Rickettsia Vaccine Candidate pVAX1-OmpB24 Stimulates TCD4+INF-γ+ and TCD8+INF-γ+ Lymphocytes in Autologous Co-Culture of Human Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Molecular Identification of Rickettsia in Patients
2.3. Isolation of Lymphocytes and Monocytes from Peripheral Blood
2.4. Differentiation and Transfection of Monocyte-Derived Macrophages
2.5. Autologous Culture of Lymphocytes with Transfected Macrophages
2.6. Flow Cytometric Analysis
3. Results
3.1. Study Population
3.2. Transfection of Macrophages with pVAX1-OmpB24
3.3. Flow Cytometric Analysis
TCD4+INF-γ+ and TCD8+INF-γ+ Lymphocytes Induced by Human Macrophages Transfected with pVAX1-OmpB24
3.4. PD1 Expression in TCD4+ and TCD8+ Lymphocytes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Osterloh, A. The Neglected Challenge: Vaccination against Rickettsiae. PLoS Negl. Trop. Dis. 2020, 14, e0008704. [Google Scholar] [CrossRef]
- Moreira, J.; Bressan, C.S.; Brasil, P.; Siqueira, A.M. Epidemiology of Acute Febrile Illness in Latin America. Clin. Microbiol. Infect. 2018, 24, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Blanton, L.S.; Wilson, N.M.; Quade, B.R.; Walker, D.H. Susceptibility of Rickettsia Rickettsii to Tigecycline in a Cell Culture Assay and Animal Model for Rocky Mountain Spotted Fever. Am. J. Trop. Med. Hyg. 2019, 101, 1091–1095. [Google Scholar] [CrossRef]
- Helgren, T.R.; Chen, C.; Wangtrakuldee, P.; Edwards, T.E.; Staker, B.L.; Abendroth, J.; Sankaran, B.; Housley, N.A.; Myler, P.J.; Audia, J.P.; et al. Rickettsia Prowazekii Methionine Aminopeptidase as a Promising Target for the Development of Antibacterial Agents. Bioorg. Med. Chem. 2017, 25, 813–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, W.; Qi, Y.; Xiong, X.; Jiao, J.; Duan, C.; Wen, B. Rickettsia Rickettsii Outer Membrane Protein YbgF Induces Protective Immunity in C3H/HeN Mice. Hum. Vaccines Immunother. 2015, 11, 642–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, W.; Xiong, X.; Qi, Y.; Jiao, J.; Duan, C.; Wen, B. Surface Protein Adr2 of Rickettsia Rickettsii Induced Protective Immunity against Rocky Mountain Spotted Fever in C3H/HeN Mice. Vaccine 2014, 32, 2027–2033. [Google Scholar] [CrossRef]
- Riley, S.P.; Cardwell, M.M.; Chan, Y.G.Y.; Pruneau, L.; Del Piero, F.; Martinez, J.J. Failure of a Heterologous Recombinant Sca5/OmpB Protein-Based Vaccine to Elicit Effective Protective Immunity against Rickettsia Rickettsii Infections in C3H/HeN Mice. Pathog. Dis. 2015, 73, ftv101. [Google Scholar] [CrossRef] [Green Version]
- Giordano, M. Patologia, parassitologia ed igiene del paesi caldi. J. Am. Med. Assoc. 1951, 145, 358–359. [Google Scholar] [CrossRef]
- Cox, H.R. Cultivation of Rickettsiae of the Rocky Mountain Spotted Fever, Typhus and Q Fever Groups in the Embryonic Tissues of Developing Chicks. Science 1941, 94, 399–403. [Google Scholar] [CrossRef]
- Kenyon, R.H.; Pedersen, C.E. Preparation of Rocky Mountain Spotted Fever Vaccine Suitable for Human Immunization. J. Clin. Microbiol. 1975, 1, 500–503. [Google Scholar] [CrossRef]
- Clements, M.L.; Wisseman, C.L.; Woodward, T.E.; Fiset, P.; Dumler, J.S.; McNamee, W.; Black, R.E.; Rooney, J.; Hughes, T.P.; Levine, M.M. Reactogenicity, Immunogenicity, and Efficacy of a Chick Embryo Cell-Derived Vaccine for Rocky Mountain Spotted Fever. J. Infect. Dis. 1983, 148, 922–930. [Google Scholar] [CrossRef] [PubMed]
- DuPont, H.L.; Hornick, R.B.; Dawkins, A.T.; Heiner, G.G.; Fabrikant, I.B.; Wisseman, C.L.; Woodward, T.E. Rocky Mountain Spotted Fever: A Comparative Study of the Active Immunity Induced by Inactivated and Viable Pathogenic Rickettsia Rickettsii. J. Infect. Dis. 1973, 128, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Crocquet-Valdes, P.A.; Díaz-Montero, C.M.; Feng, H.M.; Li, H.; Barrett, A.D.; Walker, D.H. Immunization with a Portion of Rickettsial Outer Membrane Protein A Stimulates Protective Immunity against Spotted Fever Rickettsiosis. Vaccine 2001, 20, 979–988. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Xiong, X.; Jiao, J.; Yang, X.; Jiang, Y.; Wen, B.; Gong, W. Th1 Epitope Peptides Induce Protective Immunity against Rickettsia Rickettsii Infection in C3H/HeN Mice. Vaccine 2017, 35, 7204–7212. [Google Scholar] [CrossRef] [PubMed]
- Moderzynski, K.; Heine, L.; Rauch, J.; Papp, S.; Kuehl, S.; Richardt, U.; Fleischer, B.; Osterloh, A. Cytotoxic Effector Functions of T Cells Are Not Required for Protective Immunity against Fatal Rickettsia Typhi Infection in a Murine Model of Infection: Role of TH1 and TH17 Cytokines in Protection and Pathology. PLoS Negl. Trop. Dis. 2017, 11, e0005404. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Xiong, X.; Qi, Y.; Duan, C.; Gong, W.; Jiao, J.; Wen, B. Protective Immunity against Rickettsia Heilongjiangensis in a C3H/HeN Mouse Model Mediated by Outer Membrane Protein B-Pulsed Dendritic Cells. Sci. China Life Sci. 2015, 58, 287–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzul-Rosado, K.; Balam-Romero, J.; Valencia-Pacheco, G.; Lugo-Caballero, C.; Arias-León, J.; Peniche-Lara, G.; Zavala-Castro, J. Immunogenicity of OmpA and OmpB Antigens from Rickettsia Rickettsii on Mononuclear Cells from Rickettsia Positive Mexican Patients. J. Vector Borne Dis. 2017, 54, 317. [Google Scholar] [CrossRef]
- Blair, P.J.; Jiang, J.; Schoeler, G.B.; Moron, C.; Anaya, E.; Cespedes, M.; Cruz, C.; Felices, V.; Guevara, C.; Mendoza, L.; et al. Characterization of Spotted Fever Group Rickettsiae in Flea and Tick Specimens from Northern Peru. J. Clin. Microbiol. 2004, 42, 4961–4967. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.-J.; Jang, W.-J.; Kim, J.-H.; Ryu, J.-S.; Lee, S.-H.; Park, K.-H.; Paik, H.-S.; Koh, Y.-S.; Choi, M.-S.; Kim, I.-S. Spotted Fever Group and Typhus Group Rickettsioses in Humans, South Korea. Emerg. Infect. Dis. 2005, 11, 237–244. [Google Scholar] [CrossRef]
- Zavala-Castro, J.E.; Zavala-Velázquez, J.E.; Walker, D.H.; Arcila, E.E.R.; Laviada-Molina, H.; Olano, J.P.; Ruiz-Sosa, J.A.; Small, M.A.; Dzul-Rosado, K.R. Fatal Human Infection with Rickettsia Rickettsii, Yucatán, Mexico. Emerg. Infect. Dis. 2006, 12, 672–674. [Google Scholar] [CrossRef]
- Zavala-Velazquez, J.E.; Ruiz-Sosa, J.; Vado-Solis, I.; Billings, A.N.; Walker, D.H. Serologic Study of the Prevalence of Rickettsiosis in Yucatán: Evidence for a Prevalent Spotted Fever Group Rickettsiosis. Am. J. Trop. Med. Hyg. 1999, 61, 405–408. [Google Scholar] [CrossRef]
- Álvarez de Haro, N. Cultivos Celulares Para el Desarrollo de Vacunas DNA Frente a Virus de Peces Utilizando el Modelo de Trucha Arco Iris/Rhabdovirus de la Septicemia Hemorrágica Vírica (VHSV). Ph.D. Thesis, Universidad de León, León, Spain, 2015. [Google Scholar] [CrossRef]
- Li, Z.; Díaz-Montero, C.M.; Valbuena, G.; Yu, X.-J.; Olano, J.P.; Feng, H.-M.; Walker, D.H. Identification of CD8 T-Lymphocyte Epitopes in OmpB of Rickettsia Conorii. Infect. Immun. 2003, 71, 3920–3926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolskiy, A.A.; Grishchenko, I.V.; Yudkin, D.V. Cell Cultures for Virology: Usability, Advantages, and Prospects. Int. J. Mol. Sci. 2020, 21, 7978. [Google Scholar] [CrossRef] [PubMed]
- Okita, K.; Matsumura, Y.; Sato, Y.; Okada, A.; Morizane, A.; Okamoto, S.; Hong, H.; Nakagawa, M.; Tanabe, K.; Tezuka, K.; et al. A More Efficient Method to Generate Integration-Free Human IPS Cells. Nat. Methods 2011, 8, 409–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ventura, C.; Bisceglia, H.; Girerd-Chambaz, Y.; Burdin, N.; Chaux, P. HLA-DR and HLA-DP Restricted Epitopes from Human Cytomegalovirus Glycoprotein B Recognized by CD4+ T-Cell Clones from Chronically Infected Individuals. J. Clin. Immunol. 2012, 32, 1305. [Google Scholar] [CrossRef] [Green Version]
- Dokka, S.; Toledo, D.; Shi, X.; Ye, J.; Rojanasakul, Y. High-Efficiency Gene Transfection of Macrophages by Lipoplexes. Int. J. Pharm. 2000, 206, 97–104. [Google Scholar] [CrossRef]
- Osorio, J.S.; Bionaz, M. Plasmid Transfection in Bovine Cells: Optimization Using a Realtime Monitoring of Green Fluorescent Protein and Effect on Gene Reporter Assay. Gene 2017, 626, 200–208. [Google Scholar] [CrossRef]
- Duarte, F.B.; Brígido, M.d.M.; Melo, E.d.O.; Báo, S.N.; Martins, C.F. Strategies for Transfection of Bovine Mesenchymal Stem Cells with PBC1-Anti-CD3 Vector. Anim. Biotechnol. 2022, 33, 1014–1024. [Google Scholar] [CrossRef]
- Mbawuike, I.N.; Zhang, Y.; Wang, Y.; Song, L. Cationic Liposome-Mediated Enhanced Generation of Human HLA-Restricted RSV-Specific CD8+ CTL+. J. Clin. Immunol. 2002, 22, 164–175. [Google Scholar] [CrossRef]
- Schwendener, R.A. Liposomes as Vaccine Delivery Systems: A Review of the Recent Advances. Ther. Adv. Vaccines 2014, 2, 159–182. [Google Scholar] [CrossRef]
- U’Ren, L.; Kedl, R.; Dow, S. Vaccination with Liposome--DNA Complexes Elicits Enhanced Antitumor Immunity. Cancer Gene Ther. 2006, 13, 1033–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, D.H.; Popov, V.L.; Feng, H.M. Establishment of a Novel Endothelial Target Mouse Model of a Typhus Group Rickettsiosis: Evidence for Critical Roles for Gamma Interferon and CD8 T Lymphocytes. Lab. Investig. J. Tech. Methods Pathol. 2000, 80, 1361–1372. [Google Scholar] [CrossRef] [Green Version]
- Gruver, A.; Hudson, L.; Sempowski, G. Immunosenescence of Ageing. J. Pathol. 2007, 211, 144–156. [Google Scholar] [CrossRef]
- Zavala, J.; Ruiz, A.; Zavala, J. Las Rickettsias Del Grupo de Las Fiebres Manchadas: Respuesta Inmune y Sus Proteínas Inmunodominantes. Rev. Médica Chile 2004, 132, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Mansueto, P.; Vitale, G.; Cascio, A.; Seidita, A.; Pepe, I.; Carroccio, A.; di Rosa, S.; Rini, G.B.; Cillari, E.; Walker, D.H. New Insight into Immunity and Immunopathology of Rickettsial Diseases. Clin. Dev. Immunol. 2011, 2012, e967852. [Google Scholar] [CrossRef] [PubMed]
- Secretaría de Salud Guía de Práctica Clínica SS-595-13 “Prevención, Diagnóstico y Tratamiento de la Fiebre Manchada por Rickettsia Rickettsii en Población Pediátrica y Adulta en el Primer y Segundo Nivel de Atención”. Centro Nacional de Excelencia Tecnologica en Salud. Mexico: Secretaria de Salud. 2013. Available online: https://www.actuamed.com.mx/informacion-medica/prevencion-diagnostico-y-tratamiento-de-fiebre-manchada-por-rickettsia-rickettsii (accessed on 14 December 2022).
- Ávila-Aguirre, L.M.; Martínez-Díaz, H.C.; Betancourt-Ruiz, P.; Hidalgo, M. 12. Historia de la rickettsiosis en Colombia. Fondo Editor. Biogénesis 2020, 1, 218–239. [Google Scholar]
- Sampedro-Núñez, M.; Serrano-Somavilla, A.; Adrados, M.; Cameselle-Teijeiro, J.M.; Blanco-Carrera, C.; Cabezas-Agricola, J.M.; Martínez-Hernández, R.; Martín-Pérez, E.; Muñoz de Nova, J.L.; Díaz, J.Á.; et al. Analysis of Expression of the PD-1/PD-L1 Immune Checkpoint System and Its Prognostic Impact in Gastroenteropancreatic Neuroendocrine Tumors. Sci. Rep. 2018, 8, 17812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wykes, M.N.; Lewin, S.R. Immune Checkpoint Blockade in Infectious Diseases. Nat. Rev. Immunol. 2018, 18, 91–104. [Google Scholar] [CrossRef]
- Jurado, J.O.; Alvarez, I.B.; Pasquinelli, V.; Martínez, G.J.; Quiroga, M.F.; Abbate, E.; Musella, R.M.; Chuluyan, H.E.; García, V.E. Programmed Death (PD)-1:PD-Ligand 1/PD-Ligand 2 Pathway Inhibits T Cell Effector Functions during Human Tuberculosis. J. Immunol. 2008, 181, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.; Gao, Y.; Liu, Y.; Zhang, B.; Liu, Q.; Wu, J.; Fan, L.; Ou, Q.; Zhang, W.; Shao, L. PD-1/PD-L Pathway Inhibits M.Tb-Specific CD4+ T-Cell Functions and Phagocytosis of Macrophages in Active Tuberculosis. Sci. Rep. 2016, 6, 38362. [Google Scholar] [CrossRef]
- Chang, T.T.; Kuchroo, V.K.; Sharpe, A.H. Role of the B7-CD28/CTLA-4 Pathway in Autoimmune Disease. Curr. Dir. Autoimmun. 2002, 5, 113–130. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.L.; Cotterell, S.E.; Gorak, P.M.; Engwerda, C.R.; Kaye, P.M. Blockade of CTLA-4 Enhances Host Resistance to the Intracellular Pathogen, Leishmania Donovani. J. Immunol. Baltim. 1998, 161, 4153–4160. [Google Scholar] [CrossRef]
- Gazi, M.; Caro-Gomez, E.; Goez, Y.; Cespedes, M.A.; Hidalgo, M.; Correa, P.; Valbuena, G. Discovery of a Protective Rickettsia Prowazekii Antigen Recognized by CD8+ T Cells, RP884, Using an In Vivo Screening Platform. PLoS ONE 2013, 8, e76253. [Google Scholar] [CrossRef] [Green Version]
- Nair, S.; Archer, G.E.; Tedder, T.F. Isolation and Generation of Human Dendritic Cells. Curr. Protoc. Immunol. 2012, 99, 7–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vázquez, M.B.; Sureda, M.; Rebollo, J. Células dendríticas I: Aspectos básicos de su biología y funciones. Inmunología 2012, 31, 21–30. [Google Scholar] [CrossRef]
- Elgueta, R.; Benson, M.J.; de Vries, V.C.; Wasiuk, A.; Guo, Y.; Noelle, R.J. Molecular Mechanism and Function of CD40/CD40L Engagement in the Immune System. Immunol. Rev. 2009, 229, 152–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- la Mora, J.D.-D.; Licona-Enríquez, J.D.; Leyva-Gastélum, M.; Mora, D.D.-D.L.; Rascón-Alcantar, A.; Álvarez-Hernández, G. A Fatal Case Series of Rocky Mountain Spotted Fever in Sonora, México. Biomédica 2018, 38, 69–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbas, A.K.; Lichtman, A.H.; Pillai, S. Inmunología Celular y Molecular; Octava; Elsevier: Barcelona, Spain, 2015; ISBN 978-84-9022-909-5. [Google Scholar]
- Vasilevko, V.; Ghochikyan, A.; Holterman, M.J.; Agadjanyan, M.G. CD80 (B7-1) and CD86 (B7-2) Are Functionally Equivalent in the Initiation and Maintenance of CD4+ T-Cell Proliferation after Activation with Suboptimal Doses of PHA. DNA Cell Biol. 2002, 21, 137–149. [Google Scholar] [CrossRef]
- Galletti, M.F.B.M.; Fujita, A.; Rosa, R.D.; Martins, L.A.; Soares, H.S.; Labruna, M.B.; Daffre, S.; Fogaça, A.C. Virulence Genes of Rickettsia Rickettsii Are Differentially Modulated by Either Temperature Upshift or Blood-Feeding in Tick Midgut and Salivary Glands. Parasit. Vectors 2016, 9, 331. [Google Scholar] [CrossRef] [Green Version]
- Hoan, N.X.; Khuyen, N.; Giang, D.P.; Binh, M.T.; Toan, N.L.; Anh, D.T.; Trung, N.T.; Bang, M.H.; Meyer, C.G.; Velavan, T.P.; et al. Vitamin D Receptor ApaI Polymorphism Associated with Progression of Liver Disease in Vietnamese Patients Chronically Infected with Hepatitis B Virus. BMC Med. Genet. 2019, 20, 201. [Google Scholar] [CrossRef]
- Niebylski, M.L.; Peacock, M.G.; Schwan, T.G. Lethal Effect of Rickettsia Rickettsii on Its Tick Vector (Dermacentor andersoni). Appl. Environ. Microbiol. 1999, 65, 773–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Li, H.; Li, Z.; Liu, Y.; Gao, J.; Zeng, X.; Gou, C.; Zhu, X.; Guo, X.; Pan, L.; et al. Association of Taq I T/C and Fok I C/T polymorphisms of vitamin D receptor gene with outcome of hepatitis B virus infection. Zhonghua Yi Xue Za Zhi 2006, 86, 1952–1956. [Google Scholar] [PubMed]
Age | Gender | State | Symptom Onset Date | Clinical Signs | |||||
---|---|---|---|---|---|---|---|---|---|
Species | Fever | Exanthema | Headache | Arthralgias/Myalgias | Exposure | ||||
26 | F | Baja California | 24/11/16 | R. rickettsii | + | - | + | + | Tick |
29 | M | Baja California | 31/08/16 | R. rickettsii | + | - | + | + | - |
54 | M | Baja California | 18/08/16 | R. rickettsii | + | - | + | + | Tick |
25 | M | Baja California | - | R. rickettsii | + | + | + | + | Tick |
51 | F | Baja California | 21/03/17 | R. rickettsii | + | + | + | + | - |
33 | F | Yucatan | 03/10/15 | R. typhi | + | - | + | + | Fleas |
31 | F | Yucatan | 09/11/16 | R. typhi | + | + | + | - | |
39 | M | Yucatan | 14/10/16 | R. typhi | + | - | + | + | Fleas and Ticks |
28 | M | Yucatan | - | R. typhi | + | - | - | - | Tick |
32 | M | Yucatan | - | R. typhi | + | - | - | - | - |
72 | M | Yucatan | 01/08/13 | R. felis | + | + | - | + | Tick |
43 | M | Yucatan | 01/04/13 | R. felis | + | - | + | + | Tick |
18 | F | Yucatan | 01/05/06 | R. felis | + | - | - | - | Tick |
16 | F | Yucatan | 01/11/13 | R. felis | + | + | - | - | Tick |
Macrophage Markers (%) | No Stimulation | Stimulation | |||||||
---|---|---|---|---|---|---|---|---|---|
Concavalina A | pVax | OmpB-24 | |||||||
Healthy Donors | Patient | Healthy Donors | Patient | Healthy Donors | Patient | Healthy Donors | Patient | ||
R. rickettsii | CD14+CD40+ | 25.30 | 32.00 a | 52.80 | 11.92 | 15.20 | 17.70 a | 9.97 | 12.50 a |
CD14+CD80+ | 32.00 | 23.90 | 39.40 | 18.40 | 27.80 | 48.10 a | 37.30 | 22.40 | |
CD14+HLA-I | 97.80 | 97.00 | 95.40 | 97.00 a | 99.20 | 94.10 | 98.10 | 85.50 | |
CD14+HLA-II | 46.10 | 34.30 | 79.20 | 21.90 | 37.90 | 28.10 | 37.30 | 26.60 | |
R. typhi | CD14+CD40+ | 32.70 | 22.10 | 15.40 | 32.20 a | 32.90 | 20.50 | 39.00 | 18.30 |
CD14+CD80+ | 16.70 | 16.30 | 11.50 | 21.00 a | 23.00 | 19.10 | 22.80 | 9.91 | |
CD14+HLA-I | 99.20 | 91.80 | 93.10 | 96.40 a | 93.70 | 92.20 | 97.00 | 97.30 a | |
CD14+HLA-II | 48.00 | 25.20 | 27.70 | 36.10 a | 40.10 | 28.30 | 53.20 | 33.50 | |
R. felis | CD14+CD40+ | 10.40 | 6.70 | 23.70 | 4.70 | 18.90 | 5.20 | 18.50 | 7.30 |
CD14+CD80+ | 16.60 | 3.20 | 27.70 | 9.20 | 30.40 | 9.20 | 25.90 | 9.40 | |
CD14+HLA-I | 98.90 | 96.30 | 97.00 | 96.80 | 97.40 | 97.70 a | 97.20 | 97.70 a | |
CD14+HLA-II | 28.90 | 66.80 a | 33.00 | 62.10 a | 44.60 | 92.50 a | 49.20 | 94.60 a |
(MFI) | No Stimulation | Stimulation | |||||||
---|---|---|---|---|---|---|---|---|---|
Concanavalin A | pVax | OmpB-24 | |||||||
Healthy Donors | Patient | Healthy Donors | Patient | Healthy Donors | Patient | Healthy Donors | Patient | ||
R. rickettsii | CD14+CD40+ | 4662 | 2514 | 4791 | 2975 | 4008 | 3525 | 4537 | 2871 |
CD14+CD80+ | 20,569 | 2476 | 29,801 | 2619 | 41,331 | 2275 | 29,801 | 3332 | |
CD14+HLA-I | 51,054 | 53,824 a | 62,133 | 65,078 a | 58,748 | 55,552 | 38,630 | 42,342 a | |
CD14+HLA-II | 10,110 | 8117 | 5039 | 2000 | 6000 | 12,000 a | 10,000 | 8000 | |
R. typhi | CD14+CD40+ | 1270 | 5136 a | 2115 | 3991 a | 1633 | 4924 a | 5191 | 5439 a |
CD14+CD80+ | 3132 | 2771 | 1839 | 4316 a | 2400 | 4352 a | 1946 | 4325 a | |
CD14+HLA-I | 80,092 | 55,417 | 34,830 | 65,897 a | 77,776 | 76,401 | 82,276 | 73,816 | |
CD14+HLA-II | 7697 | 9795 a | 3325 | 10,248 a | 6972 | 11,197 a | 8010 | 14,788 a | |
R. felis | CD14+CD40+ | 5125 | 189,210 a | 2799 | 465,000 a | 6531 | 340,706 a | 147,873 | 321,110 a |
CD14+CD80+ | 2223 | 47,918 a | 2270 | 49,923 a | 2332 | 95,271 a | 2917 | 125,643 a | |
CD14+HLA-I | 47,429 | 75,097 a | 51,132 | 65,897 a | 62,588 | 165,240 a | 58,606 | 74,065 a | |
CD14+HLA-II | 9156 | 72,806 a | 7646 | 78,536 a | 12,698 | 76,929 a | 15,171 | 78,807 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzul-Rosado, K.; Donis-Maturano, L.; Arias-León, J.; Machado-Contreras, J.; Valencia-Pacheco, G.; Panti-Balam, C.; Balam-Romero, J.; Ku-González, A.; Peniche-Lara, G.; Mosqueda, J.; et al. Rickettsia Vaccine Candidate pVAX1-OmpB24 Stimulates TCD4+INF-γ+ and TCD8+INF-γ+ Lymphocytes in Autologous Co-Culture of Human Cells. Vaccines 2023, 11, 173. https://doi.org/10.3390/vaccines11010173
Dzul-Rosado K, Donis-Maturano L, Arias-León J, Machado-Contreras J, Valencia-Pacheco G, Panti-Balam C, Balam-Romero J, Ku-González A, Peniche-Lara G, Mosqueda J, et al. Rickettsia Vaccine Candidate pVAX1-OmpB24 Stimulates TCD4+INF-γ+ and TCD8+INF-γ+ Lymphocytes in Autologous Co-Culture of Human Cells. Vaccines. 2023; 11(1):173. https://doi.org/10.3390/vaccines11010173
Chicago/Turabian StyleDzul-Rosado, Karla, Luis Donis-Maturano, Juan Arias-León, Jesús Machado-Contreras, Guillermo Valencia-Pacheco, Candi Panti-Balam, Javier Balam-Romero, Angela Ku-González, Gaspar Peniche-Lara, Juan Mosqueda, and et al. 2023. "Rickettsia Vaccine Candidate pVAX1-OmpB24 Stimulates TCD4+INF-γ+ and TCD8+INF-γ+ Lymphocytes in Autologous Co-Culture of Human Cells" Vaccines 11, no. 1: 173. https://doi.org/10.3390/vaccines11010173