, P.; Casabona, D.; Pérez-Grijalba, V.; Marcos-Campos, I.; Sarasa, L.; Canudas, J.; Badi, H.; Monleón, I.; et al. Safety, Tolerability and Immunogenicity of an Active Anti-Aβ40 Vaccine (ABvac40) in Patients with Alzheimer’s Disease: A Randomised, Double-Blind, Placebo-Controlled, Phase I Trial. Alzheimer’s Res. Ther. 2018, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Theunis, C.; Crespo-Biel, N.; Gafner, V.; Pihlgren, M.; López-Deber, M.P.; Reis, P.; Hickman, D.T.; Adolfsson, O.; Chuard, N.; Ndao, D.M.; et al. Efficacy and Safety of a Liposome-Based Vaccine against Protein Tau, Assessed in Tau.P301L Mice That Model Tauopathy. PLoS ONE 2013, 8, e72301. [Google Scholar] [CrossRef] [PubMed]
- Novak, P.; Schmidt, R.; Kontsekova, E.; Kovacech, B.; Smolek, T.; Katina, S.; Fialova, L.; Prcina, M.; Parrak, V.; Dal-Bianco, P.; et al. FUNDAMANT: An Interventional 72-Week Phase 1 Follow-up Study of AADvac1, an Active Immunotherapy against Tau Protein Pathology in Alzheimer’s Disease. Alzheimer’s Res. Ther. 2018, 10, 108. [Google Scholar] [CrossRef] [PubMed]
- Novak, P.; Kovacech, B.; Katina, S.; Schmidt, R.; Scheltens, P.; Kontsekova, E.; Ropele, S.; Fialova, L.; Kramberger, M.; Paulenka-Ivanovova, N.; et al. ADAMANT: A Placebo-Controlled Randomized Phase 2 Study of AADvac1, an Active Immunotherapy against Pathological Tau in Alzheimer’s Disease. Nat. Aging 2021, 1, 521–534. [Google Scholar] [CrossRef]
- Cullen, N.C.; Novak, P.; Tosun, D.; Kovacech, B.; Hanes, J.; Kontsekova, E.; Fresser, M.; Ropele, S.; Feldman, H.H.; Schmidt, R.; et al. Efficacy Assessment of an Active Tau Immunotherapy in Alzheimer’s Disease Patients with Amyloid and Tau Pathology: A Post Hoc Analysis of the “ADAMANT” Randomised, Placebo-Controlled, Double-Blind, Multi-Centre, Phase 2 Clinical Trial. EBioMedicine 2024, 99, 104923. [Google Scholar] [CrossRef]
- Park, H.-H.; Lee, K.-Y.; Kim, S.; Lee, J.W.; Choi, N.-Y.; Lee, E.-H.; Lee, Y.J.; Lee, S.-H.; Koh, S.-H. Novel Vaccine Peptide GV1001 Effectively Blocks β-Amyloid Toxicity by Mimicking the Extra-Telomeric Functions of Human Telomerase Reverse Transcriptase. Neurobiol. Aging 2014, 35, 1255–1274. [Google Scholar] [CrossRef]
- Frenkel, D.; Maron, R.; Burt, D.S.; Weiner, H.L. Nasal Vaccination with a Proteosome-Based Adjuvant and Glatiramer Acetate Clears Beta-Amyloid in a Mouse Model of Alzheimer Disease. J. Clin. Investig. 2005, 115, 2423–2433. [Google Scholar] [CrossRef]
- Pang, Z.; Nakagami, H.; Osako, M.K.; Koriyama, H.; Nakagami, F.; Tomioka, H.; Shimamura, M.; Kurinami, H.; Takami, Y.; Morishita, R.; et al. Therapeutic Vaccine against DPP4 Improves Glucose Metabolism in Mice. Proc. Natl. Acad. Sci. USA 2014, 111, E1256-1263. [Google Scholar] [CrossRef]
- Cavelti-Weder, C.; Timper, K.; Seelig, E.; Keller, C.; Osranek, M.; Lässing, U.; Spohn, G.; Maurer, P.; Müller, P.; Jennings, G.T.; et al. Development of an Interleukin-1β Vaccine in Patients with Type 2 Diabetes. Mol. Ther. 2016, 24, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, X.-L.; Zha, J.; Mao, L.-Z.; Chai, J.-Q.; Liu, R.-T. Therapeutic Vaccine against IL-1β Improved Glucose Control in a Mouse Model of Type 2 Diabetes. Life Sci. 2018, 192, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Yokota, H.; Hayashi, H.; Hanaguri, J.; Yamagami, S.; Kushiyama, A.; Nakagami, H.; Nagaoka, T. Effect of Prorenin Peptide Vaccine on the Early Phase of Diabetic Retinopathy in a Murine Model of Type 2 Diabetes. PLoS ONE 2022, 17, e0262568. [Google Scholar] [CrossRef] [PubMed]
- Downham, M.R.; Auton, T.R.; Rosul, A.; Sharp, H.L.; Sjöström, L.; Rushton, A.; Richards, J.P.; Mant, T.G.K.; Gardiner, S.M.; Bennett, T.; et al. Evaluation of Two Carrier Protein-Angiotensin I Conjugate Vaccines to Assess Their Future Potential to Control High Blood Pressure (Hypertension) in Man. Br. J. Clin. Pharmacol. 2003, 56, 505–512. [Google Scholar] [CrossRef]
- Brown, M.J.; Coltart, J.; Gunewardena, K.; Ritter, J.M.; Auton, T.R.; Glover, J.F. Randomized Double-Blind Placebo-Controlled Study of an Angiotensin Immunotherapeutic Vaccine (PMD3117) in Hypertensive Subjects. Clin. Sci. 2004, 107, 167–173. [Google Scholar] [CrossRef]
- Ambühl, P.M.; Tissot, A.C.; Fulurija, A.; Maurer, P.; Nussberger, J.; Sabat, R.; Nief, V.; Schellekens, C.; Sladko, K.; Roubicek, K.; et al. A Vaccine for Hypertension Based on Virus-like Particles: Preclinical Efficacy and Phase I Safety and Immunogenicity. J. Hypertens. 2007, 25, 63–72. [Google Scholar] [CrossRef]
- Tissot, A.C.; Maurer, P.; Nussberger, J.; Sabat, R.; Pfister, T.; Ignatenko, S.; Volk, H.-D.; Stocker, H.; Müller, P.; Jennings, G.T.; et al. Effect of Immunisation against Angiotensin II with CYT006-AngQb on Ambulatory Blood Pressure: A Double-Blind, Randomised, Placebo-Controlled Phase IIa Study. Lancet 2008, 371, 821–827. [Google Scholar] [CrossRef]
- Chen, X.; Qiu, Z.; Yang, S.; Ding, D.; Chen, F.; Zhou, Y.; Wang, M.; Lin, J.; Yu, X.; Zhou, Z.; et al. Effectiveness and Safety of a Therapeutic Vaccine Against Angiotensin II Receptor Type 1 in Hypertensive Animals. Hypertension 2013, 61, 408–416. [Google Scholar] [CrossRef]
- Pan, Y.; Zhou, Z.; Zhang, H.; Zhou, Y.; Li, Y.; Li, C.; Chen, X.; Yang, S.; Liao, Y.; Qiu, Z. The ATRQβ-001 Vaccine Improves Cardiac Function and Prevents Postinfarction Cardiac Remodeling in Mice. Hypertens. Res. 2019, 42, 329–340. [Google Scholar] [CrossRef]
- Li, C.; Yan, X.; Wu, D.; Zhang, K.; Liang, X.; Pan, Y.; Zhou, Y.; Chen, F.; Chen, X.; Yang, S.; et al. Vaccine Targeted Alpha 1D-Adrenergic Receptor for Hypertension. Hypertension 2019, 74, 1551–1562. [Google Scholar] [CrossRef]
- Kurashiki, T.; Miyake, T.; Nakagami, H.; Nishimura, M.; Morishita, R. Prevention of Progression of Aortic Aneurysm by Peptide Vaccine Against Ang II (Angiotensin II) in a Rat Model. Hypertension 2020, 76, 1879–1888. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liao, M.; Cao, M.; Qiu, Z.; Yan, X.; Zhou, Y.; Wu, H.; Wang, Y.; Zheng, J.; Ding, J.; et al. ATRQβ-001 Vaccine Prevents Experimental Abdominal Aortic Aneurysms. JAHA 2019, 8, e012341. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Kobiyama, K.; Winkels, H.; Tse, K.; Miller, J.; Vassallo, M.; Wolf, D.; Ryden, C.; Orecchioni, M.; Dileepan, T.; et al. Regulatory CD4+ T Cells Recognize Major Histocompatibility Complex Class II Molecule-Restricted Peptide Epitopes of Apolipoprotein B. Circulation 2018, 138, 1130–1143. [Google Scholar] [CrossRef] [PubMed]
- Momtazi-Borojeni, A.A.; Jaafari, M.R.; Badiee, A.; Sahebkar, A. Long-Term Generation of antiPCSK9 Antibody Using a Nanoliposome-Based Vaccine Delivery System. Atherosclerosis 2019, 283, 69–78. [Google Scholar] [CrossRef]
- Ma, Z.; Mao, C.; Chen, X.; Yang, S.; Qiu, Z.; Yu, B.; Jia, Y.; Wu, C.; Wang, Y.; Wang, Y.; et al. Peptide Vaccine Against ADAMTS-7 Ameliorates Atherosclerosis and Postinjury Neointima Hyperplasia. Circulation 2023, 147, 728–742. [Google Scholar] [CrossRef]
- Bourinbaiar, A.S.; Jirathitikal, V. Effect of Oral Immunization with Pooled Antigens Derived from Adipose Tissue on Atherosclerosis and Obesity Indices. Vaccine 2010, 28, 2763–2768. [Google Scholar] [CrossRef]
- Bourinbaiar, A.S.; Jirathitikal, V. Safety and Efficacy Trial of Adipose-Tissue Derived Oral Preparation V-6 Immunitor (V-6): Results of Open-Label, Two-Month, Follow-up Study. Lipids Health Dis. 2010, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- von Loga, I.S.; El-Turabi, A.; Jostins, L.; Miotla-Zarebska, J.; Mackay-Alderson, J.; Zeltins, A.; Parisi, I.; Bachmann, M.F.; Vincent, T.L. Active Immunisation Targeting Nerve Growth Factor Attenuates Chronic Pain Behaviour in Murine Osteoarthritis. Ann. Rheum. Dis. 2019, 78, 672–675. [Google Scholar] [CrossRef]
- Sobecki, M.; Chen, J.; Krzywinska, E.; Nagarajan, S.; Fan, Z.; Nelius, E.; Monné Rodriguez, J.M.; Seehusen, F.; Hussein, A.; Moschini, G.; et al. Vaccination-Based Immunotherapy to Target Profibrotic Cells in Liver and Lung. Cell Stem Cell 2022, 29, 1459–1474.e9. [Google Scholar] [CrossRef]
- Wu, D.; Zhou, Y.; Pan, Y.; Li, C.; Wang, Y.; Chen, F.; Chen, X.; Yang, S.; Zhou, Z.; Liao, Y.; et al. Vaccine Against PCSK9 Improved Renal Fibrosis by Regulating Fatty Acid β-Oxidation. J. Am. Heart Assoc. 2020, 9, e014358. [Google Scholar] [CrossRef]
- Meissner, W.G.; Traon, A.P.-L.; Foubert-Samier, A.; Galabova, G.; Galitzky, M.; Kutzelnigg, A.; Laurens, B.; Lührs, P.; Medori, R.; Péran, P.; et al. A Phase 1 Randomized Trial of Specific Active α-Synuclein Immunotherapies PD01A and PD03A in Multiple System Atrophy. Mov. Disord. 2020, 35, 1957–1965. [Google Scholar] [CrossRef] [PubMed]
- Nimmo, J.T.; Smith, H.; Wang, C.Y.; Teeling, J.L.; Nicoll, J.A.R.; Verma, A.; Dodart, J.-C.; Liu, Z.; Lin, F.; Carare, R.O. Immunisation with UB-312 in the Thy1SNCA Mouse Prevents Motor Performance Deficits and Oligomeric α-Synuclein Accumulation in the Brain and Gut. Acta Neuropathol. 2022, 143, 55–73. [Google Scholar] [CrossRef] [PubMed]
- Eijsvogel, P.; Misra, P.; Concha-Marambio, L.; Boyd, J.D.; Ding, S.; Fedor, L.; Hsieh, Y.-T.; Sun, Y.S.; Vroom, M.M.; Farris, C.M.; et al. Target Engagement and Immunogenicity of an Active Immunotherapeutic Targeting Pathological α-Synuclein: A Phase 1 Placebo-Controlled Trial. Nat. Med. 2024, 30, 2631–2640. [Google Scholar] [CrossRef] [PubMed]
- Haffer, K.N. Effects of Novel Vaccines on Weight Loss in Diet-Induced-Obese (DIO) Mice. J. Anim. Sci. Biotechnol. 2012, 3, 21. [Google Scholar] [CrossRef] [PubMed]
- Fulurija, A.; Lutz, T.A.; Sladko, K.; Osto, M.; Wielinga, P.Y.; Bachmann, M.F.; Saudan, P. Vaccination against GIP for the Treatment of Obesity. PLoS ONE 2008, 3, e3163. [Google Scholar] [CrossRef]
- Vizcarra, J.A.; Kirby, J.D.; Kim, S.K.; Galyean, M.L. Active Immunization against Ghrelin Decreases Weight Gain and Alters Plasma Concentrations of Growth Hormone in Growing Pigs. Domest. Anim. Endocrinol. 2007, 33, 176–189. [Google Scholar] [CrossRef]
- Zorrilla, E.P.; Iwasaki, S.; Moss, J.A.; Chang, J.; Otsuji, J.; Inoue, K.; Meijler, M.M.; Janda, K.D. Vaccination against Weight Gain. Proc. Natl. Acad. Sci. USA 2006, 103, 13226–13231. [Google Scholar] [CrossRef]
- Andrade, S.; Pinho, F.; Ribeiro, A.M.; Carreira, M.; Casanueva, F.F.; Roy, P.; Monteiro, M.P. Immunization against Active Ghrelin Using Virus-like Particles for Obesity Treatment. Curr. Pharm. Des. 2013, 19, 6551–6558. [Google Scholar] [CrossRef]
- Karin, O.; Agrawal, A.; Porat, Z.; Krizhanovsky, V.; Alon, U. Senescent Cell Turnover Slows with Age Providing an Explanation for the Gompertz Law. Nat. Commun. 2019, 10, 5495. [Google Scholar] [CrossRef]
- McHugh, D.; Gil, J. Senescence and Aging: Causes, Consequences, and Therapeutic Avenues. J. Cell Biol. 2018, 217, 65–77. [Google Scholar] [CrossRef]
- Tripathi, U.; Misra, A.; Tchkonia, T.; Kirkland, J.L. Impact of Senescent Cell Subtypes on Tissue Dysfunction and Repair: Importance and Research Questions. Mech. Ageing Dev. 2021, 198, 111548. [Google Scholar] [CrossRef]
- Matveeva, K.; Vasilieva, M.; Minskaia, E.; Rybtsov, S.; Shevyrev, D. T-Cell Immunity against Senescence: Potential Role and Perspectives. Front. Immunol. 2024, 15, 1360109. [Google Scholar] [CrossRef]
- Shin, D.-M.; Kucia, M.; Ratajczak, M.Z. Nuclear and Chromatin Reorganization during Cell Senescence and Aging—A Mini-Review. Gerontology 2010, 57, 76–84. [Google Scholar] [CrossRef]
- Sławińska, N.; Krupa, R. Molecular Aspects of Senescence and Organismal Ageing-DNA Damage Response, Telomeres, Inflammation and Chromatin. Int. J. Mol. Sci. 2021, 22, 590. [Google Scholar] [CrossRef]
- Wallis, R.; Milligan, D.; Hughes, B.; Mizen, H.; López-Domínguez, J.A.; Eduputa, U.; Tyler, E.J.; Serrano, M.; Bishop, C.L. Senescence-Associated Morphological Profiles (SAMPs): An Image-Based Phenotypic Profiling Method for Evaluating the Inter and Intra Model Heterogeneity of Senescence. Aging 2022, 14, 4220–4246. [Google Scholar] [CrossRef]
- Heckenbach, I.; Mkrtchyan, G.V.; Ezra, M.B.; Bakula, D.; Madsen, J.S.; Nielsen, M.H.; Oró, D.; Osborne, B.; Covarrubias, A.J.; Idda, M.L.; et al. Nuclear Morphology Is a Deep Learning Biomarker of Cellular Senescence. Nat. Aging 2022, 2, 742–755. [Google Scholar] [CrossRef]
- Park, J.T.; Lee, Y.-S.; Cho, K.A.; Park, S.C. Adjustment of the Lysosomal-Mitochondrial Axis for Control of Cellular Senescence. Ageing Res. Rev. 2018, 47, 176–182. [Google Scholar] [CrossRef]
- Ashraf, H.M.; Fernandez, B.; Spencer, S.L. The intensities of canonical senescence biomarkers integrate the duration of cell-cycle withdrawal. Nat. Commun. 2023, 14, 4527. [Google Scholar] [CrossRef]
- Hernandez-Segura, A.; Nehme, J.; Demaria, M. Hallmarks of Cellular Senescence. Trends Cell Biol. 2018, 28, 436–453. [Google Scholar] [CrossRef]
- Dodig, S.; Čepelak, I.; Pavić, I. Hallmarks of Senescence and Aging. Biochem. Med. 2019, 29, 030501. [Google Scholar] [CrossRef]
- Kumari, R.; Jat, P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front. Cell Dev. Biol. 2021, 9, 645593. [Google Scholar] [CrossRef]
- Coppé, J.-P.; Desprez, P.-Y.; Krtolica, A.; Campisi, J. The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression. Annu. Rev. Pathol. 2010, 5, 99–118. [Google Scholar] [CrossRef]
- Marin, I.; Boix, O.; Garcia-Garijo, A.; Sirois, I.; Caballe, A.; Zarzuela, E.; Ruano, I.; Attolini, C.S.-O.; Prats, N.; López-Domínguez, J.A.; et al. Cellular Senescence Is Immunogenic and Promotes Antitumor Immunity. Cancer Discov. 2023, 13, 410–431. [Google Scholar] [CrossRef]
- Santos, A.L.; Lindner, A.B. Protein Posttranslational Modifications: Roles in Aging and Age-Related Disease. Oxid. Med. Cell Longev. 2017, 2017, 5716409. [Google Scholar] [CrossRef]
- Ebert, T.; Tran, N.; Schurgers, L.; Stenvinkel, P.; Shiels, P.G. Ageing—Oxidative Stress, PTMs and Disease. Mol. Aspects Med. 2022, 86, 101099. [Google Scholar] [CrossRef]
- Wu, Z.; Qu, J.; Liu, G.-H. Roles of Chromatin and Genome Instability in Cellular Senescence and Their Relevance to Ageing and Related Diseases. Nat. Rev. Mol. Cell Biol. 2024, 25, 979–1000. [Google Scholar] [CrossRef]
- Di Giorgio, E.; Ranzino, L.; Tolotto, V.; Dalla, E.; Burelli, M.; Gualandi, N.; Brancolini, C. Transcription of Endogenous Retroviruses in Senescent Cells Contributes to the Accumulation of Double-Stranded RNAs That Trigger an Anti-Viral Response That Reinforces Senescence. Cell Death Dis. 2024, 15, 157. [Google Scholar] [CrossRef]
- Amor, C.; Fernández-Maestre, I.; Chowdhury, S.; Ho, Y.-J.; Nadella, S.; Graham, C.; Carrasco, S.E.; Nnuji-John, E.; Feucht, J.; Hinterleitner, C.; et al. Prophylactic and Long-Lasting Efficacy of Senolytic CAR T Cells against Age-Related Metabolic Dysfunction. Nat. Aging 2024, 4, 336–349. [Google Scholar] [CrossRef]
- Bulbiankova, D.; Díaz-Puertas, R.; Álvarez-Martínez, F.J.; Herranz-López, M.; Barrajón-Catalán, E.; Micol, V. Hallmarks and Biomarkers of Skin Senescence: An Updated Review of Skin Senotherapeutics. Antioxidants 2023, 12, 444. [Google Scholar] [CrossRef]
- Schmitt, C.A.; Wang, B.; Demaria, M. Senescence and Cancer—Role and Therapeutic Opportunities. Nat. Rev. Clin. Oncol. 2022, 19, 619–636. [Google Scholar] [CrossRef]
- Fulop, T.; Larbi, A.; Pawelec, G.; Khalil, A.; Cohen, A.A.; Hirokawa, K.; Witkowski, J.M.; Franceschi, C. Immunology of Aging: The Birth of Inflammaging. Clin. Rev. Allergy Immunol. 2023, 64, 109–122. [Google Scholar] [CrossRef]
- Cai, Y.; Zhou, H.; Zhu, Y.; Sun, Q.; Ji, Y.; Xue, A.; Wang, Y.; Chen, W.; Yu, X.; Wang, L.; et al. Elimination of Senescent Cells by β-Galactosidase-Targeted Prodrug Attenuates Inflammation and Restores Physical Function in Aged Mice. Cell Res. 2020, 30, 574–589. [Google Scholar] [CrossRef]
- Chen, B.; Zhu, R.; Hu, H.; Zhan, M.; Wang, T.; Huang, F.; Wei, F.; Chai, Y.; Ling, Z.; Zou, X. Elimination of Senescent Cells by Senolytics Facilitates Bony Endplate Microvessel Formation and Mitigates Disc Degeneration in Aged Mice. Front. Cell Dev. Biol. 2022, 10, 853688. [Google Scholar] [CrossRef]
- Lorenzo, E.C.; Torrance, B.L.; Haynes, L. Impact of Senolytic Treatment on Immunity, Aging, and Disease. Front. Aging 2023, 4, 1161799. [Google Scholar] [CrossRef]
- Aguado, J.; Amarilla, A.A.; Taherian Fard, A.; Albornoz, E.A.; Tyshkovskiy, A.; Schwabenland, M.; Chaggar, H.K.; Modhiran, N.; Gómez-Inclán, C.; Javed, I.; et al. Senolytic Therapy Alleviates Physiological Human Brain Aging and COVID-19 Neuropathology. Nat. Aging 2023, 3, 1561–1575. [Google Scholar] [CrossRef]
- Martel, J.; Ojcius, D.M.; Wu, C.-Y.; Peng, H.-H.; Voisin, L.; Perfettini, J.-L.; Ko, Y.-F.; Young, J.D. Emerging Use of Senolytics and Senomorphics against Aging and Chronic Diseases. Med. Res. Rev. 2020, 40, 2114–2131. [Google Scholar] [CrossRef]
- Luís, C.; Maduro, A.T.; Pereira, P.; Mendes, J.J.; Soares, R.; Ramalho, R. Nutritional Senolytics and Senomorphics: Implications to Immune Cells Metabolism and Aging—From Theory to Practice. Front. Nutr. 2022, 9, 958563. [Google Scholar] [CrossRef]
- Suda, M.; Shimizu, I.; Katsuumi, G.; Hsiao, C.L.; Yoshida, Y.; Matsumoto, N.; Yoshida, Y.; Katayama, A.; Wada, J.; Seki, M.; et al. Glycoprotein Nonmetastatic Melanoma Protein B Regulates Lysosomal Integrity and Lifespan of Senescent Cells. Sci. Rep. 2022, 12, 6522. [Google Scholar] [CrossRef]
- Yoshida, S.; Nakagami, H.; Hayashi, H.; Ikeda, Y.; Sun, J.; Tenma, A.; Tomioka, H.; Kawano, T.; Shimamura, M.; Morishita, R.; et al. The CD153 Vaccine Is a Senotherapeutic Option for Preventing the Accumulation of Senescent T Cells in Mice. Nat. Commun. 2020, 11, 2482. [Google Scholar] [CrossRef]
- Lear, T.B.; Finkel, T. Senolytic Vaccination: A New Mandate for Cardiovascular Health? J. Cardiovasc. Aging 2022, 2, 17. [Google Scholar] [CrossRef]
- Deng, Y.; Kumar, A.; Xie, K.; Schaaf, K.; Scifo, E.; Morsy, S.; Li, T.; Ehninger, A.; Bano, D.; Ehninger, D. Targeting Senescent Cells with NKG2D-CAR T Cells. Cell Death Discov. 2024, 10, 217. [Google Scholar] [CrossRef] [PubMed]
- Mendelsohn, A.R.; Larrick, J.W. Antiaging Vaccines Targeting Senescent Cells. Rejuvenation Res. 2022, 25, 39–45. [Google Scholar] [CrossRef]
- Prata, L.G.P.L.; Ovsyannikova, I.G.; Tchkonia, T.; Kirkland, J.L. Senescent Cell Clearance by the Immune System: Emerging Therapeutic Opportunities. Semin. Immunol. 2018, 40, 101275. [Google Scholar] [CrossRef] [PubMed]
- Pereira, B.I.; Devine, O.P.; Vukmanovic-Stejic, M.; Chambers, E.S.; Subramanian, P.; Patel, N.; Virasami, A.; Sebire, N.J.; Kinsler, V.; Valdovinos, A.; et al. Senescent Cells Evade Immune Clearance via HLA-E-Mediated NK and CD8+ T Cell Inhibition. Nat. Commun. 2019, 10, 2387. [Google Scholar] [CrossRef]
- Nemazee, D. Mechanisms of Central Tolerance for B Cells. Nat. Rev. Immunol. 2017, 17, 281–294. [Google Scholar] [CrossRef]
- Xing, Y.; Hogquist, K.A. T-Cell Tolerance: Central and Peripheral. Cold Spring Harb. Perspect. Biol. 2012, 4, a006957. [Google Scholar] [CrossRef]
- Getahun, A. Role of Inhibitory Signaling in Peripheral B Cell Tolerance. Immunol. Rev. 2022, 307, 27–42. [Google Scholar] [CrossRef]
- Kishimoto, H.; Sprent, J. Negative Selection in the Thymus Includes Semimature T Cells. J. Exp. Med. 1997, 185, 263–271. [Google Scholar] [CrossRef]
- Chen, J.W.; Schickel, J.-N.; Tsakiris, N.; Sng, J.; Arbogast, F.; Bouis, D.; Parisi, D.; Gera, R.; Boeckers, J.M.; Delmotte, F.R.; et al. Positive and Negative Selection Shape the Human Naive B Cell Repertoire. J. Clin. Investig. 2022, 132, e150985. [Google Scholar] [CrossRef] [PubMed]
- Shevyrev, D.; Tereshchenko, V.; Kozlov, V.; Sennikov, S. Phylogeny, Structure, Functions, and Role of AIRE in the Formation of T-Cell Subsets. Cells 2022, 11, 194. [Google Scholar] [CrossRef]
- Ding, P.; Gao, C.; Gao, Y.; Liu, D.; Li, H.; Xu, J.; Chen, X.; Huang, Y.; Zhang, C.; Zheng, M.; et al. Osteocytes Regulate Senescence of Bone and Bone Marrow. Elife 2022, 11, e81480. [Google Scholar] [CrossRef] [PubMed]
- Hellmich, C.; Moore, J.A.; Bowles, K.M.; Rushworth, S.A. Bone Marrow Senescence and the Microenvironment of Hematological Malignancies. Front. Oncol. 2020, 10, 230. [Google Scholar] [CrossRef] [PubMed]
- Chen, X. From Immune Equilibrium to Immunodynamics. Front. Microbiol. 2022, 13, 1018817. [Google Scholar] [CrossRef] [PubMed]
- Eberl, G. Immunity by Equilibrium. Nat. Rev. Immunol. 2016, 16, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Březina, J.; Vobořil, M.; Filipp, D. Mechanisms of Direct and Indirect Presentation of Self-Antigens in the Thymus. Front. Immunol. 2022, 13, 926625. [Google Scholar] [CrossRef]
- Barbouti, A.; Evangelou, K.; Pateras, I.S.; Papoudou-Bai, A.; Patereli, A.; Stefanaki, K.; Rontogianni, D.; Muñoz-Espín, D.; Kanavaros, P.; Gorgoulis, V.G. In Situ Evidence of Cellular Senescence in Thymic Epithelial Cells (TECs) during Human Thymic Involution. Mech. Ageing Dev. 2019, 177, 88–90. [Google Scholar] [CrossRef]
- Thomas, R.; Wang, W.; Su, D.-M. Contributions of Age-Related Thymic Involution to Immunosenescence and Inflammaging. Immun. Ageing 2020, 17, 2. [Google Scholar] [CrossRef]
- Carter, J.A.; Strömich, L.; Peacey, M.; Chapin, S.R.; Velten, L.; Steinmetz, L.M.; Brors, B.; Pinto, S.; Meyer, H.V. Transcriptomic Diversity in Human Medullary Thymic Epithelial Cells. Nat. Commun. 2022, 13, 4296. [Google Scholar] [CrossRef] [PubMed]
- Fergusson, J.R.; Morgan, M.D.; Bruchard, M.; Huitema, L.; Heesters, B.A.; van Unen, V.; van Hamburg, J.P.; van der Wel, N.N.; Picavet, D.; Koning, F.; et al. Maturing Human CD127+ CCR7+ PDL1+ Dendritic Cells Express AIRE in the Absence of Tissue Restricted Antigens. Front. Immunol. 2019, 9, 2902. [Google Scholar] [CrossRef]
- Baba, T.; Nakamoto, Y.; Mukaida, N. Crucial Contribution of Thymic Sirp Alpha+ Conventional Dendritic Cells to Central Tolerance against Blood-Borne Antigens in a CCR2-Dependent Manner. J. Immunol. 2009, 183, 3053–3063. [Google Scholar] [CrossRef]
- Agrawal, A.; Sridharan, A.; Prakash, S.; Agrawal, H. Dendritic Cells and Aging: Consequences for Autoimmunity. Expert. Rev. Clin. Immunol. 2012, 8, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, H.; Matsumoto, T. Mechanisms of Tolerance Induction by Dendritic Cells In Vivo. Front. Immunol. 2018, 9, 350. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sekai, M.; Matsui, T.; Fujii, Y.; Matsumoto, M.; Takeuchi, O.; Minato, N.; Hamazaki, Y. Hassall’s Corpuscles with Cellular-Senescence Features Maintain IFNα Production through Neutrophils and pDC Activation in the Thymus. Int. Immunol. 2019, 31, 127–139. [Google Scholar] [CrossRef]
- Liang, Z.; Dong, X.; Zhang, Z.; Zhang, Q.; Zhao, Y. Age-Related Thymic Involution: Mechanisms and Functional Impact. Aging Cell 2022, 21, e13671. [Google Scholar] [CrossRef]
- Li, Y.; Chen, P.; Huang, H.; Feng, H.; Ran, H.; Liu, W. Quantification of Dendritic Cell Subsets in Human Thymus Tissues of Various Ages. Immun. Ageing 2021, 18, 44. [Google Scholar] [CrossRef]
- Granadier, D.; Iovino, L.; Kinsella, S.; Dudakov, J.A. Dynamics of Thymus Function and T Cell Receptor Repertoire Breadth in Health and Disease. Semin. Immunopathol. 2021, 43, 119–134. [Google Scholar] [CrossRef]
- Britanova, O.V.; Putintseva, E.V.; Shugay, M.; Merzlyak, E.M.; Turchaninova, M.A.; Staroverov, D.B.; Bolotin, D.A.; Lukyanov, S.; Bogdanova, E.A.; Mamedov, I.Z.; et al. Age-Related Decrease in TCR Repertoire Diversity Measured with Deep and Normalized Sequence Profiling. J. Immunol. 2014, 192, 2689–2698. [Google Scholar] [CrossRef] [PubMed]
- Jennings, E.Q.; Fritz, K.S.; Galligan, J.J. Biochemical Genesis of Enzymatic and Non-Enzymatic Post-Translational Modifications. Mol. Aspects Med. 2022, 86, 101053. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.J.; Bloodworth, N.; Shao, Q.; Shabanowitz, J.; Hunt, D.; Meiler, J.; Pires, M.M. A Chemical Approach to Assess the Impact of Post-Translational Modification on MHC Peptide Binding and Effector Cell Engagement. ACS Chem. Biol. 2024, 19, 1991–2001. [Google Scholar] [CrossRef]
- Haro, I.; Sanmartí, R.; Gómara, M.J. Implications of Post-Translational Modifications in Autoimmunity with Emphasis on Citrullination, Homocitrullination and Acetylation for the Pathogenesis, Diagnosis and Prognosis of Rheumatoid Arthritis. Int. J. Mol. Sci. 2022, 23, 15803. [Google Scholar] [CrossRef]
- Doyle, H.A.; Mamula, M.J. Autoantigenesis: The Evolution of Protein Modifications in Autoimmune Disease. Curr. Opin. Immunol. 2012, 24, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Raposo, B.; Merky, P.; Lundqvist, C.; Yamada, H.; Urbonaviciute, V.; Niaudet, C.; Viljanen, J.; Kihlberg, J.; Kyewski, B.; Ekwall, O.; et al. T Cells Specific for Post-Translational Modifications Escape Intrathymic Tolerance Induction. Nat. Commun. 2018, 9, 353. [Google Scholar] [CrossRef] [PubMed]
- Hayward, A.; Gilbert, C. Transposable Elements. Curr. Biol. 2022, 32, R904–R909. [Google Scholar] [CrossRef] [PubMed]
- Larouche, J.-D.; Laumont, C.M.; Trofimov, A.; Vincent, K.; Hesnard, L.; Brochu, S.; Côté, C.; Humeau, J.F.; Bonneil, É.; Lanoix, J.; et al. Transposable Elements Regulate Thymus Development and Function. Elife 2024, 12, RP91037. [Google Scholar] [CrossRef]
- Pabis, K.; Barardo, D.; Sirbu, O.; Selvarajoo, K.; Gruber, J.; Kennedy, B.K. A Concerted Increase in Readthrough and Intron Retention Drives Transposon Expression during Aging and Senescence. Elife 2024, 12, RP87811. [Google Scholar] [CrossRef]
- Colombo, A.R.; Elias, H.K.; Ramsingh, G. Senescence Induction Universally Activates Transposable Element Expression. Cell Cycle 2018, 17, 1846–1857. [Google Scholar] [CrossRef]
- Kelly, M.; Lihua, S.; Zhe, Z.; Li, S.; Yoselin, P.; Michelle, P.; Sullivan Kathleen, E. Transposable Element Dysregulation in Systemic Lupus Erythematosus and Regulation by Histone Conformation and Hsp90. Clin. Immunol. 2018, 197, 6–18. [Google Scholar] [CrossRef]
- Stetson, D.B. Endogenous Retroelements and Autoimmune Disease. Curr. Opin. Immunol. 2012, 24, 692–697. [Google Scholar] [CrossRef]
- Volkman, H.E.; Stetson, D.B. The Enemy within: Endogenous Retroelements and Autoimmune Disease. Nat. Immunol. 2014, 15, 415–422. [Google Scholar] [CrossRef]
- De Cecco, M.; Ito, T.; Petrashen, A.P.; Elias, A.E.; Skvir, N.J.; Criscione, S.W.; Caligiana, A.; Brocculi, G.; Adney, E.M.; Boeke, J.D.; et al. L1 Drives IFN in Senescent Cells and Promotes Age-Associated Inflammation. Nature 2019, 566, 73–78. [Google Scholar] [CrossRef]
- Hasegawa, T.; Oka, T.; Son, H.G.; Oliver-García, V.S.; Azin, M.; Eisenhaure, T.M.; Lieb, D.J.; Hacohen, N.; Demehri, S. Cytotoxic CD4+ T Cells Eliminate Senescent Cells by Targeting Cytomegalovirus Antigen. Cell 2023, 186, 1417–1431.e20. [Google Scholar] [CrossRef] [PubMed]
- Bordon, Y. T Cells Target Viral Protein to Remove Senescent Fibroblasts. Nat. Rev. Immunol. 2023, 23, 271. [Google Scholar] [CrossRef] [PubMed]
- Klopack, E.T. Chronic Stress and Latent Virus Reactivation: Effects on Immune Aging, Chronic Disease Morbidity, and Mortality. J. Gerontol. B Psychol. Sci. Soc. Sci. 2023, 78, 1707–1716. [Google Scholar] [CrossRef] [PubMed]
- Stowe, R.P.; Kozlova, E.V.; Yetman, D.L.; Walling, D.M.; Goodwin, J.S.; Glaser, R. Chronic Herpesvirus Reactivation Occurs in Aging. Exp. Gerontol. 2007, 42, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Kyewski, B.; Klein, L. A Central Role for Central Tolerance. Annu. Rev. Immunol. 2006, 24, 571–606. [Google Scholar] [CrossRef]
- Kishimoto, H.; Sprent, J. The Thymus and Central Tolerance. Clin. Immunol. 2000, 95, S3-7. [Google Scholar] [CrossRef]
- ElTanbouly, M.A.; Noelle, R.J. Rethinking Peripheral T Cell Tolerance: Checkpoints across a T Cell’s Journey. Nat. Rev. Immunol. 2021, 21, 257–267. [Google Scholar] [CrossRef]
- Paul, E.; Nelde, A.; Verschoor, A.; Carroll, M.C. Follicular Exclusion of Autoreactive B Cells Requires FcgammaRIIb. Int. Immunol. 2007, 19, 365–373. [Google Scholar] [CrossRef]
- Chapman, N.M.; Boothby, M.R.; Chi, H. Metabolic Coordination of T Cell Quiescence and Activation. Nat. Rev. Immunol. 2020, 20, 55–70. [Google Scholar] [CrossRef]
- Schwartz, R.H. T Cell Anergy. Annu. Rev. Immunol. 2003, 21, 305–334. [Google Scholar] [CrossRef]
- Matveeva, K.S.; Shevyrev, D.V.; Rybtsov, S.A. Senescence-Associated β-Galactosidase Activity in Human Effector and Regulatory T Cells. Immunologiya 2024, 45, 290–299. [Google Scholar] [CrossRef]
- Matveeva, K.S.; Rybtsov, S.A.; Shevyrev, D.V. Investigating age-related dynamics and transcriptional signatures of CD8+HLA-DR+ regulatory T lymphocytes: Perspectives in understanding immune system aging. Med. Immunol. 2024, 26, 927–932. [Google Scholar] [CrossRef]
- Huang, M.; Wang, Y.; Fang, L.; Liu, C.; Feng, F.; Liu, L.; Sun, C. T Cell Senescence: A New Perspective on Immunotherapy in Lung Cancer. Front. Immunol. 2024, 15, 1338680. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Zamudio, R.I.; Dewald, H.K.; Vasilopoulos, T.; Gittens-Williams, L.; Fitzgerald-Bocarsly, P.; Herbig, U. Senescence-associated Β-galactosidase Reveals the Abundance of Senescent CD8+ T Cells in Aging Humans. Aging Cell 2021, 20, e13344. [Google Scholar] [CrossRef] [PubMed]
- Kurts, C.; Kosaka, H.; Carbone, F.R.; Miller, J.F.; Heath, W.R. Class I-Restricted Cross-Presentation of Exogenous Self-Antigens Leads to Deletion of Autoreactive CD8(+) T Cells. J. Exp. Med. 1997, 186, 239–245. [Google Scholar] [CrossRef]
- Davey, G.M.; Kurts, C.; Miller, J.F.A.P.; Bouillet, P.; Strasser, A.; Brooks, A.G.; Carbone, F.R.; Heath, W.R. Peripheral Deletion of Autoreactive CD8 T Cells by Cross Presentation of Self-Antigen Occurs by a Bcl-2-Inhibitable Pathway Mediated by Bim. J. Exp. Med. 2002, 196, 947–955. [Google Scholar] [CrossRef]
- Adler, A.J. Peripheral Tolerization of Effector and Memory T Cells: Implications for Autoimmunity and Tumor-Immunity. Curr. Immunol. Rev. 2005, 1, 21–28. [Google Scholar] [CrossRef]
- Yin, R.; Melton, S.; Huseby, E.S.; Kardar, M.; Chakraborty, A.K. How Persistent Infection Overcomes Peripheral Tolerance Mechanisms to Cause T Cell-Mediated Autoimmune Disease. Proc. Natl. Acad. Sci. USA 2024, 121, e2318599121. [Google Scholar] [CrossRef]
- Wei, S.C.; Sharma, R.; Anang, N.-A.A.S.; Levine, J.H.; Zhao, Y.; Mancuso, J.J.; Setty, M.; Sharma, P.; Wang, J.; Pe’er, D.; et al. Negative Co-Stimulation Constrains T Cell Differentiation by Imposing Boundaries on Possible Cell States. Immunity 2019, 50, 1084–1098.e10. [Google Scholar] [CrossRef]
- Ness, S.; Lin, S.; Gordon, J.R. Regulatory Dendritic Cells, T Cell Tolerance, and Dendritic Cell Therapy for Immunologic Disease. Front. Immunol. 2021, 12, 633436. [Google Scholar] [CrossRef]
- Shevyrev, D.; Tereshchenko, V.; Blinova, E.; Knauer, N.; Pashkina, E.; Sizikov, A.; Kozlov, V. Regulatory T Cells Fail to Suppress Fast Homeostatic Proliferation In Vitro. Life 2021, 11, 245. [Google Scholar] [CrossRef] [PubMed]
- Paroli, M.; Schiaffella, E.; Di Rosa, F.; Barnaba, V. Persisting Viruses and Autoimmunity. J. Neuroimmunol. 2000, 107, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Sundaresan, B.; Shirafkan, F.; Ripperger, K.; Rattay, K. The Role of Viral Infections in the Onset of Autoimmune Diseases. Viruses 2023, 15, 782. [Google Scholar] [CrossRef]
- Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal Analysis Reveals High Prevalence of Epstein-Barr Virus Associated with Multiple Sclerosis. Science 2022, 375, 296–301. [Google Scholar] [CrossRef]
- Lin, H.-C.; Wang, C.-H.; Tsai, F.-J.; Hwang, K.-P.; Chen, W.; Lin, C.-C.; Li, T.-C. Enterovirus Infection Is Associated with an Increased Risk of Childhood Type 1 Diabetes in Taiwan: A Nationwide Population-Based Cohort Study. Diabetologia 2015, 58, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Shevyrev, D.V.; Tereshchenko, V.P.; Sennikov, S.V. The Enigmatic Nature of the TCR-pMHC Interaction: Implications for CAR-T and TCR-T Engineering. Int. J. Mol. Sci. 2022, 23, 14728. [Google Scholar] [CrossRef] [PubMed]
- Pageon, S.V.; Tabarin, T.; Yamamoto, Y.; Ma, Y.; Nicovich, P.R.; Bridgeman, J.S.; Cohnen, A.; Benzing, C.; Gao, Y.; Crowther, M.D.; et al. Functional Role of T-Cell Receptor Nanoclusters in Signal Initiation and Antigen Discrimination. Proc. Natl. Acad. Sci. USA 2016, 113, E5454–E5463. [Google Scholar] [CrossRef]
- Saito, Y.; Yamamoto, S.; Chikenji, T.S. Role of Cellular Senescence in Inflammation and Regeneration. Inflamm. Regen. 2024, 44, 28. [Google Scholar] [CrossRef]
- Liu, Q.; Zheng, Y.; Goronzy, J.J.; Weyand, C.M. T Cell Aging as a Risk Factor for Autoimmunity. J. Autoimmun. 2023, 137, 102947. [Google Scholar] [CrossRef]
- Schloesser, D.; Lindenthal, L.; Sauer, J.; Chung, K.-J.; Chavakis, T.; Griesser, E.; Baskaran, P.; Maier-Habelsberger, U.; Fundel-Clemens, K.; Schlotthauer, I.; et al. Senescent Cells Suppress Macrophage-Mediated Corpse Removal via Upregulation of the CD47-QPCT/L Axis. J. Cell Biol. 2023, 222, e202207097. [Google Scholar] [CrossRef]
- Bosco, N.; Noti, M. The Aging Gut Microbiome and Its Impact on Host Immunity. Genes Immun. 2021, 22, 289–303. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.-H.; Shin, J.-W.; Shim, E.; Ohtani, N.; Jeon, O.H. The Connection between Aging, Cellular Senescence and Gut Microbiome Alterations: A Comprehensive Review. Aging Cell 2024, 23, e14315. [Google Scholar] [CrossRef] [PubMed]
- Berg, R.D. Bacterial Translocation from the Gastrointestinal Tract. Adv. Exp. Med. Biol. 1999, 473, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Fine, R.L.; Manfredo Vieira, S.; Gilmore, M.S.; Kriegel, M.A. Mechanisms and Consequences of Gut Commensal Translocation in Chronic Diseases. Gut Microbes 2020, 11, 217–230. [Google Scholar] [CrossRef]
- Kawamoto, S.; Uemura, K.; Hori, N.; Takayasu, L.; Konishi, Y.; Katoh, K.; Matsumoto, T.; Suzuki, M.; Sakai, Y.; Matsudaira, T.; et al. Bacterial Induction of B Cell Senescence Promotes Age-Related Changes in the Gut Microbiota. Nat. Cell Biol. 2023, 25, 865–876. [Google Scholar] [CrossRef]
- Foth, S.; Völkel, S.; Bauersachs, D.; Zemlin, M.; Skevaki, C. T Cell Repertoire During Ontogeny and Characteristics in Inflammatory Disorders in Adults and Childhood. Front. Immunol. 2020, 11, 611573. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Zhang, W.; Wang, Y.; Qian, P.; Huang, H. Inflammation and Aging: Signaling Pathways and Intervention Therapies. Signal Transduct. Target. Ther. 2023, 8, 239. [Google Scholar] [CrossRef]
- Yan, H.; Baldridge, M.T.; King, K.Y. Hematopoiesis and the Bacterial Microbiome. Blood 2018, 132, 559–564. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Z.; Ren, Y.; Wang, Y.; Fang, J.; Yue, H.; Ma, S.; Guan, F. Aging and Age-Related Diseases: From Mechanisms to Therapeutic Strategies. Biogerontology 2021, 22, 165–187. [Google Scholar] [CrossRef]
- Kumar, M.; James, M.M.; Kumawat, M.; Nabi, B.; Sharma, P.; Pal, N.; Shubham, S.; Tiwari, R.R.; Sarma, D.K.; Nagpal, R. Aging and Microbiome in the Modulation of Vaccine Efficacy. Biomedicines 2022, 10, 1545. [Google Scholar] [CrossRef]
- Mouat, I.C.; Goldberg, E.; Horwitz, M.S. Age-Associated B Cells in Autoimmune Diseases. Cell Mol. Life Sci. 2022, 79, 402. [Google Scholar] [CrossRef] [PubMed]
- Jordan, A.; Carding, S.R.; Hall, L.J. The Early-Life Gut Microbiome and Vaccine Efficacy. Lancet Microbe 2022, 3, e787–e794. [Google Scholar] [CrossRef]
- Weyand, C.M.; Goronzy, J.J. Aging of the Immune System. Mechanisms and Therapeutic Targets. Ann. Am. Thorac. Soc. 2016, 13 (Suppl. 5), S422–S428. [Google Scholar] [CrossRef]
- Rodrigues, C.M.C.; Plotkin, S.A. Impact of Vaccines; Health, Economic and Social Perspectives. Front. Microbiol. 2020, 11, 1526. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Pitcher, L.E.; Prahalad, V.; Niedernhofer, L.J.; Robbins, P.D. Targeting Cellular Senescence with Senotherapeutics: Senolytics and Senomorphics. FEBS J. 2023, 290, 1362–1383. [Google Scholar] [CrossRef] [PubMed]
- Lagoumtzi, S.M.; Chondrogianni, N. Senolytics and Senomorphics: Natural and Synthetic Therapeutics in the Treatment of Aging and Chronic Diseases. Free Radic. Biol. Med. 2021, 171, 169–190. [Google Scholar] [CrossRef]
- Deryabin, P.I.; Shatrova, A.N.; Borodkina, A.V. Apoptosis Resistance of Senescent Cells Is an Intrinsic Barrier for Senolysis Induced by Cardiac Glycosides. Cell Mol. Life Sci. 2021, 78, 7757–7776. [Google Scholar] [CrossRef]
- Zhu, Y.; Tchkonia, T.; Pirtskhalava, T.; Gower, A.C.; Ding, H.; Giorgadze, N.; Palmer, A.K.; Ikeno, Y.; Hubbard, G.B.; Lenburg, M.; et al. The Achilles’ Heel of Senescent Cells: From Transcriptome to Senolytic Drugs. Aging Cell 2015, 14, 644–658. [Google Scholar] [CrossRef] [PubMed]
- Chaib, S.; Tchkonia, T.; Kirkland, J.L. Cellular Senescence and Senolytics: The Path to the Clinic. Nat. Med. 2022, 28, 1556–1568. [Google Scholar] [CrossRef]
- Chan, K.T.; Blake, S.; Zhu, H.; Kang, J.; Trigos, A.S.; Madhamshettiwar, P.B.; Diesch, J.; Paavolainen, L.; Horvath, P.; Hannan, R.D.; et al. A Functional Genetic Screen Defines the AKT-Induced Senescence Signaling Network. Cell Death Differ. 2020, 27, 725–741. [Google Scholar] [CrossRef]
- L’Hôte, V.; Mann, C.; Thuret, J.-Y. From the Divergence of Senescent Cell Fates to Mechanisms and Selectivity of Senolytic Drugs. Open Biol. 2022, 12, 220171. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, D.E.; Miller, R.B.; Thiesfeldt, S.; Lakhani, H.V.; Shapiro, J.I.; Sodhi, K. The Role of Na/K-ATPase Signaling in Oxidative Stress Related to Aging: Implications in Obesity and Cardiovascular Disease. Int. J. Mol. Sci. 2018, 19, 2139. [Google Scholar] [CrossRef] [PubMed]
- von Kobbe, C. Targeting Senescent Cells: Approaches, Opportunities, Challenges. Aging 2019, 11, 12844–12861. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Hickson, L.J.; Eirin, A.; Kirkland, J.L.; Lerman, L.O. Cellular Senescence: The Good, the Bad and the Unknown. Nat. Rev. Nephrol. 2022, 18, 611–627. [Google Scholar] [CrossRef]
- Storer, M.; Mas, A.; Robert-Moreno, A.; Pecoraro, M.; Ortells, M.C.; Di Giacomo, V.; Yosef, R.; Pilpel, N.; Krizhanovsky, V.; Sharpe, J.; et al. Senescence Is a Developmental Mechanism That Contributes to Embryonic Growth and Patterning. Cell 2013, 155, 1119–1130. [Google Scholar] [CrossRef]
- Fukushima, Y.; Sakamoto, K.; Matsuda, M.; Yoshikai, Y.; Yagita, H.; Kitamura, D.; Chihara, M.; Minato, N.; Hattori, M. Cis Interaction of CD153 with TCR/CD3 Is Crucial for the Pathogenic Activation of Senescence-Associated T Cells. Cell Rep. 2022, 40, 111373. [Google Scholar] [CrossRef]
- Takaya, K.; Asou, T.; Kishi, K. Cathepsin F Is a Potential Marker for Senescent Human Skin Fibroblasts and Keratinocytes Associated with Skin Aging. GeroScience 2023, 45, 427–437. [Google Scholar] [CrossRef]
- Yang, M.; Harrison, B.R.; Promislow, D.E.L. Cellular Age Explains Variation in Age-Related Cell-to-Cell Transcriptome Variability. Genome Res. 2023, 33, 1906–1916. [Google Scholar] [CrossRef]
- Takaya, K.; Asou, T.; Kishi, K. New Senolysis Approach via Antibody-Drug Conjugate Targeting of the Senescent Cell Marker Apolipoprotein D for Skin Rejuvenation. Int. J. Mol. Sci. 2023, 24, 5857. [Google Scholar] [CrossRef]
- Takaya, K.; Asou, T.; Kishi, K. Identification of Apolipoprotein D as a Dermal Fibroblast Marker of Human Aging for Development of Skin Rejuvenation Therapy. Rejuvenation Res. 2023, 26, 42–50. [Google Scholar] [CrossRef]
- Amor, C.; Feucht, J.; Leibold, J.; Ho, Y.-J.; Zhu, C.; Alonso-Curbelo, D.; Mansilla-Soto, J.; Boyer, J.A.; Li, X.; Giavridis, T.; et al. Senolytic CAR T Cells Reverse Senescence-Associated Pathologies. Nature 2020, 583, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Kim, E.-C.; Son, Y.; Lee, D.-W.; Park, Y.S.; Choi, J.H.; Cho, K.-H.; Kwon, K.-S.; Kim, J.-R. CD9 Induces Cellular Senescence and Aggravates Atherosclerotic Plaque Formation. Cell Death Differ. 2020, 27, 2681–2696. [Google Scholar] [CrossRef] [PubMed]
- Shang, D.; Sun, D.; Shi, C.; Xu, J.; Shen, M.; Hu, X.; Liu, H.; Tu, Z. Activation of Epidermal Growth Factor Receptor Signaling Mediates Cellular Senescence Induced by Certain Pro-inflammatory Cytokines. Aging Cell 2020, 19, e13145. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Du, X.; Yu, J.; Wang, Y.; Jin, X.; Gu, B.; Yin, Q. Seno-Antigen-Pulsed Dendritic Cell Vaccine Induce Anti-Aging Immunity to Improve Adipose Tissue Senescence and Metabolic Abnormalities. Biomed. Pharmacother. 2024, 179, 117433. [Google Scholar] [CrossRef]
- Suda, M.; Shimizu, I.; Katsuumi, G.; Yoshida, Y.; Hayashi, Y.; Ikegami, R.; Matsumoto, N.; Yoshida, Y.; Mikawa, R.; Katayama, A.; et al. Senolytic Vaccination Improves Normal and Pathological Age-Related Phenotypes and Increases Lifespan in Progeroid Mice. Nat. Aging 2021, 1, 1117–1126. [Google Scholar] [CrossRef]
- Henson, S.M.; Akbar, A.N. KLRG1—More than a Marker for T Cell Senescence. Age 2009, 31, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, S.; Tang, X.; Peng, Y.; Jiang, T.; Zhang, X.; Li, J.; Liu, Y.; Yang, Z. The Role of KLRG1: A Novel Biomarker and New Therapeutic Target. Cell Commun. Signal. 2024, 22, 337. [Google Scholar] [CrossRef]
- Islam, M.T.; Tuday, E.; Allen, S.; Kim, J.; Trott, D.W.; Holland, W.L.; Donato, A.J.; Lesniewski, L.A. Senolytic Drugs, Dasatinib and Quercetin, Attenuate Adipose Tissue Inflammation, and Ameliorate Metabolic Function in Old Age. Aging Cell 2023, 22, e13767. [Google Scholar] [CrossRef]
- Raffaele, M.; Vinciguerra, M. The Costs and Benefits of Senotherapeutics for Human Health. Lancet Healthy Longev. 2022, 3, e67–e77. [Google Scholar] [CrossRef]
- Zonari, A.; Brace, L.E.; Al-Katib, K.; Porto, W.F.; Foyt, D.; Guiang, M.; Cruz, E.A.O.; Marshall, B.; Gentz, M.; Guimarães, G.R.; et al. Senotherapeutic Peptide Treatment Reduces Biological Age and Senescence Burden in Human Skin Models. NPJ Aging 2023, 9, 10. [Google Scholar] [CrossRef]
- Goronzy, J.J.; Weyand, C.M. Understanding Immunosenescence to Improve Responses to Vaccines. Nat. Immunol. 2013, 14, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Poblocka, M.; Bassey, A.L.; Smith, V.M.; Falcicchio, M.; Manso, A.S.; Althubiti, M.; Sheng, X.; Kyle, A.; Barber, R.; Frigerio, M.; et al. Targeted Clearance of Senescent Cells Using an Antibody-Drug Conjugate against a Specific Membrane Marker. Sci. Rep. 2021, 11, 20358. [Google Scholar] [CrossRef] [PubMed]
- Takaya, K.; Asou, T.; Kishi, K. Development of a Novel Senolysis Approach Targeting the Senescent Fibroblast Marker HTR2A via Antibody-Dependent Cellular Cytotoxicity. Rejuvenation Res. 2023, 26, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Rettko, N.J.; Campisi, J.; Wells, J.A. Engineering Antibodies Targeting P16 MHC-Peptide Complexes. ACS Chem. Biol. 2022, 17, 545–555. [Google Scholar] [CrossRef]
- Grosse, L.; Wagner, N.; Emelyanov, A.; Molina, C.; Lacas-Gervais, S.; Wagner, K.-D.; Bulavin, D.V. Defined p16High Senescent Cell Types Are Indispensable for Mouse Healthspan. Cell Metab. 2020, 32, 87–99.e6. [Google Scholar] [CrossRef]
- Rock, K.L.; Kono, H. The Inflammatory Response to Cell Death. Annu. Rev. Pathol. 2008, 3, 99–126. [Google Scholar] [CrossRef]
- Bock, F.J.; Riley, J.S. When Cell Death Goes Wrong: Inflammatory Outcomes of Failed Apoptosis and Mitotic Cell Death. Cell Death Differ. 2023, 30, 293–303. [Google Scholar] [CrossRef]
- Božič, B.; Rozman, B. Apoptosis and Autoimmunity. EJIFCC 2006, 17, 69–74. [Google Scholar]
- Brieske, C.; Lamprecht, P.; Kerstein-Staehle, A. Immunogenic Cell Death as Driver of Autoimmunity in Granulomatosis with Polyangiitis. Front. Immunol. 2022, 13, 1007092. [Google Scholar] [CrossRef]
- Mancinelli, L.; Intini, G. Age-Associated Declining of the Regeneration Potential of Skeletal Stem/Progenitor Cells. Front. Physiol. 2023, 14, 1087254. [Google Scholar] [CrossRef]
- Rapaka, R.R.; Cross, A.S.; McArthur, M.A. Using Adjuvants to Drive T Cell Responses for Next-Generation Infectious Disease Vaccines. Vaccines 2021, 9, 820. [Google Scholar] [CrossRef] [PubMed]
- Muslimov, A.; Tereshchenko, V.; Shevyrev, D.; Rogova, A.; Lepik, K.; Reshetnikov, V.; Ivanov, R. The Dual Role of the Innate Immune System in the Effectiveness of mRNA Therapeutics. Int. J. Mol. Sci. 2023, 24, 14820. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Cai, Y.; Jiang, Y.; He, X.; Wei, Y.; Yu, Y.; Tian, X. Vaccine Adjuvants: Mechanisms and Platforms. Sig Transduct. Target. Ther. 2023, 8, 283. [Google Scholar] [CrossRef] [PubMed]
- Jamshidi, E.; Asgary, A.; Kharrazi, A.Y.; Tavakoli, N.; Zali, A.; Mehrazi, M.; Jamshidi, M.; Farrokhi, B.; Maher, A.; von Garnier, C.; et al. Personalized Predictions of Adverse Side Effects of the COVID-19 Vaccines. Heliyon 2023, 9, e12753. [Google Scholar] [CrossRef]
- Levi, Y.; Brandeau, M.L.; Shmueli, E.; Yamin, D. Prediction and Detection of Side Effects Severity Following COVID-19 and Influenza Vaccinations: Utilizing Smartwatches and Smartphones. Sci. Rep. 2024, 14, 6012. [Google Scholar] [CrossRef]
- Patrinos, G.P.; Sarhangi, N.; Sarrami, B.; Khodayari, N.; Larijani, B.; Hasanzad, M. Using ChatGPT to Predict the Future of Personalized Medicine. Pharmacogenom. J. 2023, 23, 178–184. [Google Scholar] [CrossRef]
Disease | Target | Vaccine Design | Stage |
---|---|---|---|
Alzheimer’s disease | Amyloid beta (Aβ) | Palmitoylated peptide Aβ1–15 (for ACI-24) was reconstituted in liposomes. | Phase II clinical trials (NCT05462106) [8,9,10] |
UB-311 comprises two Aβ1–14–targeting peptides (B-cell epitope), each synthetically linked to different helper T-cell peptide epitopes (UBITh®), and formulated in an alum-containing Th2-biased delivery system. | Phase II clinical trials (NCT00965588; NCT02551809; NCT03531710) [11,12] | ||
AV-1959 consists of pVAX1 backbone vector which codes a protein consisting of the Ig κ- chain signal sequence, three copies of the A1-11 B cell epitope, one synthetic peptide (PADRE), and a string of non-self-promiscuous Th epitopes from Tetanus Toxin, hepatitis B virus and influenza. | Phase I clinical trials (NCT05642429) [13] | ||
Aβ33–40 peptide coupled to monomeric keyhole limpet hemocyanin suspended in the phosphate buffer with 0.35% aluminum hydroxide. | Phase II clinical trials (NCT03113812; NCT03461276) [14] | ||
Microtubule-associated protein tau (Tau) | ACI-35 is a liposomal vaccine that carried peptide corresponding to residues 393–408 in protein Tau (numbering of the Tau441 isoform) with S396 and S404 phosphorylated. | Phase II clinical trials (NCT04445831) [15] | |
Axon Peptide 108 (N-terminally cysteinylated tau 294–305/4R) coupled to keyhole limpet hemocyanin via a maleimide linker, with aluminum hydroxide adjuvant. | Phase II clinical trials (NCT01850238; NCT02031198; NCT02579252) [16,17,18] | ||
Mimicking the extra-telomeric human telomerase reverse transcriptase (hTERT) | GV1001 is a 16-amino-acid vaccine peptide derived from the human telomerase reverse transcriptase (hTERT) sequence. | Phase II clinical trials (NCT05189210) [19] | |
Proteasomes | Nasal vaccination with IVX-908 (Protollin) which is a non-covalent formulation of outer membrane proteins (proteasomes) of Neisseria meningitides and lipopolysaccharide from Shigella flexneri plus glatiramer acetate (GA). | Preclinical studies, mice [20] | |
Type 2 diabetes | Dipeptidyl peptidase-4 (DPP4) | Peptides E1 and E2, which spans a site in the N-terminal sequence of DPP4; E3, which spans the 89–97 a.a. sequence near the opening of the DPP4 active site were conjugated to keyhole limpet hemocyanin. | Preclinical studies, mice [21] |
Interleukin-1 beta (IL-1β) | A rhesus (rmIL1bQb) and human (hIL1bQb) version of the IL-1β vaccine were generated with an identical inactivating mutation of the IL-1β polypeptide. The corresponding rhesus monkey (rmIL1bQb) and human (hIL1bQb) IL-1β vaccines were produced by chemically crosslinking the engineered IL-1β proteins to Qb virus-like particles. | Phase I clinical trials (NCT00924105) [22] | |
IL-1β epitope peptide formulated with alum-based adjuvant. | Preclinical studies, mice [23] | ||
Prorenin | Three different epitopes of the prorenin prosegment (E1, E2, and E3) were selected and conjugated to keyhole limpet hemocyanin. | Preclinical studies, mice [24] | |
Hypertension | Angiotensin I | PMD-2850 contains tetanus toxoid, and PMD-3117 contains keyhole limpet hemocyanin; both are conjugated to Angiotensin I peptide analog and use aluminum hydroxide gel as adjuvant | Phase I clinical trials [25,26] |
Angiotensin II | An angiotensin II-derived peptide was conjugated to the virus-like particles Qbeta (AngQb). | Phase II clinical trials (NCT00500786; NCT00701649; NCT00710372) [27,28] | |
Angiotensin 1 receptor (AT1R) | Qβ virus-like particle protein was covalently conjugated to ATR-001 peptide with the amino acids sequence corresponding to the sequence of the second extracellular loop of the human AT1R. | Preclinical studies, mice [29,30] | |
Apha-1D adrenergic receptor (ADRA1D) | Epitopes of α1A-adrenergic receptor (α1A-AR) or α1D-adrenergic receptor (α1D-AR) were conjugated to Qβ bacteriophage virus-like particle. | Preclinical studies, mice [31] | |
Abdominal aortic aneurysm | Angiotensin II | Angiotensin II peptide was conjugated to keyhole limpet hemocyanin. | Preclinical studies, rats [32] |
Angiotensin type 1 receptor (AT1R) | Qβ virus-like particle protein was covalently conjugated to ATR-001 peptide with the amino acids sequence corresponding to the sequence of the second extracellular loop of the human AT1R position 180–187. | Preclinical studies, mice [33] | |
Atherosclerosis | Apolipoprotein B (ApoB) | A vaccine composed of ApoB peptide and complete Freund’s adjuvant. | Preclinical studies, mice [34] |
Proprotein convertase subtilisin/kexin type 9 (PCSK9) | A short PCSK9 peptide (as a B cell epitope) is linked to a tetanus peptide (as a T cell epitope). The peptide was conjugated to the surface of nanoliposome carriers and formulated with alum vaccine adjuvant. | Preclinical studies, mice [35] | |
A disintegrin and metalloproteinase with thrombospondin type 1 motif 7 (ADAMTS7) | Three potential vaccines consist of distinct B cell epitope peptides derived from ADAMTS-7 and conjugated with the carrier protein keyhole limpet hemocyanin as well as aluminum hydroxide as an adjuvant. | Preclinical studies, mice [36] | |
Lysate-based | Contain pooled antigens derived from pig adipose tissue. | Phase III clinical trials (NCT03042741) [37,38] | |
Osteoarthritis | Nerve growth factor (NGF) | Virus-like particles were derived from the cucumber mosaic virus (CuMV) and coupled to expressed recombinant NGF to create the vaccine. | Preclinical studies, mice [39] |
Fibrosis | Disintegrin and metalloproteinase domain-containing protein 12 (ADAM12) and Glioma-associated oncogene family zinc finger 1 (GLI1) | Lentiviral vectors with ADAM12 or GLI1 full-length protein coding sequence and incomplete Freund’s adjuvant plus the TLR9 agonist CpG oligodeoxynucleotides. | Preclinical studies, mice [40] |
Proprotein convertase subtilisin/kexin type 9 (PCSK9) | Epitope peptide of PCSK9-003 was derived from human PCSK9 and conjugated to Qβ virus-like particles. | Preclinical studies, mice [41] | |
Parkinson’s Disease and multiple system atrophy | Alpha-synuclein | AFFITOPE® PD01A and PD03A are peptides mimicking an epitope in the C-terminal region of human alpha-synuclein but with a different amino acid sequence. Every protein is conjugated to the carrier protein keyhole limpet hemocyanin and adsorbed to aluminum hydroxide adjuvant. | Phase II clinical trials (NCT02618941; NCT02267434; NCT02270489) [42] |
UB-312 a 10-amino-acid fragment from the alpha-synuclein C-terminus is fused to a small peptide UBITh® that activates T-helper cells, and combined with adjuvant composed of polyanionic Cytosine phosphoguanine (CpG), oligodeoxynucleotide (ODN), and aluminum-based adjuvant (Adju-Phos®). | Phase II clinical trials (NCT04075318; NCT05634876) [43,44] | ||
Neovascular maculopathy and age-related macular degeneration | Vascular endothelial growth factor receptor 1 and 2 (VEGFR1 and 2) | An HLA-A*2402 or A*0201 restricted epitope peptides of VEGFR1 and VEGFR2 emulsified with Montanide ISA 51. | Clinical trials 1 phase (NCT00791570) |
Obesity | Somatostatin | A chimeric-somatostatin with either JH17 or JH18 adjuvants. | Preclinical studies, mice [45] |
Glucose-dependent insulinotropic polypeptide | Immunoconjugate of glucose-dependent insulinotropic polypeptide covalently attached to the Qβ bacteriophage virus-like particles. | Preclinical studies, mice [46] | |
Ghrelin | A common porcine–rat–human ghrelin sequence is conjugated to BSA and emulsified in Freund’s incomplete adjuvant and diethylaminoethyldextran. | Preclinical studies, pigs [47] | |
Synthetic ghrelin residues 1–10 for Ghr1, 13–28 for Ghr2, and 1–28 for Ghr3, coupled to the carrier protein keyhole limpet hemocyanin. | Preclinical studies, rats [48] | ||
Chemical conjugation of ghrelin with NS1 protein tubules from the Bluetongue Virus (BTV) as a carrier. | Preclinical studies, mice [49] |
Target | Cell Type | Organism | Description |
---|---|---|---|
ApoD (Apolipoprotein D) | Senescent skin fibroblast | Human | ApoD expression was upregulated in cellular senescence models and correlated with senescence-associated β-galactosidase activity and decreased proliferation, which was concomitant with the upregulation of SASP genes. ApoD-positive cells were found to be more abundant in the aging human dermis, which makes ApoD a promising target for senolytic vaccines [180,181]. |
CD153 (Tumor Necrosis Factor Ligand Superfamily Member 8) | Senescence-associated T cells in adipose tissue and spontaneous germinal centers | Mice | Anti-CD153 peptide vaccine reduced the number of senescent T cells in adipose tissue, increased glucose tolerance, and improved the response to endogenous insulin [80,177]. |
CD30 (Tumor Necrosis Factor Receptor Superfamily Member 8) | Senescence-associated T and B cells in spontaneous germinal centers | Mice | Blockade of the CD153/CD30 interaction via an anti-CD153 antibody suppresses the immune senescence phenotype, lupus, and ameliorates inflammaging [177]. |
CD87 (Urokinase Plasminogen Activator Surface Receptor) | Wide range of senescent cells | Mice | uPAR-positive senescent cells can be safely targeted with senolytic CAR-T cells. Such treatment improves exercise capacity in physiological aging, and it ameliorates metabolic dysfunction in aged mice and in mice on a high-fat diet [182]. |
CD9 (Tetraspanin-29) | Senescent endothelial cells | Mice, Human | CD9 is upregulated in senescent endothelial cells, neointimal hyperplasia, and atherosclerotic plaques. CD9 may be a novel target for the prevention and treatment of vascular aging and atherosclerosis. Therefore, CD9 could potentially be used as a target in senolytic vaccines [183]. |
CTSF (Cathepsin F) | Senescent skin fibroblasts and keratinocytes | Human | Cathepsin F is associated with the senescence of human fibroblasts and keratinocytes, making it a promising target for senolytic vaccines [178]. |
EGF (Epidermal Growth Factor) | Umbilical vein endothelial cells, lung fibroblasts | Human | EGF treatment can induce cellular senescence via the activation of the EGF receptor. Inhibition of EGF represents a promising treatment against cellular senescence and could be used as a target for senolytic vaccines [184]. |
GPNMB (Glycoprotein Nonmetastatic Melanoma Protein B) | Senescent endothelial cells, adipocytes, and leukocytes | Mice | The authors identify GPNMB as a senescence-associated antigen and a promising molecular target for senolytic therapy. Immunization of mice against GPNMB improved metabolic parameters, glucose tolerance, and reduced atherosclerotic plaques [81,185,186]. |
KLRG-1 (killer-cell lectin like receptor G1) | Senescent T cells | Mice, Human | KLRG1 is expressed on NK cells and antigen-experienced T cells and has been postulated to be a marker of senescence. The elimination of KLRG1-positive cells results in lasting rejuvenation of the immune system [187,188]. |
NKG2DL (Activating Receptor Natural Killer Group 2, Member D Ligand) | Senescent models of mouse embryonic fibroblasts and astrocytes | Mice | The authors demonstrate elevated expression of NKG2DLs in response to genotoxic and oxidative stress in senescent models. NKG2D CAR-T cells displayed potent and selective cytotoxicity against these senescent cells, suggesting their potential as targeted senolytics [82]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasilieva, M.I.; Shatalova, R.O.; Matveeva, K.S.; Shindyapin, V.V.; Minskaia, E.; Ivanov, R.A.; Shevyrev, D.V. Senolytic Vaccines from the Central and Peripheral Tolerance Perspective. Vaccines 2024, 12, 1389. https://doi.org/10.3390/vaccines12121389
Vasilieva MI, Shatalova RO, Matveeva KS, Shindyapin VV, Minskaia E, Ivanov RA, Shevyrev DV. Senolytic Vaccines from the Central and Peripheral Tolerance Perspective. Vaccines. 2024; 12(12):1389. https://doi.org/10.3390/vaccines12121389
Chicago/Turabian StyleVasilieva, Mariia I., Rimma O. Shatalova, Kseniia S. Matveeva, Vadim V. Shindyapin, Ekaterina Minskaia, Roman A. Ivanov, and Daniil V. Shevyrev. 2024. "Senolytic Vaccines from the Central and Peripheral Tolerance Perspective" Vaccines 12, no. 12: 1389. https://doi.org/10.3390/vaccines12121389
APA StyleVasilieva, M. I., Shatalova, R. O., Matveeva, K. S., Shindyapin, V. V., Minskaia, E., Ivanov, R. A., & Shevyrev, D. V. (2024). Senolytic Vaccines from the Central and Peripheral Tolerance Perspective. Vaccines, 12(12), 1389. https://doi.org/10.3390/vaccines12121389