Uneventful COVID-19 Infection and Vaccination in a Cohort of Patients with Prior Myocarditis
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Madjid, M.; Safavi-Naeini, P.; Solomon, S.D.; Vardeny, O. Potential effects of coronaviruses on the cardiovascular system: A review. JAMA Cardiol. 2020, 5, 831–840. [Google Scholar] [CrossRef]
- Gargaro, J.W.; Wallace, M.; Hadler, S.C.; Langley, G.; Su, J.R.; Oster, M.E.; Broder, K.R.; Gee, J.; Weintraub, E.; Shimabukuro, T.; et al. Use of mRNA COVID-19 Vaccine After Reports of Myocarditis Among Vaccine Recipients: Update from the Advisory Committee on Immunization Practices—United States, June 202. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 977–982. [Google Scholar] [CrossRef]
- Hussain, A.; Yang, H.; Zhang, M.; Liu, Q.; Alotaibi, G.; Irfan, M.; He, H.; Chang, J.; Liang, X.J.; Weng, Y.; et al. mRNA vaccines for COVID-19 and diverse diseases. J. Control. Release 2022, 345, 314–333. [Google Scholar] [CrossRef]
- Kounis, N.G.; Koniari, I.; Mplani, V.; Plotas, P.; Velissaris, D. Hypersensitivity Myocarditis and the Pathogenetic Conundrum of COVID-19 Vaccine-Related Myocarditis. Cardiology 2022, 147, 413–415. [Google Scholar] [CrossRef]
- Caforio, A.L.; Pankuweit, S.; Arbustini, E.; Basso, C.; Gimeno-Blanes, J.; Felix, S.B.; Fu, M.; Heliö, T.; Heymans, S.; Jahns, R.; et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2013, 34, 2636–2648. [Google Scholar] [CrossRef]
- Baritussio, A.; Schiavo, A.; Basso, C.; Giordani, A.S.; Cheng, C.-Y.; Pontara, E.; Cattini, M.G.; Bison, E.; Gallo, N.; De Gaspari, M.; et al. Predictors of relapse, death or heart transplantation in myocarditis before the introduction of immunosuppression: Negative prognostic impact of female gender, fulminant onset, lower ejection fraction and serum autoantibodies. Eur. J. Heart Fail. 2022, 24, 1033–1044. [Google Scholar] [CrossRef]
- Anzini, M.; Merlo, M.; Sabbadini, G.; Barbati, G.; Finocchiaro, G.; Pinamonti, B.; Salvi, A.; Perkan, A.; Di Lenarda, A.; Bussani, R.; et al. Long-term evolution and prognostic stratification of bioopsy-proven active myocarditis. Circulation 2013, 128, 2384–2394. [Google Scholar] [CrossRef]
- Cooper, L.T.; Baughman, K.; Feldman, A.M.; Frustaci, A.; Jessup, M.; Kuhl, U.; Levine, G.N.; Narula, J.; Starling, R.C.; Towbin, J.; et al. The role of endomyocardial biopsy in the management of cardiovascular disease: A scientific statement from American Heart Association, the American College of Cardiology, and the European Society of Cardiology. J. Am. Coll. Cardiol. 2007, 50, 1914–1931. [Google Scholar] [CrossRef]
- Seferović, P.M.; Tsutsui, H.; McNamara, D.M.; Ristić, A.D.; Basso, C.; Bozkurt, B.; Cooper, L.T., Jr.; Filippatos, G.; Ide, T.; Inomata, T.; et al. Heart Failure Association of the ESC, Heart Failure Society of America and Japanese Heart Failure Society Position statement on endomyocardial biopsy. Eur. J. Heart Fail. 2021, 23, 854–871. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Basso, C.; Leone, O.; Rizzo, S.; De Gaspari, M.; van der Wal, A.C.; Aubry, M.C.; Bois, M.C.; Lin, P.T.; Maleszewski, J.J.; Stone, J.R. Pathological features of COVID-19-associated myocardial injury: A multicentre cardiovascular pathology study. Eur. Heart J. 2020, 41, 3827–3835. [Google Scholar] [CrossRef]
- Fairweather, D.; Beetler, D.J.; Di Florio, D.N.; Beetler, D.J.; Di Florio, D.N.; Musigk, N.; Heidecker, B.; Cooper, L.T., Jr. COVID-19, myocarditis and pericarditis. Circ. Res. 2023, 132, 1302–1319. [Google Scholar] [CrossRef]
- Barmada, A.; Klein, J.; Ramaswamy, A.; Brodsky, N.N.; Jaycox, J.R.; Sheikha, H.; Jones, K.M.; Jones, K.M.; Habet, V.; Campbell, M.; et al. Cytokinopathy with aberrant cytotoxic lymphocytes and profibrotic myeloid response in SARS-CoV-2 mRNA vaccine-associated myocarditis. Sci. Immunol. 2023, 8, eadh3455. [Google Scholar] [CrossRef]
- Yonker, L.M.; Swank, Z.; Bartsch, Y.C.; Burns, M.D.; Kane, A.; Boribong, B.P.; Davis, J.P.; Loiselle, M.; Novak, T.; Senussi, Y.; et al. Circulating Spike Protein Detected in Post-COVID-19 mRNA Vaccine Myocarditis. Circulation 2023, 147, 867–876. [Google Scholar] [CrossRef]
- Barda, N.; Dagan, N.; Ben-Shlomo, Y.; Kepten, E.; Waxman, J.; Ohana, R.; Hernán, M.A.; Lipsitch, M.; Kohane, I.; Kohane, I.; et al. Safety of the BNT162b2 mRNA COVID-19 Vaccine in a Nationwide Setting. N. Engl. J. Med. 2021, 385, 1078–1090. [Google Scholar] [CrossRef]
- Mevorach, D.; Anis, E.; Cedar, N.; Bromberg, M.; Haas, E.J.; Nadir, E.; Olsha-Castell, S.; Arad, D.; Hasin, T.; Levi, N.; et al. Myocarditis after BNT162b2 mRNA Vaccine against COVID-19 in Israel. N. Engl. J. Med. 2021, 385, 2140–2149. [Google Scholar] [CrossRef]
- Witberg, G.; Barda, N.; Hoss, S.; Richter, I.; Wiessman, M.; Aviv, Y.; Grinberg, T.; Auster, O.; Dagan, N.; Balicer, R.D.; et al. Myocarditis after COVID-19 Vaccination in a Large Health Care Organization. N. Engl. J. Med. 2021, 385, 2132–2139. [Google Scholar] [CrossRef]
- Ammirati, E.; Lupi, L.; Palazzini, M.; Hendren, N.S.; Grodin, J.L.; Cannistraci, C.V.; Schmidt, M.; Hekimian, G.; Peretto, G.; Bochaton, T.; et al. Prevalence, Characteristics, and Outcomes of COVID-19-Associated Acute Myocarditis. Circulation 2022, 145, 1123–1139. [Google Scholar] [CrossRef]
- Thurner, L.; Kessel, C.; Fadle, N.; Regitz, E.; Seidel, F.; Kindermann, I.; Lohse, S.; Tschöpe, C.; Kheiroddin, P.; Kiblboeck, D.; et al. IL-1RA Antibodies in Myocarditis after SARS-CoV-2 Vaccination. N. Engl. J. Med. 2022, 387, 1524–1527. [Google Scholar] [CrossRef]
- Heidecker, B.; Dagan, N.; Balicer, R.; Eriksson, U.; Rosano, G.; Coats, A.; Tschöpe, C.; Kelle, S.; Poland, G.A.; Frustaci, A.; et al. Myocarditis following COVID-19 vaccine: Incidence, presentation, diagnosis, pathophysiology, therapy, and outcomes put into perspective. A clinical consensus document supported by the Heart Failure Association of the European Society of Cardiology (ESC) and the ESC Working Group on Myocardial and Pericardial Diseases. Eur. J. Heart Fail. 2022, 24, 2000–2018. [Google Scholar]
- Pieroni, M.; Ciabatti, M.; Saletti, E.; D’Aniello, E.; Bolognese, L.; On-Behalf-Of-The-Covid-Vaccine-In-Myocarditis-Study-Group. COVID-19 mRNA vaccination in patients with previous myocarditis. Eur. J. Intern. Med. 2022, 104, 116–117. [Google Scholar] [CrossRef] [PubMed]
- Conte, E.; Leoni, O.; Ammirati, E.; Imazio, M.; Brucato, A. Incidence of myocarditis and pericarditis considered as separate clinical events over the years and post-SARS-CoV2 vaccination in adults and children. Eur. J. Intern. Med. 2023, 115, 140–142. [Google Scholar] [CrossRef]
- Kotecha, T.; Knight, D.S.; Razvi, Y.; Kumar, K.; Vimalesvaran, K.; Thornton, G.; Patel, R.; Chacko, L.; Brown, J.T.; Coyle, C.; et al. Patterns of myocardial injury in recovered troponin-positive COVID-19 patients assessed by cardiovascular magnetic resonance. Eur. Heart J. 2021, 42, 1866–1878. [Google Scholar] [CrossRef] [PubMed]
- Artico, J.; Shiwani, H.; Moon, J.C.; Gorecka, M.; McCann, G.P.; Roditi, G.; Morrow, A.; Mangion, K.; Lukaschuk, E.; Shanmuganathan, M.; et al. Myocardial Involvement After Hospitalization for COVID-19 Complicated by Troponin Elevation: A Prospective, Multicenter, Observational Study. Circulation 2023, 147, 364–374. [Google Scholar] [CrossRef] [PubMed]
COVID-19 Infection | p-Value | COVID-19 Vaccination | p-Value | |||
---|---|---|---|---|---|---|
Yes (n = 114) | No (n = 295) | Yes (n = 347) | No (n = 62) | |||
Age, years | 41 ± 16 | 47 ± 17 | 0.002 | 45 ± 17 | 43 ± 16 | 0.30 |
Gender, female | 24 (21) | 104 (35) | 0.006 | 106 (31) | 20 (33) | 0.85 |
Extra-cardiac immune-mediated diseases | 21 (18) | 63 (21) | 0.60 | 70 (20) | 14 (23) | 0.79 |
Allergy | 24 (21) | 79 (27) | 0.30 | 92 (27) | 11 (18) | 0.22 |
Clinical presentation | 0.04 | 0.78 | ||||
Pseudo-infarct | 79 (32) | 169 (68) | 211 (85) | 37 (15) | ||
Heart failure | 20 (19) | 86 (81) | 91 (86) | 15 (14) | ||
Arrhythmia | 15 (27) | 40 (72) | 45 (82) | 10 (18) | ||
NYHA class at diagnosis | 0.03 | 0.46 | ||||
I | 99 (87) | 226 (13) | 273 (79) | 52 (21) | ||
II-IV | 15 (76) | 69 (23) | 74 (84) | 10 (16) | ||
BBB at diagnosis | 0.36 | 0.70 | ||||
right | 8 (33) | 16 (67) | 20 (83) | 4 (17) | ||
left | 4 (17) | 19 (83) | 21 (91) | 2 (9) | ||
LVEF Echo, % | 52 ± 18 | 52 ± 17 | 0.95 | 52 ± 17 | 53 ± 17 | 0.59 |
FAC, % | 43 ± 9 | 41 ± 9 | 0.20 | 42 ± 9 | 44 ± 9 | 0.13 |
Biopsy-proven myocarditis | 26 (17) | 123 (83) | 0.33 | 113 (87) | 17 (13) | 0.67 |
Positive viral PCR on EMB | 8 (33) | 16 (66) | 0.29 | 20 (83) | 4 (17) | >0.99 |
Positive AHA | 46 (29) | 114 (71) | 0.71 | 141 (86) | 23 (14) | 0.21 |
Immunosuppressive therapy | 18 (17) | 67 (23) | 0.21 | 78 (23) | 7 (11) | 0.06 |
Case 1 | Case 2 | Case 3 | Case 4 | |
---|---|---|---|---|
Age at diagnosis, years | 21 | 43 | 55 | 20 |
Gender | Male | Female | Female | Female |
Days from mRNA vaccination to symptoms onset | 6 * | 6 | 14 | 21 |
COVID-19 nasal swab | Negative | Negative | Negative | Negative |
Clinical Presentation | Infarct-like | HF | HF | Infarct-like |
Peak Troponin I level, ng/L | 4068 | 331 | 13,846 | Raised Troponin T |
AHA status | OS, mildly positive | OS, mildly positive | Negative | not performed |
LVEF Echo at diagnosis, % | 56 | 45 | 10 ** | 55 |
FAC at diagnosis, % | 42 | mild reduction | 20 | 37 |
Biopsy-proven | No | Yes | Yes | No |
Histological type | - | Lymphocytic (no eosinophilic, giant cell, and histiocytic features) | Lymphocytic, PVB19 > 500 copies/ug on EMB (no eosinophilic, giant cell, and histiocytic features) | - |
PCR for SARS-CoV-2 genome on EMB | - | Negative | Negative | - |
Immune-suppressive treatment for myocarditis | - | Yes | No | - |
LVEF on CMR at diagnosis, % | 54 | mild reduction | 64 *** | normal |
RVEF on CMR at diagnosis, % | 61 | mild reduction | 67 | normal |
Presence of myocardial edema | Mid-wall pattern, basal inferior and inferolateral walls | Diffuse | Diffuse | Increased T2mapping of the antero-lateral wall |
Presence of myocardial LGE | Mid-wall pattern, basal inferior and inferolateral walls | Diffuse subendocardial | Mid-wall/epicardial pattern, basal-mid inferior, basal-apical lateral, mid-apical septal walls | Mid-wall pattern, basal-mid anterior and anterolateral wall |
Last follow-up, years from diagnosis | 2 | 1.5 | 1.5 | 2 |
Troponin I level at last follow-up | Normal | Normal | Normal | Normal |
LVEF Echo at last follow-up, % | 58 | 63 | 64 | 55 |
FAC at last follow-up, % | 43 | 43 | 46 | 47 |
COVID-19 Infected Patients (n = 114) | p-Value | COVID-19 Vaccinated Patients (n = 347) | p-Value | |||
---|---|---|---|---|---|---|
Last Follow-Up before COVID-19 Outbreak | Last Available Follow-Up | Last Follow-Up before COVID-19 Outbreak | Last Available Follow-Up | |||
NYHA class | 0.68 | 0.56 | ||||
I | 65 | 67 | 217 | 221 | ||
II-IV | 4 | 2 | 16 | 12 | ||
BBB | 6 | 5 | >0.99 | 29 | 31 | 0.89 |
LVEF Echo, % | 63 ± 8 | 61 ± 8 | 0.01 | 62 ± 9 | 59 ± 10 | <0.01 |
RVEDA, cm2 | 18.4 ± 4.7 | 19.4 ± 4.9 | 0.02 | 18.6 ± 4.7 | 19.4 ± 4.9 | 0.004 |
FAC, % | 50.3 ± 7.6 | 46.2 ± 7.9 | 0.003 | 50.9 ± 8.2 | 45.4 ± 7.8 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baritussio, A.; Giordani, A.S.; Basso, C.; Vicenzetto, C.; Lorenzoni, G.; Gasparin, M.; Iliceto, S.; Scarpa, B.; Gregori, D.; Marcolongo, R.; et al. Uneventful COVID-19 Infection and Vaccination in a Cohort of Patients with Prior Myocarditis. Vaccines 2023, 11, 1742. https://doi.org/10.3390/vaccines11121742
Baritussio A, Giordani AS, Basso C, Vicenzetto C, Lorenzoni G, Gasparin M, Iliceto S, Scarpa B, Gregori D, Marcolongo R, et al. Uneventful COVID-19 Infection and Vaccination in a Cohort of Patients with Prior Myocarditis. Vaccines. 2023; 11(12):1742. https://doi.org/10.3390/vaccines11121742
Chicago/Turabian StyleBaritussio, Anna, Andrea Silvio Giordani, Cristina Basso, Cristina Vicenzetto, Giulia Lorenzoni, Matteo Gasparin, Sabino Iliceto, Bruno Scarpa, Dario Gregori, Renzo Marcolongo, and et al. 2023. "Uneventful COVID-19 Infection and Vaccination in a Cohort of Patients with Prior Myocarditis" Vaccines 11, no. 12: 1742. https://doi.org/10.3390/vaccines11121742
APA StyleBaritussio, A., Giordani, A. S., Basso, C., Vicenzetto, C., Lorenzoni, G., Gasparin, M., Iliceto, S., Scarpa, B., Gregori, D., Marcolongo, R., & Caforio, A. L. P. (2023). Uneventful COVID-19 Infection and Vaccination in a Cohort of Patients with Prior Myocarditis. Vaccines, 11(12), 1742. https://doi.org/10.3390/vaccines11121742