The Importance of Multifaceted Approach for Accurate and Comprehensive Evaluation of Oxidative Stress Status in Biological Systems
Abstract
1. Introduction
1.1. Newer Methods to Assess the Status of Oxidative Stress
1.2. Classical vs. Emerging Techniques for ROS and Oxidative Stress Detection
1.3. Integration of Multi-Assay Data for a Coherent Oxidative Stress Status
1.4. Guidelines for the Selection of Markers and Methods for Oxidative Stress
1.5. A Schematic Workflow Outlining How to Design a Multimethod Oxidative Stress Study
2. Problem of the Dynamic Nature of Oxidative Stress
2.1. Influence of Antioxidant Defense Mechanisms on Oxidative Stress Status
2.2. Influence of Damage Repair Mechanisms on Oxidative Stress Status
2.3. Influence of Timing—The Importance of Choosing the Correct Measurement Interval
2.4. Compartmentalization of Oxidative Stress
2.5. Influence of Circadian Rhythms, Biological Cycles and Metabolic State on ROS Formation in Humans
3. Examples Showing That Using a Single Method to Assess Oxidative Stress Might Lead to False Negative or False Positive Results
3.1. The Decline in Endogenous Antioxidant Enzyme Activity Could Be a Consequence of the Significantly Increased Oxidative Stress
3.2. The Interpretation of a Low Hydrogen Peroxide Level as an Indicator of Low Oxidative Stress Can Be Misleading
3.3. The Dynamic Interaction of Antioxidant Enzymes (Glutathione Peroxidase, Catalase, and Peroxiredoxin) in Response to Oxidative Stress
3.4. Relying on a Single Biomarker, Such as Glutathione (GSH) Levels, to Assess Oxidative Stress Can Lead to Misinterpretation Due to the Complexity and Compensatory Nature of the Redox System
3.5. Low Oxidative Stress Could Be the Result of Low ROS Formation or High ROS Formation Combined with Increased Antioxidant Defenses
3.6. Increased Activity of Cellular Repair Systems Can Effectively Counteract Oxidative Damage, Resulting in Low Levels of Detectable Damage Even Under Conditions of Significant Oxidative Stress
3.7. The Widely Used Dichlorofluorescein Test Measures the General ROS Content, but Due to Its Slower Reaction Kinetics, It Can Overlook Short-Lived Species Such as Superoxide or Hydroxyl Radicals, So the Test Results Can Falsely Imply Low Oxidative Stress
3.8. Malondialdehyde Is Commonly Used as a Lipid Peroxidation Marker, but Other Aldehydes or Unrelated Substances May React with the Test Reagents, Resulting in Overestimation
3.9. The Carbonyl Content of Proteins Can Increase Due to Aging or Other Non-Oxidative Changes Such as Glycation and Can Be Interpreted as a False Indication of Oxidative Stress When Oxidative Damage Is Not the Actual Cause
4. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive Oxygen Species, Toxicity, Oxidative Stress, and Antioxidants: Chronic Diseases and Aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative Stress: Concept and Some Practical Aspects. Antioxidants 2020, 9, 852. [Google Scholar] [CrossRef]
- Collin, F. Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases. Int. J. Mol. Sci. 2019, 20, 2407. [Google Scholar] [CrossRef]
- Radi, R. Oxygen Radicals, Nitric Oxide, and Peroxynitrite: Redox Pathways in Molecular Medicine. Proc. Natl. Acad. Sci. USA 2018, 115, 5839–5848. [Google Scholar] [CrossRef]
- Poljšak, B.; Jamnik, P. Methodology for Oxidative State Detection in Biological Systems. In Handbook of Free Radicals: Formation, Types and Effects; Nova Science Publishers: New York, NY, USA, 2010. [Google Scholar]
- Katerji, M.; Filippova, M.; Duerksen-Hughes, P. Approaches and Methods to Measure Oxidative Stress in Clinical Samples: Research Applications in the Cancer Field. Oxid. Med. Cell. Longev. 2019, 2019, 1279250. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative Stress: A Concept in Redox Biology and Medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef]
- Dalle-Donne, I.; Rossi, R.; Colombo, R.; Giustarini, D.; Milzani, A. Biomarkers of Oxidative Damage in Human Disease. Clin. Chem. 2006, 52, 601–623. [Google Scholar] [CrossRef]
- Slater, T.F. Free-Radical Mechanisms in Tissue Injury. Biochem. J. 1984, 222, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Cheeseman, K.H.; Slater, T.F. An Introduction to Free Radical Biochemistry. Br. Med. Bull. 1993, 49, 481–493. [Google Scholar] [CrossRef]
- Pryor, W.A.; Godber, S.S. Noninvasive Measures of Oxidative Stress Status in Humans. Free Radic. Biol. Med. 1991, 10, 177–184. [Google Scholar] [CrossRef]
- Perrone, S.; Tataranno, M.L.; Stazzoni, G.; Buonocore, G. Oxidative Stress and Free Radicals Related Diseases of the Newborn. Adv. Biosci. Biotechnol. 2012, 3, 1043–1050. [Google Scholar] [CrossRef]
- Krishnamurthy, H.K.; Pereira, M.; Rajavelu, I.; Jayaraman, V.; Krishna, K.; Wang, T.; Bei, K.; Rajasekaran, J.J. Oxidative Stress: Fundamentals and Advances in Quantification Techniques. Front. Chem. 2024, 12, 458. [Google Scholar] [CrossRef]
- Measuring In Vivo Oxidative Damage: A Practical Approach|Wiley. Available online: https://www.wiley.com/en-us/Measuring+in+vivo+Oxidative+Damage%3A+A+Practical+Approach-p-9780471818489 (accessed on 24 June 2025).
- Weydert, C.J.; Cullen, J.J. Measurement of Superoxide Dismutase, Catalase and Glutathione Peroxidase in Cultured Cells and Tissue. Nat. Protoc. 2010, 5, 51–66. [Google Scholar] [CrossRef]
- Wheeler, C.R.; Salzman, J.A.; Elsayed, N.M.; Omaye, S.T.; Korte, D.W. Automated Assays for Superoxide Dismutase, Catalase, Glutathione Peroxidase, and Glutathione Reductase Activity. Anal. Biochem. 1990, 184, 193–199. [Google Scholar] [CrossRef]
- Holmgren, A.; Björnstedt, M. Thioredoxin and Thioredoxin Reductase. Methods Enzymol. 1995, 252, 199–208. [Google Scholar] [CrossRef]
- Gordon, G.W.; Berry, G.; Liang, X.H.; Levine, B.; Herman, B. Quantitative Fluorescence Resonance Energy Transfer Measurements Using Fluorescence Microscopy. Biophys. J. 1998, 74, 2702–2713. [Google Scholar] [CrossRef]
- Chen, D.; Toone, W.M.; Mata, J.; Lyne, R.; Burns, G.; Kivinen, K.; Brazma, A.; Jones, N.; Bähler, J. Global Transcriptional Responses of Fission Yeast to Environmental Stress. Mol. Biol. Cell 2003, 14, 214–229. [Google Scholar] [CrossRef] [PubMed]
- Godon, C.; Lagniel, G.; Lee, J.; Buhler, J.M.; Kieffer, S.; Perrot, M.; Boucherie, H.; Toledano, M.B.; Labarre, J. The H2O2 Stimulon in Saccharomyces Cerevisiae. J. Biol. Chem. 1998, 273, 22480–22489. [Google Scholar] [CrossRef]
- Jamieson, D.J.; Rivers, S.L.; Stephen, D.W. Analysis of Saccharomyces Cerevisiae Proteins Induced by Peroxide and Superoxide Stress. Microbiology 1994, 140 Pt 12, 3277–3283. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.L. Measurement of Protein Thiol Groups and Glutathione in Plasma. Methods Enzymol. 1994, 233, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Akerboom, T.P.; Sies, H. Assay of Glutathione, Glutathione Disulfide, and Glutathione Mixed Disulfides in Biological Samples. Methods Enzymol. 1981, 77, 373–382. [Google Scholar] [CrossRef]
- Yang, X.; Wu, X.; Choi, Y.E.; Kern, J.C.; Kehrer, J.P. Effect of Acrolein and Glutathione Depleting Agents on Thioredoxin. Toxicology 2004, 204, 209–218. [Google Scholar] [CrossRef]
- dLib.Si—Mercury and Methallothionein-like Proteins in the Particulate Cell Fraction of Human Cerebellar Nucleus Dentatus. Available online: https://www.dlib.si/details/URN:NBN:SI:doc-QFPJ79QU?&language=eng (accessed on 24 June 2025).
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Oxford University Press: Oxford, UK, 2015; ISBN 978-0-19-871747-8. [Google Scholar]
- Dikalov, S.I.; Harrison, D.G. Methods for Detection of Mitochondrial and Cellular Reactive Oxygen Species. Antioxid. Redox Signal. 2014, 20, 372–382. [Google Scholar] [CrossRef]
- Kostyuk, A.I.; Panova, A.S.; Kokova, A.D.; Kotova, D.A.; Maltsev, D.I.; Podgorny, O.V.; Belousov, V.V.; Bilan, D.S. In Vivo Imaging with Genetically Encoded Redox Biosensors. Int. J. Mol. Sci. 2020, 21, 8164. [Google Scholar] [CrossRef] [PubMed]
- Iannetti, E.F.; Prigione, A.; Smeitink, J.A.M.; Koopman, W.J.H.; Beyrath, J.; Renkema, H. Live-Imaging Readouts and Cell Models for Phenotypic Profiling of Mitochondrial Function. Front. Genet. 2019, 10, 131. [Google Scholar] [CrossRef] [PubMed]
- Ugalde, J.M.; Fecker, L.; Schwarzländer, M.; Müller-Schüssele, S.J.; Meyer, A.J. Live Monitoring of ROS-Induced Cytosolic Redox Changes with roGFP2-Based Sensors in Plants. Methods Mol. Biol. 2022, 2526, 65–85. [Google Scholar] [CrossRef] [PubMed]
- Wages, P.A.; Cheng, W.-Y.; Gibbs-Flournoy, E.; Samet, J.M. Live-Cell Imaging Approaches for the Investigation of Xenobiotic-Induced Oxidant Stress. Biochim. Biophys. Acta 2016, 1860, 2802–2815. [Google Scholar] [CrossRef]
- Uusitalo, L.M.; Hempel, N. Recent Advances in Intracellular and in Vivo ROS Sensing: Focus on Nanoparticle and Nanotube Applications. Int. J. Mol. Sci. 2012, 13, 10660–10679. [Google Scholar] [CrossRef]
- Aller, I.; Rouhier, N.; Meyer, A.J. Development of roGFP2-Derived Redox Probes for Measurement of the Glutathione Redox Potential in the Cytosol of Severely Glutathione-Deficient Rml1 Seedlings. Front. Plant Sci. 2013, 4, 506. [Google Scholar] [CrossRef]
- Wörheide, M.A.; Krumsiek, J.; Kastenmüller, G.; Arnold, M. Multi-Omics Integration in Biomedical Research—A Metabolomics-Centric Review. Anal. Chim. Acta 2021, 1141, 144–162. [Google Scholar] [CrossRef]
- Luo, J.; Guo, X.; Zheng, Y.; Yang, Z.; Pei, S.-Y.; Rao, R.-Q.; Ai, Z.; Zou, F. Integration of Multi-Omics Data and Machine Learning to Identify Antioxidant Biomarkers in Type 1 Diabetes. Free Radic. Biol. Med. 2025, 236, 41–56. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, X.; Zhang, Y.; Ma, H.; Zhou, Z.; Qin, H.; Liu, H.; Han, X. Integrated Multi-Omics Insight into the Molecular Networks of Oxidative Stress in Triggering Multiple Sclerosis. Neurobiol. Dis. 2025, 210, 106929. [Google Scholar] [CrossRef]
- Adimora, N.J.; Jones, D.P.; Kemp, M.L. A Model of Redox Kinetics Implicates the Thiol Proteome in Cellular Hydrogen Peroxide Responses. Antioxid. Redox Signal. 2010, 13, 731–743. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.-S.; Oldham, W.M.; Maron, B.A.; Loscalzo, J. Systems Biology Approaches to Redox Metabolism in Stress and Disease States. Antioxid. Redox Signal. 2018, 29, 953–972. [Google Scholar] [CrossRef]
- Martínez-Reyes, I.; Chandel, N.S. Mitochondrial TCA Cycle Metabolites Control Physiology and Disease. Nat. Commun. 2020, 11, 102. [Google Scholar] [CrossRef]
- Aon, M.A.; Cortassa, S.; O’Rourke, B. Redox-Optimized ROS Balance: A Unifying Hypothesis. Biochim. Biophys. Acta 2010, 1797, 865–877. [Google Scholar] [CrossRef]
- Jiang, H.; Lin, Q.; Yu, Z.; Wang, C.; Zhang, R. Nanotechnologies for Reactive Oxygen Species “Turn-On” Detection. Front. Bioeng. Biotechnol. 2021, 9, 780032. [Google Scholar] [CrossRef]
- Kim, H.; An, H.J.; Park, J.; Lee, Y.; Kim, M.S.; Lee, S.; Kim, N.D.; Song, J.; Choi, I. Ultrasensitive and Real-Time Optical Detection of Cellular Oxidative Stress Using Graphene-Covered Tunable Plasmonic Interfaces. Nano Converg. 2022, 9, 23. [Google Scholar] [CrossRef]
- Wang, Y.; Noël, J.-M.; Velmurugan, J.; Nogala, W.; Mirkin, M.V.; Lu, C.; Guille Collignon, M.; Lemaître, F.; Amatore, C. Nanoelectrodes for Determination of Reactive Oxygen and Nitrogen Species inside Murine Macrophages. Proc. Natl. Acad. Sci. USA 2012, 109, 11534–11539. [Google Scholar] [CrossRef]
- Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic Potential of Materials at the Nanolevel. Science 2006, 311, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Elshal, M.F.; McCoy, J.P. Multiplex Bead Array Assays: Performance Evaluation and Comparison of Sensitivity to ELISA. Methods 2006, 38, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Dong, M.; Santos, S.; Rigatto, C.; Liu, Y.; Lin, F. Lab-on-a-Chip Platforms for Detection of Cardiovascular Disease and Cancer Biomarkers. Sensors 2017, 17, 2934. [Google Scholar] [CrossRef]
- Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Multiplexed Electrochemical Immunosensors for Clinical Biomarkers. Sensors 2017, 17, 965. [Google Scholar] [CrossRef] [PubMed]
- Ho, E.; Karimi Galougahi, K.; Liu, C.-C.; Bhindi, R.; Figtree, G.A. Biological Markers of Oxidative Stress: Applications to Cardiovascular Research and Practice. Redox Biol. 2013, 1, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Whiteman, M. Measuring Reactive Species and Oxidative Damage in Vivo and in Cell Culture: How Should You Do It and What Do the Results Mean? Br. J. Pharmacol. 2004, 142, 231–255. [Google Scholar] [CrossRef]
- Kalyanaraman, B.; Darley-Usmar, V.; Davies, K.J.A.; Dennery, P.A.; Forman, H.J.; Grisham, M.B.; Mann, G.E.; Moore, K.; Roberts, L.J.; Ischiropoulos, H. Measuring Reactive Oxygen and Nitrogen Species with Fluorescent Probes: Challenges and Limitations. Free Radic. Biol. Med. 2012, 52, 1–6. [Google Scholar] [CrossRef]
- Belousov, V.V.; Fradkov, A.F.; Lukyanov, K.A.; Staroverov, D.B.; Shakhbazov, K.S.; Terskikh, A.V.; Lukyanov, S. Genetically Encoded Fluorescent Indicator for Intracellular Hydrogen Peroxide. Nat. Methods 2006, 3, 281–286. [Google Scholar] [CrossRef]
- Uppu, R.M.; Woods, D.; Parinandi, N.L. Measurement of Oxidative Stress Status in Human Populations: A Critical Need for a Metabolomic Profiling. In Measuring Oxidants and Oxidative Stress in Biological Systems; Berliner, L.J., Parinandi, N.L., Eds.; Springer: Cham, Switzerland, 2020; ISBN 978-3-030-47317-4. [Google Scholar]
- Halliwell, B. Free Radicals and Antioxidants: Updating a Personal View. Nutr. Rev. 2012, 70, 257–265. [Google Scholar] [CrossRef]
- Sies, H.; Jones, D.P. Reactive Oxygen Species (ROS) as Pleiotropic Physiological Signalling Agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef]
- Jones, D.P.; Sies, H. The Redox Code. Antioxid. Redox Signal. 2015, 23, 734–746. [Google Scholar] [CrossRef]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef]
- Eruslanov, E.; Kusmartsev, S. Identification of ROS Using Oxidized DCFDA and Flow-Cytometry. Methods Mol. Biol. 2010, 594, 57–72. [Google Scholar] [CrossRef] [PubMed]
- Grotto, D.; Santa Maria, L.D.; Boeira, S.; Valentini, J.; Charão, M.F.; Moro, A.M.; Nascimento, P.C.; Pomblum, V.J.; Garcia, S.C. Rapid Quantification of Malondialdehyde in Plasma by High Performance Liquid Chromatography-Visible Detection. J. Pharm. Biomed. Anal. 2007, 43, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Veskoukis, A.S.; Nikolaidis, M.G.; Kyparos, A.; Kouretas, D. Blood Reflects Tissue Oxidative Stress Depending on Biomarker and Tissue Studied. Free Radic. Biol. Med. 2009, 47, 1371–1374. [Google Scholar] [CrossRef]
- Cadet, J.; Douki, T.; Ravanat, J.-L. Oxidatively Generated Base Damage to Cellular DNA. Free Radic. Biol. Med. 2010, 49, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Cao, G.; Prior, R.L. Comparison of Different Analytical Methods for Assessing Total Antioxidant Capacity of Human Serum. Clin. Chem. 1998, 44, 1309–1315. [Google Scholar] [CrossRef]
- Marrocco, I.; Altieri, F.; Peluso, I. Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxid. Med. Cell. Longev. 2017, 2017, 6501046. [Google Scholar] [CrossRef]
- Powers, S.K.; Ji, L.L.; Kavazis, A.N.; Jackson, M.J. Reactive Oxygen Species: Impact on Skeletal Muscle. Compr. Physiol. 2011, 1, 941–969. [Google Scholar] [CrossRef]
- Butterfield, D.A.; Halliwell, B. Oxidative Stress, Dysfunctional Glucose Metabolism and Alzheimer Disease. Nat. Rev. Neurosci. 2019, 20, 148–160. [Google Scholar] [CrossRef]
- Meyer, A.J.; Dick, T.P. Fluorescent Protein-Based Redox Probes. Antioxid. Redox Signal. 2010, 13, 621–650. [Google Scholar] [CrossRef]
- Ballatori, N.; Krance, S.M.; Notenboom, S.; Shi, S.; Tieu, K.; Hammond, C.L. Glutathione Dysregulation and the Etiology and Progression of Human Diseases. Biol. Chem. 2009, 390, 191–214. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Oxidative Stress and Neurodegeneration: Where Are We Now? J. Neurochem. 2006, 97, 1634–1658. [Google Scholar] [CrossRef]
- Lin, M.T.; Beal, M.F. Mitochondrial Dysfunction and Oxidative Stress in Neurodegenerative Diseases. Nature 2006, 443, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Milne, G.L.; Sanchez, S.C.; Musiek, E.S.; Morrow, J.D. Quantification of F2-Isoprostanes as a Biomarker of Oxidative Stress. Nat. Protoc. 2007, 2, 221–226. [Google Scholar] [CrossRef]
- Sies, H. Oxidative Eustress: On Constant Alert for Redox Homeostasis. Redox Biol. 2021, 41, 101867. [Google Scholar] [CrossRef]
- Poljšak, B.; Fink, R. The Protective Role of Antioxidants in the Defence against ROS/RNS-Mediated Environmental Pollution. Oxid. Med. Cell. Longev. 2014, 2014, 671539. [Google Scholar] [CrossRef] [PubMed]
- Finkel, T.; Holbrook, N.J. Oxidants, Oxidative Stress and the Biology of Ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef]
- Palmer, R.M.; Ferrige, A.G.; Moncada, S. Nitric Oxide Release Accounts for the Biological Activity of Endothelium-Derived Relaxing Factor. Nature 1987, 327, 524–526. [Google Scholar] [CrossRef]
- Kamata, H.; Hirata, H. Redox Regulation of Cellular Signalling. Cell. Signal. 1999, 11, 1–14. [Google Scholar] [CrossRef]
- Nordberg, J.; Arnér, E.S. Reactive Oxygen Species, Antioxidants, and the Mammalian Thioredoxin System. Free Radic. Biol. Med. 2001, 31, 1287–1312. [Google Scholar] [CrossRef]
- Dalton, T.P.; Shertzer, H.G.; Puga, A. Regulation of Gene Expression by Reactive Oxygen. Annu. Rev. Pharmacol. Toxicol. 1999, 39, 67–101. [Google Scholar] [CrossRef]
- Dündar, Y.; Aslan, R. Antioxidative Stress. East. J. Med. 2000, 5, 45–47. [Google Scholar]
- Poljsak, B.; Milisav, I. The Neglected Significance of “Antioxidative Stress”. Oxid. Med. Cell. Longev. 2012, 2012, 480895. [Google Scholar] [CrossRef]
- Jones, D.P. Redefining Oxidative Stress. Antioxid. Redox Signal. 2006, 8, 1865–1879. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, A.; Siew Keah, L.; Sirajudeen, K.N.S.; Singh, H.J. Upregulation of Catalase and Downregulation of Glutathione Peroxidase Activity in the Kidney Precede the Development of Hypertension in Pre-Hypertensive SHR. Hypertens. Res. 2013, 36, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid. Med. Cell. Longev. 2016, 2016, 1245049. [Google Scholar] [CrossRef]
- Miwa, S.; Muller, F.L.; Beckman, K.B. The Basics of Oxidative Biochemistry. In Oxidative Stress in Aging: From Model Systems to Human Diseases; Humana Press: Totowa, NJ, USA, 2008. [Google Scholar]
- Van Houten, B.; Santa-Gonzalez, G.A.; Camargo, M. DNA Repair after Oxidative Stress: Current Challenges. Curr. Opin. Toxicol. 2018, 7, 9–16. [Google Scholar] [CrossRef]
- Cooke, M.S.; Evans, M.D.; Dizdaroglu, M.; Lunec, J. Oxidative DNA Damage: Mechanisms, Mutation, and Disease. FASEB J. 2003, 17, 1195–1214. [Google Scholar] [CrossRef]
- Shang, F.; Taylor, A. Ubiquitin-Proteasome Pathway and Cellular Responses to Oxidative Stress. Free Radic. Biol. Med. 2011, 51, 5–16. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Leveque, C.; Mrakic Sposta, S.; Theunissen, S.; Germonpré, P.; Lambrechts, K.; Vezzoli, A.; Gussoni, M.; Levenez, M.; Lafère, P.; Guerrero, F.; et al. Oxidative Stress Response Kinetics after 60 Minutes at Different Levels (10% or 15%) of Normobaric Hypoxia Exposure. Int. J. Mol. Sci. 2023, 24, 10188. [Google Scholar] [CrossRef]
- Helan, M.; Malaska, J.; Tomandl, J.; Jarkovsky, J.; Helanova, K.; Benesova, K.; Sitina, M.; Dastych, M.; Ondrus, T.; Pavkova Goldbergova, M.; et al. Kinetics of Biomarkers of Oxidative Stress in Septic Shock: A Pilot Study. Antioxidants 2022, 11, 640. [Google Scholar] [CrossRef] [PubMed]
- Clanton, T.L. Hypoxia-Induced Reactive Oxygen Species Formation in Skeletal Muscle. J. Appl. Physiol. 2007, 102, 2379–2388. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Wang, L.; He, S.; Yan, L.; Li, T.; Wang, J.; Kong, A.-N.T.; Yu, S.; Zhang, Y. Effects of Acute Hypoxia Exposure with Different Durations on Activation of Nrf2-ARE Pathway in Mouse Skeletal Muscle. PLoS ONE 2018, 13, e0208474. [Google Scholar] [CrossRef]
- Stability of Measurements of Biomarkers of Oxidative Stress in Blood over 36 Hours. Available online: http://ouci.dntb.gov.ua/en/works/4V2Qeok4/ (accessed on 24 June 2025).
- Hahm, J.Y.; Park, J.; Jang, E.-S.; Chi, S.W. 8-Oxoguanine: From Oxidative Damage to Epigenetic and Epitranscriptional Modification. Exp. Mol. Med. 2022, 54, 1626–1642. [Google Scholar] [CrossRef] [PubMed]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Mitochondria and Reactive Oxygen Species: Physiology and Pathophysiology. Available online: https://www.mdpi.com/1422-0067/14/3/6306 (accessed on 24 June 2025).
- Murphy, M.P. How Mitochondria Produce Reactive Oxygen Species. Biochem. J. 2009, 417, 1–13. [Google Scholar] [CrossRef]
- Boveris, A.; Chance, B. The Mitochondrial Generation of Hydrogen Peroxide. General Properties and Effect of Hyperbaric Oxygen. Biochem. J. 1973, 134, 707–716. [Google Scholar] [CrossRef]
- Yan, Z.; Spaulding, H.R. Extracellular Superoxide Dismutase, a Molecular Transducer of Health Benefits of Exercise. Redox Biol. 2020, 32, 101508. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Reactive Oxygen Species and the Central Nervous System. J. Neurochem. 1992, 59, 1609–1623. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Cano, A.M.; Calzada-Mendoza, C.C.; Estrada-Gutierrez, G.; Mendoza-Ortega, J.A.; Perichart-Perera, O. Nutrients, Mitochondrial Function, and Perinatal Health. Nutrients 2020, 12, 2166. [Google Scholar] [CrossRef]
- Poljšak, B.; Milisav, I. Decreasing Intracellular Entropy by Increasing Mitochondrial Efficiency and Reducing ROS Formation—The Effect on the Ageing Process and Age-Related Damage. Int. J. Mol. Sci. 2024, 25, 6321. [Google Scholar] [CrossRef]
- Martin-Montalvo, A.; Mercken, E.M.; Mitchell, S.J.; Palacios, H.H.; Mote, P.L.; Scheibye-Knudsen, M.; Gomes, A.P.; Ward, T.M.; Minor, R.K.; Blouin, M.-J.; et al. Metformin Improves Healthspan and Lifespan in Mice. Nat. Commun. 2013, 4, 2192. [Google Scholar] [CrossRef]
- Longo, V.D.; Panda, S. Fasting, Circadian Rhythms, and Time-Restricted Feeding in Healthy Lifespan. Cell Metab. 2016, 23, 1048–1059. [Google Scholar] [CrossRef]
- Dai, J.; Jones, D.P.; Goldberg, J.; Ziegler, T.R.; Bostick, R.M.; Wilson, P.W.; Manatunga, A.K.; Shallenberger, L.; Jones, L.; Vaccarino, V. Association between Adherence to the Mediterranean Diet and Oxidative Stress. Am. J. Clin. Nutr. 2008, 88, 1364–1370. [Google Scholar] [CrossRef]
- Billingsley, H.E.; Carbone, S. The Antioxidant Potential of the Mediterranean Diet in Patients at High Cardiovascular Risk: An in-Depth Review of the PREDIMED. Nutr. Diabetes 2018, 8, 13. [Google Scholar] [CrossRef]
- Scaglione, S.; Di Chiara, T.; Daidone, M.; Tuttolomondo, A. Effects of the Mediterranean Diet on the Components of Metabolic Syndrome Concerning the Cardiometabolic Risk. Nutrients 2025, 17, 358. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef] [PubMed]
- Grattagliano, I.; Palmieri, V.O.; Portincasa, P.; Moschetta, A.; Palasciano, G. Oxidative Stress-Induced Risk Factors Associated with the Metabolic Syndrome: A Unifying Hypothesis. J. Nutr. Biochem. 2008, 19, 491–504. [Google Scholar] [CrossRef]
- Poljsak, B. Strategies for Reducing or Preventing the Generation of Oxidative Stress. Oxid. Med. Cell. Longev. 2011, 2011, 194586. [Google Scholar] [CrossRef]
- Powers, S.K.; Jackson, M.J. Exercise-Induced Oxidative Stress: Cellular Mechanisms and Impact on Muscle Force Production. Physiol. Rev. 2008, 88, 1243–1276. [Google Scholar] [CrossRef] [PubMed]
- Radak, Z.; Chung, H.Y.; Koltai, E.; Taylor, A.W.; Goto, S. Exercise, Oxidative Stress and Hormesis. Ageing Res. Rev. 2008, 7, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Poljsak, B.; Ribarič, S.; Milisav, I. Yin and Yang: Why Did Evolution Implement and Preserve the Circadian Rhythmicity? Med. Hypotheses 2019, 131, 109306. [Google Scholar] [CrossRef]
- Wilking, M.; Ndiaye, M.; Mukhtar, H.; Ahmad, N. Circadian Rhythm Connections to Oxidative Stress: Implications for Human Health. Antioxid. Redox Signal. 2013, 19, 192–208. [Google Scholar] [CrossRef]
- Colepicolo, P.; Camarero, V.C.; Hastings, J.W. A Circadian Rhythm in the Activity of Superoxide Dismutase in the Photosynthetic Alga Gonyaulax Polyedra. Chronobiol. Int. 1992, 9, 266–268. [Google Scholar] [CrossRef]
- Kanabrocki, E.L.; Murray, D.; Hermida, R.C.; Scott, G.S.; Bremner, W.F.; Ryan, M.D.; Ayala, D.E.; Third, J.L.H.C.; Shirazi, P.; Nemchausky, B.A.; et al. Circadian Variation in Oxidative Stress Markers in Healthy and Type II Diabetic Men. Chronobiol. Int. 2002, 19, 423–439. [Google Scholar] [CrossRef]
- Yang, J.; Luo, J.; Tian, X.; Zhao, Y.; Li, Y.; Wu, X. Progress in Understanding Oxidative Stress, Aging, and Aging-Related Diseases. Antioxidants 2024, 13, 394. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef]
- Nandi, A.; Yan, L.-J.; Jana, C.K.; Das, N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxid. Med. Cell. Longev. 2019, 2019, 9613090. [Google Scholar] [CrossRef] [PubMed]
- Sullivan-Gunn, M.J.; Lewandowski, P.A. Elevated Hydrogen Peroxide and Decreased Catalase and Glutathione Peroxidase Protection Are Associated with Aging Sarcopenia. BMC Geriatr. 2013, 13, 104. [Google Scholar] [CrossRef]
- Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide Dismutases: Dual Roles in Controlling ROS Damage and Regulating ROS Signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef] [PubMed]
- Baud, O.; Greene, A.E.; Li, J.; Wang, H.; Volpe, J.J.; Rosenberg, P.A. Glutathione Peroxidase-Catalase Cooperativity Is Required for Resistance to Hydrogen Peroxide by Mature Rat Oligodendrocytes. J. Neurosci. 2004, 24, 1531–1540. [Google Scholar] [CrossRef]
- Chang, C.; Worley, B.L.; Phaëton, R.; Hempel, N. Extracellular Glutathione Peroxidase GPx3 and Its Role in Cancer. Cancers 2020, 12, 2197. [Google Scholar] [CrossRef]
- Brigelius-Flohé, R. Glutathione Peroxidases and Redox-Regulated Transcription Factors. Biol. Chem. 2006, 387, 1329–1335. [Google Scholar] [CrossRef]
- Balaban, R.S.; Nemoto, S.; Finkel, T. Mitochondria, Oxidants, and Aging. Cell 2005, 120, 483–495. [Google Scholar] [CrossRef]
- López-Lluch, G.; Navas, P. Calorie Restriction as an Intervention in Ageing. J. Physiol. 2016, 594, 2043–2060. [Google Scholar] [CrossRef]
- Reczek, C.R.; Chandel, N.S. ROS-Dependent Signal Transduction. Curr. Opin. Cell Biol. 2015, 33, 8–13. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative Stress in Cancer. Cancer Cell 2020, 38, 167–197. [Google Scholar] [CrossRef]
- Dickinson, D.A.; Forman, H.J. Cellular Glutathione and Thiols Metabolism. Biochem. Pharmacol. 2002, 64, 1019–1026. [Google Scholar] [CrossRef]
- Cadet, J.; Wagner, J.R. Oxidatively Generated Base Damage to Cellular DNA by Hydroxyl Radical and One-Electron Oxidants: Similarities and Differences. Arch. Biochem. Biophys. 2014, 557, 47–54. [Google Scholar] [CrossRef]
- Berndt, C.; Lillig, C.H.; Holmgren, A. Thioredoxins and Glutaredoxins as Facilitators of Protein Folding. Biochim. Biophys. Acta 2008, 1783, 641–650. [Google Scholar] [CrossRef]
- Jung, T.; Catalgol, B.; Grune, T. The Proteasomal System. Mol. Asp. Med. 2009, 30, 191–296. [Google Scholar] [CrossRef] [PubMed]
- Appenzeller-Herzog, C.; Ellgaard, L. The Human PDI Family: Versatility Packed into a Single Fold. Biochim. Biophys. Acta 2008, 1783, 535–548. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.W.; Baines, I.C.; Rhee, S.G. Characterization of a Mammalian Peroxiredoxin That Contains One Conserved Cysteine. J. Biol. Chem. 1998, 273, 6303–6311. [Google Scholar] [CrossRef]
- Marnett, L.J. Oxy Radicals, Lipid Peroxidation and DNA Damage. Toxicology 2002, 181–182, 219–222. [Google Scholar] [CrossRef]
- Ursini, F.; Maiorino, M.; Gregolin, C. The Selenoenzyme Phospholipid Hydroperoxide Glutathione Peroxidase. Biochim. Biophys. Acta 1985, 839, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.P.; Bayir, H.; Belousov, V.; Chang, C.J.; Davies, K.J.A.; Davies, M.J.; Dick, T.P.; Finkel, T.; Forman, H.J.; Janssen-Heininger, Y.; et al. Guidelines for Measuring Reactive Oxygen Species and Oxidative Damage in Cells and in Vivo. Nat. Metab. 2022, 4, 651–662. [Google Scholar] [CrossRef]
- Kim, H.; Xue, X. Detection of Total Reactive Oxygen Species in Adherent Cells by 2′,7′-Dichlorodihydrofluorescein Diacetate Staining. J. Vis. Exp. 2020, 160, e60682. [Google Scholar] [CrossRef]
- Barbacanne, M.A.; Souchard, J.P.; Darblade, B.; Iliou, J.P.; Nepveu, F.; Pipy, B.; Bayard, F.; Arnal, J.F. Detection of Superoxide Anion Released Extracellularly by Endothelial Cells Using Cytochrome c Reduction, ESR, Fluorescence and Lucigenin-Enhanced Chemiluminescence Techniques. Free Radic. Biol. Med. 2000, 29, 388–396. [Google Scholar] [CrossRef]
- Rosenthal, I.; Krishna, C.M.; Yang, G.C.; Kondo, T.; Riesz, P. A New Approach for EPR Detection of Hydroxyl Radicals by Reaction with Sterically Hindered Cyclic Amines and Oxygen. FEBS Lett. 1987, 222, 75–78. [Google Scholar] [CrossRef]
- Niedernhofer, L.J.; Daniels, J.S.; Rouzer, C.A.; Greene, R.E.; Marnett, L.J. Malondialdehyde, a Product of Lipid Peroxidation, Is Mutagenic in Human Cells. J. Biol. Chem. 2003, 278, 31426–31433. [Google Scholar] [CrossRef]
- Sobsey, C.A.; Han, J.; Lin, K.; Swardfager, W.; Levitt, A.; Borchers, C.H. Development and Evaluation of a Liquid Chromatography-Mass Spectrometry Method for Rapid, Accurate Quantitation of Malondialdehyde in Human Plasma. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2016, 1029–1030, 205–212. [Google Scholar] [CrossRef]
- Aoki, M.; Oshita, T.; Sakaguchi, M. The Comparison of Thiobarbituric Acid Reactive Substances (TBARS) Concentrations in Plasma and Serum from Dairy Cattle. J. Vet. Med. Sci. 2008, 70, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Dalle-Donne, I.; Rossi, R.; Giustarini, D.; Milzani, A.; Colombo, R. Protein Carbonyl Groups as Biomarkers of Oxidative Stress. Clin. Chim. Acta 2003, 329, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Stadtman, E.R.; Levine, R.L. Protein Oxidation. Ann. N.Y. Acad. Sci. 2000, 899, 191–208. [Google Scholar] [CrossRef]
- Ansari, N.A.; Rasheed, Z. Non-enzymatic glycation of proteins: From diabetes to cancer. Biomed. Khim. 2010, 56, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.P.; Bali, A.; Singh, N.; Jaggi, A.S. Advanced Glycation End Products and Diabetic Complications. Korean J. Physiol. Pharmacol. 2014, 18, 1–14. [Google Scholar] [CrossRef]
- Höhn, A.; König, J.; Grune, T. Protein Oxidation in Aging and the Removal of Oxidized Proteins. J. Proteom. 2013, 92, 132–159. [Google Scholar] [CrossRef]
- Yılmaz, Z.; Kalaz, E.B.; Aydın, A.F.; Olgaç, V.; Doğru-Abbasoğlu, S.; Uysal, M.; Koçak-Toker, N. The Effect of Resveratrol on Glycation and Oxidation Products in Plasma and Liver of Chronic Methylglyoxal-Treated Rats. Pharmacol. Rep. 2018, 70, 584–590. [Google Scholar] [CrossRef]
- Tossetta, G.; Fantone, S.; Piani, F.; Crescimanno, C.; Ciavattini, A.; Giannubilo, S.R.; Marzioni, D. Modulation of NRF2/KEAP1 Signaling in Preeclampsia. Cells 2023, 12, 1545. [Google Scholar] [CrossRef]
- Schiavoni, V.; Emanuelli, M.; Milanese, G.; Galosi, A.B.; Pompei, V.; Salvolini, E.; Campagna, R. Nrf2 Signaling in Renal Cell Carcinoma: A Potential Candidate for the Development of Novel Therapeutic Strategies. Int. J. Mol. Sci. 2024, 25, 13239. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.J.; Liu, Z. Crosstalk of Reactive Oxygen Species and NF-κB Signaling. Cell Res. 2011, 21, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Lingappan, K. NF-κB in Oxidative Stress. Curr. Opin. Toxicol. 2018, 7, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Sartini, D.; Campagna, R.; Lucarini, G.; Pompei, V.; Salvolini, E.; Mattioli-Belmonte, M.; Molinelli, E.; Brisigotti, V.; Campanati, A.; Bacchetti, T.; et al. Differential Immunohistochemical Expression of Paraoxonase-2 in Actinic Keratosis and Squamous Cell Carcinoma. Hum. Cell 2021, 34, 1929–1931. [Google Scholar] [CrossRef]
- Bianchi, N.; Ancona, P.; Aguiari, G. Molecular Mechanisms of Drug Resistance in Clear Cell Renal Cell Carcinoma. Cancers 2025, 17, 1613. [Google Scholar] [CrossRef]
- Campagna, R.; Pozzi, V.; Salvucci, A.; Togni, L.; Mascitti, M.; Sartini, D.; Salvolini, E.; Santarelli, A.; Lo Muzio, L.; Emanuelli, M. Paraoxonase-2 Expression in Oral Squamous Cell Carcinoma. Hum. Cell 2023, 36, 1211–1213. [Google Scholar] [CrossRef]
Direct Methods (Measure ROS or Oxidation Products Directly) | ||||
Method | Principle | Advantages | Limitations | Sample type |
ESR (Electron Spin Resonance) | Direct detection of unpaired electron species (free radicals). | Standard method for direct ROS detection; high specificity. | Low sensitivity in biological samples; requires specialized equipment; limited clinical use. | In vitro samples, cell systems |
ROS-sensitive fluorescent probes (e.g., DCFH-DA, MitoSOX) | Fluorescent dye oxidation proportional to ROS levels in live cells. | Real-time detection; dynamic monitoring; applicable in live-cell imaging. | Non-specific for ROS type (react with multiple ROS/RNS); prone to artifacts from light and redox cycling; variability in uptake/stability. | Cells, tissues |
Genetically encoded ROS sensors | Reporter proteins (e.g., roGFP, HyPer) that change their fluorescence upon oxidation. | High specificity; allows compartment-specific, real-time ROS monitoring. | Requires genetic manipulation; limited applicability in clinical samples; technical expertise needed. | Cells, tissues (in vitro/in vivo models) |
Indirect methods (measure damage or antioxidant defense) | ||||
Method | Principle | Advantages | Limitations | Sample type |
TBARS (Thiobarbituric Acid Reactive Substances) | Measures malondialdehyde (MDA), a lipid peroxidation byproduct. | Simple, inexpensive, widely used. | Low specificity (interfering substances, other aldehydes detected); artifacts during sample handling, indirect measure of ROS. | Plasma, serum, tissues |
Protein Carbonyl Assay | Detects carbonyl groups introduced into proteins by oxidative modification. | Good marker of protein oxidation; relatively stable products. | Lacks information on specific proteins involved; not real-time; may underestimate reversible oxidative modifications. | Plasma, serum, tissues, extracts |
8-oxo-dG (DNA oxidation marker) | Quantifies oxidized guanine in DNA via HPLC, ELISA, or MS-based techniques. | Specific biomarker for oxidative DNA damage. | Requires careful sample handling to prevent artifacts; expensive if MS-based; susceptible to artefactual oxidation during isolation. | DNA from tissues, blood, urine (as excreted metabolite) |
Antioxidant enzyme activity (e.g., SOD, CAT, GPx) | Measures enzymatic defense capacity against ROS. | Provides insight into endogenous defense status. | Indirect; enzyme activity may vary due to unrelated factors (e.g., circadian rhythm, diet). | Plasma, serum, tissues |
Glutathione (GSH/GSSG ratio) | Assesses redox balance by quantifying reduced vs. oxidized glutathione. | Sensitive measure of redox status; widely validated. | Requires rapid sample processing; GSH is easily oxidized ex vivo. | Blood, tissues, cells |
Total antioxidant capacity assay | Cumulative action of all antioxidants in a sample | Offering a simple assessment of antioxidant potential | Cannot distinguish contributions of individual antioxidants; influenced by sample matrix effects and diet; results vary across assays (FRAP, ORAC, etc.) | Plasma, serum, saliva, or urine |
Grade of Oxidative Stress Generation from Exogenous or Endogenous Sources | Level of Intracellular ROS | Oxidative Damage | Activity of Endogenous Antioxidant Enzymes | Activity of Damage Removal Systems | Appropriate Markers | Detection Methods |
---|---|---|---|---|---|---|
Low | Low | No | Slightly increased * | None | Basal levels of reactive oxygen species (ROS) (e.g., superoxide, hydrogen peroxide). Reduced glutathione (GSH) levels. NADPH/NADP+ ratio (indicating redox homeostasis). Subtle changes in mitochondrial membrane potential. | Direct measurement of ROS by spectroscopic technique of electron spin resonance (ESR)/electron paramagnetic resonance (EPR) or pulse radiolisis. Estimation of intracellular oxidation with fluorescent probes (e.g., dihydroethidium (DHE) and Mito SOX red for superoxide and Amplex Red for hydrogen peroxide). Measuring changes in endogenous antioxidant enzymatic and non-enzymatic defense systems. Measuring changes in intracellular redox state sensors. Mitochondrial activity indicators (e.g., JC-1 or TMRE for membrane potential changes). |
Moderate | Mild * to moderate | Some oxidative damage | No further increase in the activity of endogenous antioxidant enzymes | Low* to moderate activity of endogenous oxidative damage repair mechanisms | Increased ROS levels (e.g., mitochondrial and cytosolic ROS). | Direct measurement of ROS by electron spin resonance (ESR)/electron paramagnetic resonance (EPR) or pulse radiolysis. Estimation of intracellular oxidation with fluorescent probes. Measuring changes in endogenous antioxidant enzymatic and non-enzymatic defense systems. |
High | High | Moderate oxidative damage | Reduced activity of endogenous antioxidant enzymes (inactivation, denaturation) | High activity of endogenous oxidative damage repair mechanisms * | Mild to moderate oxidative damage to lipids (e.g., lipid peroxidation by-products (e.g., malondialdehyde, MDA), proteins (protein carbonylation), and DNA (oxidized nucleotides (e.g., 8-oxo-dG)). | Direct measurement of ROS by spectroscopic technique of electron spin resonance (ESR)/electron paramagnetic resonance (EPR) or pulse radiolysis. Estimation of intracellular oxidation with fluorescent probes. Fingerprinting methods of oxidative DNA, protein damage and lipid peroxidation products. |
Severe | Extreme (chronic oxidative stress) | Presence of severe oxidative damage | The activity of endogenous antioxidant enzymes decreases due to their own damage (denaturation) | Endogenous oxidative damage repair mechanisms suppression | Significant depletion of antioxidant defenses (e.g., GSH, superoxide dismutase, catalase). Substantial oxidative damage to biomolecules. Dysregulated mitochondrial function (e.g., mitochondrial DNA, loss of membrane potential, release of cytochrome c). Extreme ROS levels leading to cell death (apoptosis or necrosis). High levels of inflammatory markers linked to oxidative damage (e.g., NF-κB activation). | Direct measurement of ROS by spectroscopic technique of electron spin resonance (ESR)/electron paramagnetic resonance (EPR) or pulse radiolisis. Estimation of intracellular oxidation with fluorescent probes. Fingerprinting methods of oxidative DNA, protein damage and lipid peroxidation products. Antioxidant enzyme assays. Mitochondrial assays. Cell viability and death assays. Inflammatory markers (e.g., TNF-α, IL-6). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poljšak, B.; Jamnik, P.; Milisav, I. The Importance of Multifaceted Approach for Accurate and Comprehensive Evaluation of Oxidative Stress Status in Biological Systems. Antioxidants 2025, 14, 1083. https://doi.org/10.3390/antiox14091083
Poljšak B, Jamnik P, Milisav I. The Importance of Multifaceted Approach for Accurate and Comprehensive Evaluation of Oxidative Stress Status in Biological Systems. Antioxidants. 2025; 14(9):1083. https://doi.org/10.3390/antiox14091083
Chicago/Turabian StylePoljšak, Borut, Polona Jamnik, and Irina Milisav. 2025. "The Importance of Multifaceted Approach for Accurate and Comprehensive Evaluation of Oxidative Stress Status in Biological Systems" Antioxidants 14, no. 9: 1083. https://doi.org/10.3390/antiox14091083
APA StylePoljšak, B., Jamnik, P., & Milisav, I. (2025). The Importance of Multifaceted Approach for Accurate and Comprehensive Evaluation of Oxidative Stress Status in Biological Systems. Antioxidants, 14(9), 1083. https://doi.org/10.3390/antiox14091083