Investigation of Adverse Events Experienced by Healthcare Workers following Immunization with Homologous or Heterologous COVID-19 Booster Vaccinations
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Vaccine
2.3. Inclusion Criteria
2.4. Exclusion Criteria
- Not an HCW;
- People with a history of COVID-19 infection or vaccine allergies;
- Women who were pregnant or breastfeeding;
- People with severe chronic or immunocompromised diseases;
- People aged <18 years or >60 years.
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, F.C.; Guan, X.H.; Li, Y.H.; Huang, J.Y.; Jiang, T.; Hou, L.H.; Li, J.X.; Yang, B.F.; Wang, L.; Wang, W.J.; et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2020, 396, 479–488. [Google Scholar] [CrossRef]
- Xia, S.; Zhang, Y.; Wang, Y.; Wang, H.; Yang, Y.; Gao, G.F.; Tan, W.; Wu, G.; Xu, M.; Lou, Z.; et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: A randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect. Dis. 2021, 21, 39–51. [Google Scholar] [CrossRef]
- Brown, C.M.; Vostok, J.; Johnson, H.; Burns, M.; Gharpure, R.; Sami, S.; Sabo, R.T.; Hall, N.; Foreman, A.; Schubert, P.L.; et al. Outbreak of SARS-CoV-2 Infections, Including COVID-19 Vaccine Breakthrough Infections, Associated with Large Public Gatherings—Barnstable County, Massachusetts, July 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 1059–1062. [Google Scholar] [CrossRef]
- Pilishvili, T.; Gierke, R.; Fleming-Dutra, K.E.; Farrar, J.L.; Mohr, N.M.; Talan, D.A.; Krishnadasan, A.; Harland, K.K.; Smithline, H.A.; Hou, P.C.; et al. Effectiveness of mRNA COVID-19 Vaccine among U.S. Health Care Personnel. N. Engl. J. Med. 2021, 385, e90. [Google Scholar] [CrossRef]
- Rosenberg, E.S.; Dorabawila, V.; Easton, D.; Bauer, U.E.; Kumar, J.; Hoen, R.; Hoefer, D.; Wu, M.; Lutterloh, E.; Conroy, M.B.; et al. COVID-19 Vaccine Effectiveness in New York State. N. Engl. J. Med. 2022, 386, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Fowlkes, A.; Gaglani, M.; Groover, K.; Thiese, M.S.; Tyner, H.; Ellingson, K.; Cohorts, H.-R. Effectiveness of COVID-19 Vaccines in Preventing SARS-CoV-2 Infection Among Frontline Workers Before and During B.1.617.2 (Delta) Variant Predominance—Eight U.S. Locations, December 2020–August 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 1167–1169. [Google Scholar] [CrossRef]
- Vogel, G. Mixing vaccines may boost immune responses. Science 2021, 372, 1138. [Google Scholar] [CrossRef]
- Flaxman, A.; Marchevsky, N.G.; Jenkin, D.; Aboagye, J.; Aley, P.K.; Angus, B.; Belij-Rammerstorfer, S.; Bibi, S.; Bittaye, M.; Cappuccini, F.; et al. Reactogenicity and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 in the UK: A substudy of two randomised controlled trials (COV001 and COV002). Lancet 2021, 398, 981–990. [Google Scholar] [CrossRef]
- Liu, X.; Shaw, R.H.; Stuart, A.S.V.; Greenland, M.; Aley, P.K.; Andrews, N.J.; Cameron, J.C.; Charlton, S.; Clutterbuck, E.A.; Collins, A.M.; et al. Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): A single-blind, randomised, non-inferiority trial. Lancet 2021, 398, 856–869. [Google Scholar] [CrossRef]
- Atmar, R.L.; Lyke, K.E.; Deming, M.E.; Jackson, L.A.; Branche, A.R.; El Sahly, H.M.; Rostad, C.A.; Martin, J.M.; Johnston, C.; Rupp, R.E.; et al. Homologous and Heterologous COVID-19 Booster Vaccinations. N. Engl. J. Med. 2022, 386, 1046–1057. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, Y.; Liu, L.; Zha, Y.; Yang, Y.; Wang, Y.; Roberts, N.; Li, Y. Analysis of Adverse Effects of COVID-19 Vaccines Experienced by Healthcare Workers at Guizhou Provincial Staff Hospital, China. Vaccines 2022, 10, 1449. [Google Scholar] [CrossRef] [PubMed]
- Bower, J.E.; Radin, A.; Kuhlman, K.R. Psychoneuroimmunology in the time of COVID-19: Why neuro-immune interactions matter for mental and physical health. Behav. Res. Ther. 2022, 154, 104104. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Ma, S.; Wang, Y.; Cai, Z.; Hu, J.; Wei, N.; Wu, J.; Du, H.; Chen, T.; Li, R.; et al. Factors Associated With Mental Health Outcomes Among Health Care Workers Exposed to Coronavirus Disease 2019. JAMA Netw. Open 2020, 3, e203976. [Google Scholar] [CrossRef] [PubMed]
- Leonard, B.E. Stress and the Immune System: Immunological Aspects of Depressive Illness. Int. Rev. Psychiatry 2009, 2, 321–330. [Google Scholar] [CrossRef]
- Feng, J.; Xu, J.; Xu, S.; Cao, H.; Zheng, C.; Sharma, L.; Dela Cruz, C.S.; Zhang, J.; Chu, D.; Yu, L.; et al. Psychological Impact During the First Outbreak of COVID-19 on Frontline Health Care Workers in Shanghai. Front. Public Health 2021, 9, 646780. [Google Scholar] [CrossRef]
- Eyesnews. From Now on, COVID-19 Prime-Boost Vaccinations in Guiyang. 2021. Available online: https://baijiahao.baidu.com/s?id=1713651289427289292&wfr=spider&for=pc (accessed on 22 June 2022).
- Yue, L.; Zhou, J.; Zhou, Y.; Yang, X.; Xie, T.; Yang, M.; Zhao, H.; Zhao, Y.; Yang, T.; Li, H.; et al. Antibody response elicited by a third boost dose of inactivated SARS-CoV-2 vaccine can neutralize SARS-CoV-2 variants of concern. Emerg. Microbes Infect. 2021, 10, 2125–2127. [Google Scholar] [CrossRef] [PubMed]
- Parums, D.V. Editorial: First Approval of the Protein-Based Adjuvanted Nuvaxovid (NVX-CoV2373) Novavax Vaccine for SARS-CoV-2 Could Increase Vaccine Uptake and Provide Immune Protection from Viral Variants. Med. Sci. Monit. 2022, 28, e936523. [Google Scholar] [CrossRef]
- Hajiabdolbaghi, M.; Jam, S.; SeyedAlinaghi, S.; Jafari, S.; Badie, B.M.; Sabzvari, D. Adverse reactions of trivalent influenza vaccine in HIV-infected individuals. Acta Med. Iran. 2010, 48, 95–100. [Google Scholar]
- WHO. Immunization Safety Surveillance: Guidelines for Immunization Programme Managers on Surveillance of Adverse Events following Immunization. 3rd ed. Available online: https://www.who.int/publications/i/item/9789290617457 (accessed on 30 July 2022).
- Hurley, D.; Griffin, C.; Young, M.; Scott, D.A.; Pride, M.W.; Scully, I.L.; Ginis, J.; Severs, J.; Jansen, K.U.; Gruber, W.C.; et al. Safety, Tolerability, and Immunogenicity of a 20-Valent Pneumococcal Conjugate Vaccine (PCV20) in Adults 60 to 64 Years of Age. Clin. Infect. Dis. 2021, 73, e1489–e1497. [Google Scholar] [CrossRef]
- Castells, M.C.; Phillips, E.J. Maintaining Safety with SARS-CoV-2 Vaccines. N. Engl. J. Med. 2021, 384, 643–649. [Google Scholar] [CrossRef]
- Chen, M.; Yuan, Y.; Zhou, Y.; Deng, Z.; Zhao, J.; Feng, F.; Zou, H.; Sun, C. Safety of SARS-CoV-2 vaccines: A systematic review and meta-analysis of randomized controlled trials. Infect. Dis. Poverty 2021, 10, 94. [Google Scholar] [CrossRef] [PubMed]
- Stuart, A.S.V.; Shaw, R.H.; Liu, X.; Greenland, M.; Aley, P.K.; Andrews, N.J.; Cameron, J.C.; Charlton, S.; Clutterbuck, E.A.; Collins, A.M.; et al. Immunogenicity, safety, and reactogenicity of heterologous COVID-19 primary vaccination incorporating mRNA, viral-vector, and protein-adjuvant vaccines in the UK (Com-COV2): A single-blind, randomised, phase 2, non-inferiority trial. Lancet 2022, 399, 36–49. [Google Scholar] [CrossRef]
- Lee, Y.W.; Lim, S.Y.; Lee, J.H.; Lim, J.S.; Kim, M.; Kwon, S.; Joo, J.; Kwak, S.H.; Kim, E.O.; Jung, J.; et al. Adverse Reactions of the Second Dose of the BNT162b2 mRNA COVID-19 Vaccine in Healthcare Workers in Korea. J. Korean Med. Sci. 2021, 36, e153. [Google Scholar] [CrossRef] [PubMed]
- Menni, C.; Klaser, K.; May, A.; Polidori, L.; Capdevila, J.; Louca, P.; Sudre, C.H.; Nguyen, L.H.; Drew, D.A.; Merino, J.; et al. Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: A prospective observational study. Lancet Infect. Dis. 2021, 21, 939–949. [Google Scholar] [CrossRef]
- Rivera-Izquierdo, M.; Soler-Iborte, E.; de Rojas, J.P.; Pegalajar-Garcia, M.D.; Gil-Villalba, A.; Ruiz-Villaverde, R.; Valero-Ubierna, M.D.C. Factors Associated with Adverse Reactions to BNT162b2 COVID-19 Vaccine in a Cohort of 3969 Hospital Workers. Vaccines 2021, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Dantzer, R.; Mormede, P. Psychoneuroimmunology of stress. In Stress, the Immune System and Psychiatry; John Wiley & Sons: Chichester, UK, 1995. [Google Scholar]
- Maes, M.; Hendriks, D.; Van Gastel, A.; Demedts, P.; Wauters, A.; Neels, H.; Janca, A.; Scharpe, S. Effects of psychological stress on serum immunoglobulin, complement and acute phase protein concentrations in normal volunteers. Psychoneuroendocrinology 1997, 22, 397–409. [Google Scholar] [CrossRef]
- Cohen, S. Psychosocial Vulnerabilities to Upper Respiratory Infectious Illness: Implications for Susceptibility to Coronavirus Disease 2019 (COVID-19). Perspect. Psychol. Sci. 2021, 16, 161–174. [Google Scholar] [CrossRef]
- Madison, A.A.; Shrout, M.R.; Renna, M.E.; Kiecolt-Glaser, J.K. Psychological and Behavioral Predictors of Vaccine Efficacy: Considerations for COVID-19. Perspect. Psychol. Sci. 2021, 16, 191–203. [Google Scholar] [CrossRef]
- Baron, R.S.; Cutrona, C.E.; Hicklin, D.; Russell, D.W.; Lubaroff, D.M. Social support and immune function among spouses of cancer patients. J. Pers. Soc. Psychol. 1990, 59, 344–352. [Google Scholar] [CrossRef]
- Esterling, B.A.; Kiecolt-Glaser, J.K.; Glaser, R. Psychosocial modulation of cytokine-induced natural killer cell activity in older adults. Psychosom. Med. 1996, 58, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Uchino, B.N.; Cacioppo, J.T.; Kiecolt-Glaser, J.K. The relationship between social support and physiological processes: A review with emphasis on underlying mechanisms and implications for health. Psychol. Bull. 1996, 119, 488–531. [Google Scholar] [CrossRef] [PubMed]
- Glaser, R.; Kiecolt-Glaser, J.K.; Bonneau, R.H.; Malarkey, W.; Kennedy, S.; Hughes, J. Stress-induced modulation of the immune response to recombinant hepatitis B vaccine. Psychosom. Med. 1992, 54, 22–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchino, B.N.; Landvatter, J.; Zee, K.; Bolger, N. Social Support and Antibody Responses to Vaccination: A Meta-Analysis. Ann. Behav. Med. 2020, 54, 567–574. [Google Scholar] [CrossRef]
- Munro, A.P.S.; Janani, L.; Cornelius, V.; Aley, P.K.; Babbage, G.; Baxter, D.; Bula, M.; Cathie, K.; Chatterjee, K.; Dodd, K.; et al. Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): A blinded, multicentre, randomised, controlled, phase 2 trial. Lancet 2021, 398, 2258–2276. [Google Scholar] [CrossRef]
- Nordstrom, P.; Ballin, M.; Nordstrom, A. Effectiveness of heterologous ChAdOx1 nCoV-19 and mRNA prime-boost vaccination against symptomatic COVID-19 infection in Sweden: A nationwide cohort study. Lancet Reg. Health Eur. 2021, 11, 100249. [Google Scholar] [CrossRef]
- Sapkota, B.; Saud, B.; Shrestha, R.; Al-Fahad, D.; Sah, R.; Shrestha, S.; Rodriguez-Morales, A.J. Heterologous prime-boost strategies for COVID-19 vaccines. J. Travel Med. 2021, 29, taab191. [Google Scholar] [CrossRef]
- Perez-Then, E.; Lucas, C.; Monteiro, V.S.; Miric, M.; Brache, V.; Cochon, L.; Vogels, C.B.F.; Malik, A.A.; De la Cruz, E.; Jorge, A.; et al. Neutralizing antibodies against the SARS-CoV-2 Delta and Omicron variants following heterologous CoronaVac plus BNT162b2 booster vaccination. Nat. Med. 2022, 28, 481–485. [Google Scholar] [CrossRef]
- Ai, J.; Zhang, H.; Zhang, Y.; Lin, K.; Zhang, Y.; Wu, J.; Wan, Y.; Huang, Y.; Song, J.; Fu, Z.; et al. Omicron variant showed lower neutralizing sensitivity than other SARS-CoV-2 variants to immune sera elicited by vaccines after boost. Emerg. Microbes Infect. 2022, 11, 337–343. [Google Scholar] [CrossRef]
- Shen, X. Boosting immunity to Omicron. Nat. Med. 2022, 28, 445–446. [Google Scholar] [CrossRef]
- Choi, A.; Koch, M.; Wu, K.; Chu, L.; Ma, L.; Hill, A.; Nunna, N.; Huang, W.; Oestreicher, J.; Colpitts, T.; et al. Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: An interim analysis. Nat. Med. 2021, 27, 2025–2031. [Google Scholar] [CrossRef]
- World Health Organization. Global Manual on Surveillance of Adverse Events following Immunization. 2016. Available online: http://apps.who.int/iris/bitstream/10665/206144/1/9789241507769_eng.pdf (accessed on 31 May 2016).
- Public Health Ontario. Adverse Events Following Immunization (AEFIs) for COVID-19 in Ontario: December 13, 2020 to October 23, 2022. Available online: https://www.publichealthontario.ca/-/media/Documents/nCoV/epi/covid-19-aefi-report.pdf?sc_lang=en (accessed on 28 October 2022).
- Di Pasquale, A.; Bonanni, P.; Garcon, N.; Stanberry, L.R.; El-Hodhod, M.; Tavares Da Silva, F. Vaccine safety evaluation: Practical aspects in assessing benefits and risks. Vaccine 2016, 34, 6672–6680. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Vero Cell Booster | CHO Cell Booster | Mixed Vaccines Booster | Total | Statistic | p-Value |
---|---|---|---|---|---|---|
Age group (in years) | ||||||
18–29 | 368 (58.0%) | 61 (81.3%) | 38 (46.3%) | 467 (59.0%) | χ2 = 39.1 | <0.001 |
30–39 | 163 (25.7%) | 6 (8.0%) | 17 (20.7%) | 186 (23.5%) | ||
40–49 | 62 (9.8%) | 3 (4%) | 10 (12.2%) | 75 (9.5%) | ||
50–60 | 42 (9.1%) | 5 (6.7%) | 17 (3.8%) | 64 (8.1%) | ||
Gender | χ2 = 12.8 | 0.002 | ||||
Female | 465 (73.2%) | 69 (92.0%) | 63 (76.8%) | 597 (75.4%) | ||
Male | 170 (26.8%) | 6 (8.0%) | 19 (23.2%) | 195 (24.6%) | ||
Ethnicity | χ2 = 1.689 | 0.946 | ||||
Han | 403 (63.5%) | 51 (67.5%) | 53 (66.7%) | 507 (64.0%) | ||
Miao | 58 (9.1%) | 8 (10.7%) | 8 (9.8%) | 74 (9.3%) | ||
Buyi | 49 (7.7%) | 4 (5.3%) | 7 (8.5%) | 60 (7.6%) | ||
Others | 125 (19.7%) | 12 (16.0%) | 14 (17.1%) | 151 (19.1%) | ||
Professional categories | χ2 = 23.17 | <0.001 | ||||
Doctors | 143 (22.5%) | 5 (6.7%) | 19 (23.2%) | 167 (21.1%) | ||
Nurses | 236 (37.2%) | 19 (25.3%) | 31 (37.8%) | 286 (26.1%) | ||
Others | 256 (40.3%) | 51 (68%) | 32 (39.0%) | 339 (42.8%) | ||
Level of education | χ2 = 25.99 | <0.001 | ||||
Bachelor’s degree or above | 349 (55.0%) | 18 (24.0%) | 40 (48.8%) | 407 (51.4%) | ||
Junior college or below | 286 (45.0%) | 57 (76.0%) | 42 (51.2%) | 386 (48.6%) | ||
Regression of symptoms | Fisher’s exact test | <0.001 | ||||
Symptomless | 573 (90.2%) | 62 (82.7%) | 65 (79.2%) | 700 (88.4%) | ||
Spontaneous remission | 62 (9.8%) | 11 (14.7%) | 14 (17.1%) | 87 (11.0%) | ||
Seeked help from outpatient provider | 0 | 2 (2.6%) | 3 (3.7%) | 5 (0.6%) |
Variables | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Mixed vaccines | 2.417 (1.334–4.381) | 0.004 | 2.476 (1.352, 4.533) | 0.003 |
CHO cell booster | 1.938 (1.009–3.722) | 0.047 | 2.095 (1.056, 4.157) | 0.034 |
Vero cell booster | Reference | Reference | ||
Female | 2.626 (1.368–5.039) | 0.004 | 2.792 (1.407, 5.543) | 0.003 |
Male | Reference | Reference | ||
Doctors | 2.153 (1.234–3.757) | 0.007 | 2.648 (1.473, 4.760) | 0.001 |
Nurses | 1.491 (0.887–2.506) | 0.132 | 1.364 (0.793–2.346) | 0.262 |
Others | Reference | Reference |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Wang, Y.; Liu, J.; Zha, Y.; Yang, Y.; Li, N.; Zhou, Y.; Zhu, J.; Roberts, N.; Liu, L.; et al. Investigation of Adverse Events Experienced by Healthcare Workers following Immunization with Homologous or Heterologous COVID-19 Booster Vaccinations. Vaccines 2022, 10, 1869. https://doi.org/10.3390/vaccines10111869
Wei Y, Wang Y, Liu J, Zha Y, Yang Y, Li N, Zhou Y, Zhu J, Roberts N, Liu L, et al. Investigation of Adverse Events Experienced by Healthcare Workers following Immunization with Homologous or Heterologous COVID-19 Booster Vaccinations. Vaccines. 2022; 10(11):1869. https://doi.org/10.3390/vaccines10111869
Chicago/Turabian StyleWei, Yunhua, Yan Wang, Jian Liu, Yan Zha, Yuqi Yang, Ni Li, Yalin Zhou, Jinli Zhu, Neil Roberts, Lin Liu, and et al. 2022. "Investigation of Adverse Events Experienced by Healthcare Workers following Immunization with Homologous or Heterologous COVID-19 Booster Vaccinations" Vaccines 10, no. 11: 1869. https://doi.org/10.3390/vaccines10111869
APA StyleWei, Y., Wang, Y., Liu, J., Zha, Y., Yang, Y., Li, N., Zhou, Y., Zhu, J., Roberts, N., Liu, L., & Li, Y. (2022). Investigation of Adverse Events Experienced by Healthcare Workers following Immunization with Homologous or Heterologous COVID-19 Booster Vaccinations. Vaccines, 10(11), 1869. https://doi.org/10.3390/vaccines10111869