The Effect of Thiamine Concentration on the Antioxidative Activity Indices in Tea Extracts
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Forester, S.C.; Lambert, J.D. Antioxidant effects of green tea. Mol. Nutr. Food Res. 2013, 55, 844–854. [Google Scholar] [CrossRef] [PubMed]
- Gramza, A.; Khokhar, S.; Yoko, S.; Gliszczynska-Swiglo, A.; Hes, M.; Korczak, J. Antioxidant activity of tea extracts in lipids and correlation with polyphenol content. Eur. J. Lipid Sci. Technol. 2006, 108, 351–362. [Google Scholar] [CrossRef]
- Kmiecik, D.; Gramza-Michałowska, A.; Korczak, J. Anti-polymerization activity of tea and fruits extracts during rapeseed oil heating. Food Chem. 2018, 239, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Gliszczynska-Swiglo, A. Antioxidant activity of water soluble vitamins in the TEAC (trolox equivalent antioxidant capacity) and the FRAP (ferric reducing antioxidant power) assays. Food Chem. 2006, 96, 131–136. [Google Scholar] [CrossRef]
- Yang, H.; Xue, X.; Li, H.; Apandi, S.N.; Tay-chan, S.C.; Ong, S.P.; Tian, E.F. The relative antioxidant activity and steric structure of green tea catechins–A kinetic approach. Food Chem. 2018, 257, 399–405. [Google Scholar] [CrossRef]
- Sharma, P.; Montes de Oca, M.K.; Alkeswani, A.R.; McClees, S.F.; Das, T.; Elmets, C.A.; Afaq, F. Tea polyphenols for the prevention of UVB-induced skin cancer. Photoimmunol. Photomed. 2018, 34, 50–59. [Google Scholar] [CrossRef]
- Naveed, M.; BiBi, J.; Kamboh, A.A.; Suheryani, I.; Kakar, I.; Fazlani, S.A.; FangFang, X.; Kalhoro, S.A.; Yunjuan, L.; Kakar, M.U.; et al. Pharmacological values and therapeutic properties of black tea (Camellia sinensis): A comprehensive overview. Biomed. Pharmacother. 2018, 100, 521–531. [Google Scholar] [CrossRef]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef]
- Hadi, A.; Pourmasoumi, M.; Kafeshani, M.; Karimian, J.; Maracy, M.R.; Entezari, M.H. The Effect of Green Tea and Sour Tea (Hibiscus sabdariffa L.) Supplementation on Oxidative Stress and Muscle Damage in Athletes. J. Diet. Suppl. 2017, 14, 346–357. [Google Scholar]
- Tylicki, A.; Siemieniuk, M. Thiamine and its derivatives in the regulation of cell metabolism. Postępy Hig. Med. Dośw. 2011, 65, 447–469. [Google Scholar] [CrossRef]
- Gibson, G.E.; Hirsch, J.A.; Fonzetti, P.; Jordan, B.D.; Cirio, R.T.; Elder, J. Vitamin B1 (thiamine) and dementia. Ann. N. Y. Acad. Sci. 2016, 1367, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Kotiuk, E.; Sawicka, B. Evaluation of some physicochemical and organoleptic characteristics of confectionery products enriched with vitamins and UFA n-3. Sci. Nat. Technol. 2010, 4, 52. [Google Scholar]
- Nga, N.T.T.; Quang, D.D. Unraveling the antioxidant potential of thiamine: Thermochemical and kinetics studies in aqueous phase using DFT. Vietnam J. Chem. 2019, 57, 485–490. [Google Scholar]
- Szymandera-Buszka, K.; Waszkowiak, K. Effect of selected fat products on stability of thiamine hydrochloride. Food Sci. Technol. Qual. 2014, 21, 150–158. [Google Scholar] [CrossRef]
- Taşdelen, E.; Ceylan, N. Effects of Dietary Inclusion of Oil Sources with or without Vitamin E on Body Composition and Meat Oxidation Level in Broilers. Bras. Cienc. Avic. 2017, 19, 103–116. [Google Scholar] [CrossRef]
- Portari, G.V.; Marchini, J.S.; Vannucchi, H.; Jordao, A.A. Antioxidant Effect of Thiamine on Acutely Alcoholized Rats and Lack of Efficacy Using Thiamine or Glucose to Reduce Blood Alcohol Content. Basic Clin. Pharmacol. Toxicol. 2008, 103, 482–486. [Google Scholar] [CrossRef]
- Grzesik, M.; Bartosz, G.; Stefaniuk, I.; Pichla, M.; Namieśnik, J.; Sadowska-Bartosz, I. Dietary antioxidants as a source of hydrogen peroxide. Food Chem. 2018, 278, 692–699. [Google Scholar] [CrossRef]
- Yang, C.S.; Ho, C.T.; Zhang, J.; Wan, X.; Zhang, K.; Lim, J. Antioxidants: Differing Meanings in Food Science and Health Science. J. Agric. Food Chem. 2018, 66, 3063–3068. [Google Scholar] [CrossRef]
- Spahis, S.; Borys, J.; Levy, E. Metaboloc syndrome as a multifaceted risk factor for oxidative stress. Interpret. J. Bible Theol. 2017, 26, 445–461. [Google Scholar]
- Jha, J.C.; Banal, C.; Chow, B.S.M.; Cooper, M.E.; Jandeleit-Dahm, K. Diabetes and Kidney Disease: Role of Oxidative Stress. Antioxid. Redox Signal. 2016, 25, 657–684. [Google Scholar] [CrossRef]
- Enko, J.; Gliszczyńska-Świgło, A. Influence of the interactions between tea (Camellia sinensis) extracts and ascorbic acid on their antioxidant activity: Analysis with interaction indexes and isobolograms. Food Addit. Contam. Part A 2015, 32, 1234–1242. [Google Scholar] [CrossRef] [PubMed]
- Szymandera-Buszka, K. Study on Stability of Thiamine in the Presence of Selected Fat Products and Antioxidants; Publisher of Poznań University of Life Sciences: Poznań, Poland, 2014; Volume 471. [Google Scholar]
- Gramza, A.; Korczak, J.; Hes, M.; Jedrusek-Golinska, A. Tea extracts influence on catalytical properties of Fe2plus in lipids. Pol. J. Environ. Stud. 2004, 13, 143–146. [Google Scholar]
- PN-EN ISO 3960. Vegetable and Animal Oils and Fats—Determination of Peroxide Value; NSIA: Warsaw, Poland, 2005. [Google Scholar]
- PN-EN-ISO 6885. Animal and Vegetable Fats and Oils—Determination of Anisidine Value; NSIA: Warsaw, Poland, 2008. [Google Scholar]
- Kondratowicz-Pietruszka, E. Analysis of oxidative changes occurring in olive oil during storage. Pol. J. Food Nutr. Sci. 2007, 57, 297–302. [Google Scholar]
- Tang, S.Z.; Kerry, J.P.; Sheehan, D.; Buckley, D.J. Antioxidative mechanisms of tea catechins in chicken meat systems. Food Chem. 2002, 76, 45–51. [Google Scholar] [CrossRef]
- Li, J.-W.; Ding, S.-D.; Ding, S.-L. Comparison of antioxidant capacities of extracts from five cultivars of Chinese jujube. Process Biochem. 2005, 40, 3607–3613. [Google Scholar]
- Re, R.; Pellegrini, N.; Protegente, A.; Pannala, A.; Yang, M.C.; Rice-Evans, C. Antioxidant activity an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Chu, Y.H.; Chang, C.L.; Hsu, H.F. Flavonoid content of several vegetables and their antioxidant activity. J. Sci. Food Agric. 2000, 80, 561–566. [Google Scholar] [CrossRef]
- Nuutila, A.M.; Puupponem-Pimia, R.; Aarni, M.; Oksman-Caldentey, K.M. Comparision of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chem. 2003, 81, 485–493. [Google Scholar] [CrossRef]
- Bystrom, L.M.; Guzman, M.L.; Rivella, S. Iron and Reactive Oxygen Species: Friends or Foes of Cancer Cells? Antioxid. Redox Signal. 2014, 20, 1917–1924. [Google Scholar] [CrossRef]
- Khan, N.; Mukhtar, H. Tea Polyphenols in Promotion of Human Health. Nutrients 2019, 11, 39. [Google Scholar] [CrossRef]
- Dziadek, K.; Kukiełka, E.; Kopeć, A. Antioxidant activity of sweet cherry (Prunus avium) fruits, petioles and leaves infusions and extracts. Chem. Environ. Biotechnol. 2018, 21, 7–10. [Google Scholar] [CrossRef]
- Colpo, A.C.; Rosa, H.; Eduarda, M.; Eliza, C.; Pazzini, F.; De Camargo, V.B.; Bassante, F.E.M.; Puntel, R.; Silva, D.; Mendez, A.; et al. Yerba mate (Ilex paraguariensis St. Hill.)-based beverages: How successive extraction influences the extract composition and its capacity to chelate iron and scavenge free radicals. Food Chem. 2016, 209, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Ramsaha, S.; Aumjaud, B.E. Polyphenolic rich traditional plants and teas improve lipid stability in food test systems. J. Food Sci. Technol. 2015, 52, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Tenore, G.; Daglia, M.; Ciampaglia, R.; Novellino, E. Exploring the nutraceutical potential of polyphenols from black, green and white tea infusions—An overview. Curr. Pharm. Biotechnol. 2015, 16, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Yen, G.C.; Chen, H.Y. Antioxidant Activity of Various Tea Extracts in Relation to Their Antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Gramza-Michałowska, A.; Kobus-Cisowska, J.; Kmiecik, D.; Korczak, J.; Helak, B.; Dziedzic, K.; Górecka, D. Antioxidative potential, nutritional value and sensory profiles of confectionery fortified with green and yellow tea leaves (Camellia sinensis). Food Chem. 2016, 211, 448–454. [Google Scholar] [CrossRef]
- Gadow, A.; Joubert, E.; Hansmann, C.F. Comparison of the antioxidant activity of rooibos tea (Aspalathus linearis) with green, oolong, and black tea. Food Chem. 1997, 60, 73–77. [Google Scholar] [CrossRef]
- Satoh, E.; Tohyama, N.; Nishimura, M. Comparison of the antioxidant activity of roasted tea with green, oolong, and black teas. Int. J. Food Sci. Nutr. 2005, 56, 551–559. [Google Scholar] [CrossRef]
- Horie, M.; Nara, K.; Sugino, S.; Umeno, A.; Yoshida, Y. Comparison of antioxidant activities among four kinds of Japanese traditional fermented tea. Food Sci. Nutr. 2017, 5, 639–645. [Google Scholar] [CrossRef]
- Hajiaghaalipour, F.; Sanusi, J.; Kanthimathi, M.S. Temperature and Time of Steeping Affect the Antioxidant Properties of White, Green, and Black Tea Infusions. J. Food Sci. 2016, 81, H246–H254. [Google Scholar] [CrossRef]
- Chu, C.; Deng, J.; Man, Y.; Qu, Y. Green Tea Extracts Epigallocatechin-3-gallate for Different Treatments. BioMed Res. Int. 2017, 2017, 5615647. [Google Scholar] [CrossRef] [PubMed]
- Szymusiak, H. Studies on the Effectiveness of Selected Antioxidants Found in Food Products; Publisher of the University of Economics: Poznań, Poland, 2002. [Google Scholar]
- Gliszczynska-Swiglo, A.; Szymusiak, H. Interaction of Food Flavonoids with Vitamins. Myricetin and Vitamin B1 as Model Compounds; Kyiv National University of Trade Economics: Kiev, Ukraine, 2006; Volume 2, pp. 774–778. [Google Scholar]
Correlation Coefficient of Oxidative Stability Values of Soybean Oil and Content of Thiamine | ||||
---|---|---|---|---|
Type of Tea Extracts | Concentration of Thiamine [mg/100 g] | Peroxide Value [meqO2/kg] | Anisidine Value | The Protection Factor (Wo) |
Extract of white tea | 0.08–0.8 mg | −0.929 | −0.833 | 0.961 |
0.8–20 mg | 0.949 | 0.948 | −0.908 | |
0–0.06 mg | −0.154 | −0.123 | 0.155 | |
Extract of green tea | 0.08–0.8 mg | −0.674 | −0.713 | 0.622 |
0.8–20 mg | 0.943 | 0.951 | −0.913 | |
0–0.06 mg | −0.111 | −0.077 | 0.111 | |
Extract of yellow tea | 0.08–0.8 mg | −0.846 | −0.750 | 0.710 |
0.8–20 mg | 0.906 | 0.796 | −0.902 | |
0–0.06 mg | 0.032 | −0.099 | −0.033 | |
Extract of red tea | 0.08–0.8 mg | −0.683 | −0.696 | 0.586 |
0.8–20 mg | 0.845 | 0.661 | −0.857 | |
0–0.06 mg | −0.099 | −0.099 | 0.100 | |
Extract of black tea | 0.08–0.8 mg | −0.491 | 0.139 | 0.151 |
0.8–20 mg | 0.646 | 0.613 | −0.611 | |
0–0.06 mg | −0.207 | 0.069 | 0.207 | |
Without additionals of extract | 0.08–0.8 mg | −0.624 | 0.817 | 0.729 |
0.8–20 mg | −0.260 | −0.355 | 0.363 | |
0–0.06 mg | 0.987 | 0.906 | −0.975 |
Correlation Coefficient of Oxidative Stability Values of Soybean Oil and Content of Thiamine | ||||
---|---|---|---|---|
Type of Tea Extracts | Concentration of Thiamine [mg/100 g] | Peroxide Value [meqO2/kg] | Anisidine Value | The Protection Factor (Wo) |
Extract of white tea | 0.08–0.8 mg | −0.900 | −0.779 | 0.910 |
0.8–20 mg | 0.977 | 0.964 | −0.954 | |
0–0.06 mg | 0.072 | −0.175 | −0.073 | |
Extract of green tea | 0.08–0.8 mg | −0.974 | −0.801 | 0.980 |
0.8–20 mg | 0.962 | 0.968 | −0.916 | |
0–0.06 mg | −0.077 | −0.077 | 0.069 | |
Extract of yellow tea | 0.08–0.8 mg | −0.913 | −0.767 | 0.921 |
0.8–20 mg | 0.928 | 0.964 | −0.885 | |
0–0.06 mg | −0.088 | −0.099 | 0.089 | |
Extract of red tea | 0.08–0.8 mg | −0.971 | −0.702 | 0.971 |
0.8–20 mg | 0.872 | 0.939 | −0.856 | |
0–0.06 mg | 0.013 | 0.070 | −0.013 | |
Extract of black tea | 0.08–0.8 mg | −0.633 | −0.272 | 0.639 |
0.8–20 mg | 0.764 | 0.832 | −0.741 | |
0–0.06 mg | −0.271 | 0.180 | 0.271 | |
Without additionals of extract | 0.08–0.8 mg | −0.403 | −0.107 | 0.384 |
0.8–20 mg | 0.948 | 0.938 | −0.911 | |
0–0.06 mg | −0.387 | −0.329 | 0.388 |
Type of Tea Extracts | Concentration of Thiamine [mg/100 g] | Correlation Coefficient of Oxidative Stability Values and Content of Thiamine | |||
---|---|---|---|---|---|
Chelating Activity | Reducing Power | ||||
Thiamine Hydrochloride | Thiamine Pyrophosphate | Thiamine Hydrochloride | Thiamine Pyrophosphate | ||
Extract of white tea | 0.08–0.8 mg | 0.729 | 0.815 | 0.731 | 0.864 |
0.2–20 mg | −0.909 | −0.925 | −0.882 | −0.876 | |
0–0.06 mg | −0.090 | 0.355 | −0.170 | 0.268 | |
Extract of green tea | 0.08–0.8 mg | 0.611 | 0.817 | 0.691 | 0.640 |
0.2–20 mg | −0.889 | −0.887 | −0.856 | −0.888 | |
0–0.06 mg | 0.307 | 0.298 | −0.255 | −0.294 | |
Extract of yellow tea | 0.08–0.8 mg | 0.603 | 0.742 | 0.699 | 0.470 |
0.2–20 mg | −0.868 | −0.882 | −0.788 | −0.901 | |
0–0.06 mg | −0.061 | −0.307 | −0.701 | −0.035 | |
Extract of red tea | 0.08–0.8 mg | 0.519 | 0.785 | 0.508 | 0.519 |
0.2–20 mg | −0.643 | −0.715 | −0.620 | −0.628 | |
0–0.06 mg | 0.310 | 0.387 | 0.050 | 0.123 | |
Extract of black tea | 0.08–0.8 mg | 0.142 | −0.084 | −0.147 | −0.069 |
0.2–20 mg | −0.490 | −0.416 | −0.471 | −0.530 | |
0–0.06 mg | −0.041 | 0.139 | −0.294 | 0.202 | |
Without additionals of extract | 0.08–0.8 mg | 0.523 | 0.518 | 0.602 | 0.669 |
0.2–20 mg | −0.878 | −0.872 | −0.973 | −0.961 | |
0–0.06 mg | 0.397 | 0.397 | 0.371 | 0.495 |
Type of Tea Extracts | Concentration of Thiamine [mg/100 g] | Correlation Coefficient of Oxidative Stability Values and Content of Thiamine | |||
---|---|---|---|---|---|
Chelating Activity | Reducing Power | ||||
Thiamine Hydrochloride | Thiamine Pyrophosphate | Thiamine Hydrochloride | Thiamine Pyrophosphate | ||
Extract of white tea | 0.08–0.8 mg | 0.741 | 0.785 | 0.764 | 0.805 |
0.2–20 mg | −0.888 | −0.930 | −0.913 | −0.916 | |
0–0.06 mg | −0.023 | −0.178 | 0.147 | −0.185 | |
Extract of green tea | 0.08–0.8 mg | 0.683 | 0.649 | 0.700 | 0.778 |
0.2–20 mg | −0.884 | −0.923 | −0.897 | −0.882 | |
0–0.06 mg | 0.114 | 0.038 | 0.139 | −0.202 | |
Extract of yellow tea | 0.08–0.8 mg | 0.542 | 0.563 | 0.586 | 0.604 |
0.2–20 mg | −0.869 | −0.898 | −0.836 | −0.878 | |
0–0.06 mg | −0.061 | −0.096 | −0.046 | −0.035 | |
Extract of red tea | 0.08–0.8 mg | 0.752 | 0.637 | 0.688 | 0.565 |
0.2–20 mg | −0.594 | −0.588 | −0.656 | −0.613 | |
0–0.06 mg | 0.108 | 0.001 | −0.023 | −0.006 | |
Extract of black tea | 0.08–0.8 mg | −0.220 | 0.764 | −0.114 | 0.203 |
0.2–20 mg | −0.586 | −0.434 | −0.446 | −0.732 | |
0–0.06 mg | 0.121 | 0.139 | 0.147 | 0.139 | |
Without additionals of extract | 0.08–0.8 mg | 0,589 | 0,589 | 0,578 | 0,869 |
0.2–20 mg | −0,985 | −0,984 | −0,985 | −0,989 | |
0–0.06 mg | 0,397 | 0,397 | 0,139 | 0,004 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piechocka, J.; Szymandera-Buszka, K.; Kobus-Cisowska, J.; Gramza-Michałowska, A.; Jędrusek-Golińska, A. The Effect of Thiamine Concentration on the Antioxidative Activity Indices in Tea Extracts. Antioxidants 2019, 8, 555. https://doi.org/10.3390/antiox8110555
Piechocka J, Szymandera-Buszka K, Kobus-Cisowska J, Gramza-Michałowska A, Jędrusek-Golińska A. The Effect of Thiamine Concentration on the Antioxidative Activity Indices in Tea Extracts. Antioxidants. 2019; 8(11):555. https://doi.org/10.3390/antiox8110555
Chicago/Turabian StylePiechocka, Justyna, Krystyna Szymandera-Buszka, Joanna Kobus-Cisowska, Anna Gramza-Michałowska, and Anna Jędrusek-Golińska. 2019. "The Effect of Thiamine Concentration on the Antioxidative Activity Indices in Tea Extracts" Antioxidants 8, no. 11: 555. https://doi.org/10.3390/antiox8110555
APA StylePiechocka, J., Szymandera-Buszka, K., Kobus-Cisowska, J., Gramza-Michałowska, A., & Jędrusek-Golińska, A. (2019). The Effect of Thiamine Concentration on the Antioxidative Activity Indices in Tea Extracts. Antioxidants, 8(11), 555. https://doi.org/10.3390/antiox8110555