Germinated Riceberry Rice Enhanced Protocatechuic Acid and Vanillic Acid to Suppress Melanogenesis through Cellular Oxidant-Related Tyrosinase Activity in B16 Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rice Germination
2.2. Rice Sample Extraction
2.3. In Vitro Antioxidant Activities
2.3.1. 2,2′-Azino-bis(3-Ethylbenzothiazoline-6-Sulfonic Acid) (ABTS) Radical Scavenging Assay
2.3.2. 2,2 Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging Assay
2.3.3. Ferric Reducing Antioxidant Power (FRAP) Assay
2.4. Total Phenolic Content
2.5. In Vitro Mushroom Tyrosinase Activity
2.6. Cell Culture
2.7. Cell Viability
2.7.1. MTT 3-(4,5-Dimethyl-2-yl)-2,5-Diphenyltetrazolium Bromide Assay
2.7.2. Trypan Blue Viability Assay
2.8. Melanin Content and Melanin Excretion
2.9. Differentiation and Morphological Appearances of B16 Cells
2.10. Cellular Tyrosinase Activity
2.11. Cellular Oxidants
2.12. High Performance Liquid Chromatography (HPLC)
2.13. Statistical Analysis
3. Results
3.1. Antioxidant Activity, Phenolic Content, and Mushroom Tyrosinase Inhibition of Germinated Riceberry Rice Extract
3.2. Inhibitory Effect on Tyrosinase-Related Melanogenesis of Germinated Riceberry Rice Extract Treated B16 Cells
3.3. Melanin Pigmentation of B16 Cells Treated with Germinated Riceberry Rice Extract
3.4. Morphological Appearance of B16 Cells Treated with Germinated Riceberry Rice Extract
3.5. Melanin Excretion and Cellular Oxidants of B16 Cells Treated with Germinated Riceberry Rice Extract
3.6. Phytophenolics Fingerprints of Germinated Riceberry Rice Extract
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Halder, R.M.; Nandedkar, M.A.; Neal, K.W. Pigmentary Disorders in Ethnic Skin. Dermatol. Clin. 2003, 21, 617–628. [Google Scholar] [CrossRef]
- Oiso, N.; Tatebayashi, M.; Hoshiyama, Y.; Kawada, A. Allergic Contact Dermatitis Caused by Arbutin and Dipotassium Glycyrrhizate in Skin-Lightening Products. Contact Derm. 2017, 77, 51–53. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, Y.; Ito, A.; Masui, Y.; Ito, M. A Case of Allergic Contact Dermatitis Caused by Arbutin. Contact Derm. 2015, 72, 404–405. [Google Scholar] [CrossRef] [PubMed]
- Truong, X.T.; Park, S.H.; Lee, Y.G.; Jeong, H.Y.; Moon, J.H.; Jeon, T.I. Protocatechuic Acid from Pear Inhibits Melanogenesis in Melanoma Cells. Int. J. Mol. Sci. 2017, 18, 1809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, S.M.; Koh, J.S.; Boo, Y.C. p-Coumaric Acid Not Only Inhibits Human Tyrosinase Activity In Vitro but Also Melanogenesis in Cells Exposed to UVB. Phytother. Res. 2010, 24, 1175–1180. [Google Scholar]
- Jo, H.; Choi, M.; Sim, J.; Viji, M.; Li, S.; Lee, Y.H.; Kim, Y.; Seo, S.Y.; Zhou, Y.; Lee, K.; et al. Synthesis and Biological Evaluation of Caffeic Acid Derivatives as Potent Inhibitors of Alpha-MSH-Stimulated Melanogenesis. Bioorg. Med. Chem. Lett. 2017, 27, 3374–3377. [Google Scholar] [CrossRef]
- Li, H.R.; Habasi, M.; Xie, L.Z.; Aisa, H.A. Effect of Chlorogenic Acid on Melanogenesis of B16 Melanoma Cells. Molecules 2014, 19, 12940–12948. [Google Scholar] [CrossRef] [Green Version]
- Im, K.H.; Baek, S.A.; Choi, J.; Lee, T.S. Antioxidant, Anti-Melanogenic and Anti-Wrinkle Effects of Phellinus vaninii. Mycobiology 2019, 47, 494–505. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Jiratchayamaethasakul, C.; Kim, J.; Kim, E.A.; Heo, S.J.; Lee, S.H. Antioxidant and Anti-Melanogenic Activities of Ultrasonic Extract from Stichopus Japonicus. Asian Pac. J. Trop. Biomed. 2020, 10, 33–41. [Google Scholar]
- Leardkamolkarn, V.; Thongthep, W.; Suttiarporn, P.; Kongkachuichai, R.; Wongpornchai, S.; Wanavijitr, A. Chemopreventive Properties of The Bran Extracted from A Newly-Developed Thai Rice: The Riceberry. Food Chem. 2011, 125, 978–985. [Google Scholar] [CrossRef]
- Min, B.; McClung, A.M.; Chen, M.H. Phytochemicals and Antioxidant Capacities in Rice Brans of Different Color. J. Food Sci. 2011, 76, C117–C126. [Google Scholar] [CrossRef]
- Tian, S.; Nakamura, K.; Kayahara, H. Analysis of Phenolic Compounds in White Rice, Brown Rice, and GerminatedBrown Rice. J. Agric. Food Chem. 2004, 52, 4808–4813. [Google Scholar] [CrossRef]
- Cho, D.H.; Lim, S.T. Changes in Phenolic Acid Composition and Associated Enzyme Activity in Shoot and Kernel Fractions of Brown Rice During Germination. Food Chem. 2018, 256, 163–170. [Google Scholar] [CrossRef]
- Abd Razak, D.L.; Abd Rashid, N.Y.; Jamaluddin, A.; Sharifudin, S.A.; Long, K. Enhancement of Phenolic Acid Content and Antioxidant Activity of Rice Bran Fermented with Rhizopus Oligosporus and Monascus Purpureus. Biocatal. Agric. Biotechnol. 2015, 4, 33–38. [Google Scholar] [CrossRef]
- Webber, D.M.; Hettiarachchy, N.S.; Li, R.; Horax, R.; Theivendran, S. Phenolic Profile and Antioxidant Activity of Extracts Prepared from Fermented Heat-Stabilized Defatted Rice Bran. J. Food Sci. 2014, 79, H2383–H2391. [Google Scholar] [CrossRef]
- Aimvijarn, P.; Palipoch, S.; Okada, S.; Suwannalert, P. Thai Water Lily Extract Induces B16 Melanoma Cell Apoptosis and Inhibits Cellular Invasion Through the Role of Cellular Oxidants. Asian Pac. J. Cancer Prev. APJCP 2018, 19, 149–153. [Google Scholar]
- Brand, W.W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, Z.; Rafiq, M.; Seo, S.Y.; Babar, M.M.; Zaidi, N.U. Synthesis, Kinetic Mechanism and Docking Studies of Vanillin Derivatives as Inhibitors of Mushroom Tyrosinase. Bioorg. Med. Chem. 2015, 23, 5870–5880. [Google Scholar] [CrossRef]
- Hansen, M.B.; Nielsen, S.E.; Berg, K. Re-Examination and Further Development of a Precise and Rapid Dye Method for Measuring Cell Growth/Cell Kill. J. Immunol. Methods 1989, 119, 203–210. [Google Scholar] [CrossRef]
- Soltanian, S.; Sheikhbahaei, M.; Mohamadi, N. Cytotoxicity Evaluation of Methanol Extracts of Some Medicinal Plants on P19 Embryonal Carcinoma Cells. J. Appl. Pharm. 2017, 7, 142–149. [Google Scholar]
- Hsu, K.D.; Chen, H.J.; Wang, C.S.; Lum, C.C.; Wu, S.P.; Lin, S.P.; Cheng, K.C. Extract of Ganoderma formosanum Mycelium as a Highly Potent Tyrosinase Inhibitor. Sci. Rep. 2016, 6, 32854. [Google Scholar] [CrossRef]
- Chang, T.S.; Lin, V.C. Melanogenesis Inhibitory Activity of Two Generic Drugs: Cinnarizine and Trazodone in Mouse B16 Melanoma Cells. Int. J. Mol. 2011, 12, 8787–8796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.H.; Lin, Y.P.; Hsu, F.L.; Zhan, G.R.; Yen, K.Y. Bioactive Constituents of Spatholobus Suberectus in Regulating Tyrosinase-Related Proteins and mRNA in HEMn Cells. Phytochemistry 2006, 67, 1262–1270. [Google Scholar] [CrossRef]
- Pengkumsri, N.; Chaiyasut, C.; Saenjum, C.; Sirilun, S.; Peerajan, S.; Suwannalert, P.; Sirisattha, S.; Sivamaruthi, S.S. Physicochemical and Antioxidative Properties of Black, Brown and Red Rice Varieties of Northern Thailand. Food Sci. Technol. 2015, 35, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.G.; Tian, C.R.; Hu, Q.P.; Luo, J.Y.; Wang, X.D.; Tian, X.D. Dynamic Changes in Phenolic Compounds and Antioxidant Activity in Oats (Avena nuda L.) During Steeping and Germination. J. Agric. Food Chem. 2009, 57, 10392–10398. [Google Scholar] [CrossRef]
- Bertolotto, C.; Abbe, P.; Hemesath, T.J.; Bille, K.; Fisher, D.E.; Ortonne, J.P.; Ballotti, R. Microphthalmia Gene Product as a Signal Transducer in cAMP-Induced Differentiation of Melanocytes. J. Cell Biol. 1998, 142, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Boissy, R.E. Melanosome Transfer to and Translocation in The Keratinocyte. Exp. Dermatol. 2003, 12, 5–12. [Google Scholar] [CrossRef]
- Galato, D.; Ckless, K.; Susin, M.F.; Giacomelli, C.; Ribeiro-do-Valle, R.M.; Spinelli, A. Antioxidant Capacity of Phenolic and Related Compounds: Correlation Among Electrochemical, Visible Spectroscopy Methods and Structure-Antioxidant Activity. Redox Rep. 2001, 6, 243–250. [Google Scholar] [CrossRef]
- Emerit, I. Free Radicals and Aging of The Skin. In Free Radicals and Aging. EXS; Emerit, I., Chance, B., Eds.; Birkhäuser Basel: Basel, Switzerland, 1992; Volume 62, pp. 328–341. [Google Scholar]
- Ding, H.Y.; Chou, T.H.; Lin, R.J.; Chan, L.P.; Wang, G.H.; Liang, C.H. Antioxidant and Antimelanogenic Behaviors of Paeonia Suffruticosa. Plant Foods Hum. Nutr. 2011, 66, 275–284. [Google Scholar] [CrossRef]
- Liu, J.; Xu, X.; Jiang, R.; Sun, L.; Zhao, D. Vanillic Acid in Panax Ginseng Root Extract Inhibits Melanogenesis in B16F10 Cells Via Inhibition of the NO/PKG Signaling Pathway. Biosci. Biotechnol. Biochem. 2019, 83, 1205–1215. [Google Scholar] [CrossRef] [PubMed]
Criterion | Score |
---|---|
| 1+ |
| 2+ |
| 3+ |
| 4+ |
Conditions | Antioxidant Capacity | Total Phenolic Content | Mushroom Tyrosinase Activity | ||
---|---|---|---|---|---|
ABTS (mg Trolox Equivalent/g Sample) | DPPH (mg Vit C Equivalent/g Sample) | FRAP (M FeSO4·7H2O Equivalent/g Sample) | Folin–Denis (mg Gallic Acid Equivalent/g Sample) | Mushroom Tyrosinase Inhibition IC50 (mg/mL) | |
Ungerminated | 1.37 ± 0.02 | 0.09 ± 0.01 | 3.05 ± 0.01 | 1.28 ± 0.01 | 123.26 ± 3.21 |
Germinated | 2.08 ± 0.04 ** | 0.14 ± 0.01 * | 3.29 ± 0.05 * | 1.27 ± 0.01 | 60.08 ± 4.24 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodboon, T.; Okada, S.; Suwannalert, P. Germinated Riceberry Rice Enhanced Protocatechuic Acid and Vanillic Acid to Suppress Melanogenesis through Cellular Oxidant-Related Tyrosinase Activity in B16 Cells. Antioxidants 2020, 9, 247. https://doi.org/10.3390/antiox9030247
Rodboon T, Okada S, Suwannalert P. Germinated Riceberry Rice Enhanced Protocatechuic Acid and Vanillic Acid to Suppress Melanogenesis through Cellular Oxidant-Related Tyrosinase Activity in B16 Cells. Antioxidants. 2020; 9(3):247. https://doi.org/10.3390/antiox9030247
Chicago/Turabian StyleRodboon, Teerapat, Seiji Okada, and Prasit Suwannalert. 2020. "Germinated Riceberry Rice Enhanced Protocatechuic Acid and Vanillic Acid to Suppress Melanogenesis through Cellular Oxidant-Related Tyrosinase Activity in B16 Cells" Antioxidants 9, no. 3: 247. https://doi.org/10.3390/antiox9030247
APA StyleRodboon, T., Okada, S., & Suwannalert, P. (2020). Germinated Riceberry Rice Enhanced Protocatechuic Acid and Vanillic Acid to Suppress Melanogenesis through Cellular Oxidant-Related Tyrosinase Activity in B16 Cells. Antioxidants, 9(3), 247. https://doi.org/10.3390/antiox9030247