Single and Combined Effects of Polystyrene Nanoplastics and Dibutyl Phthalate on Hybrid Snakehead (Channa maculata ♀ × Channa argus ♂)
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Experimental Fish
2.3. Experimental Procedure
2.4. Sample Collecting
2.5. Quantitative Real-Time PCR (qPCR)
2.6. Biochemical Analysis
2.7. Intestinal Microbiota Analysis
2.8. Data Analysis
3. Results
3.1. Growth Assessment
3.2. Histopathological Analysis
3.3. Gene Expression Analyses
3.3.1. Growth-Related Genes
3.3.2. Inflammation-Related Genes
3.3.3. Gonadal-Related Genes
3.4. Antioxidant Enzyme Activity Analysis
3.5. Intestinal Microbiota Composition
Group | Chao1 | Simpson | Shannon | ACE | Coverage |
---|---|---|---|---|---|
PSNPs-Ctrl | 783.34 | 0.99 | 8.07 | 783.80 | 1 |
PSNPs-Low | 765.25 | 0.97 | 6.53 | 767.79 | 0.999 |
PSNPs-Medium | 757.45 | 0.96 | 6.98 | 759.31 | 0.999 |
PSNPs-High | 745.70 | 0.99 | 8.16 | 746.86 | 0.999 |
PSNPs+DBP-Ctrl | 840.03 | 0.98 | 7.13 | 841.11 | 0.999 |
PSNPs+DBP-Low | 918.34 | 0.98 | 7.86 | 918.87 | 1 |
PSNPs+DBP-Medium | 885.39 | 0.98 | 7.28 | 886.48 | 0.999 |
PSNPs+DBP-High | 893.03 | 0.96 | 7.24 | 894.03 | 0.999 |
3.6. Correlation Analysis Among Gut Microbiota, Inflammatory Genes, and Antioxidants Indices
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, S.; Zhu, R.; Cai, Y.; Xu, N.; Yap, P.-S.; Zhang, Y.; He, Y.; Zhang, Y. Environmental Fate and Impacts of Microplastics in Aquatic Ecosystems: A Review. RSC Adv. 2021, 11, 15762–15784. [Google Scholar] [CrossRef]
- Ferreira, I.; Venâncio, C.; Lopes, I.; Oliveira, M. Nanoplastics and Marine Organisms: What Has Been Studied? Environ. Toxicol. Pharmacol. 2019, 67, 1–7. [Google Scholar] [CrossRef]
- Ashokkumar, V.; Chandramughi, V.P.; Mohanty, K.; Gummadi, S.N. Microplastic Pollution: Critical Analysis of Global Hotspots and Their Impact on Health and Ecosystems. J. Environ. Manag. 2025, 381, 124995. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, C.; Esteban, M.Á.; Cuesta, A. Dietary Administration of PVC and PE Microplastics Produces Histological Damage, Oxidative Stress and Immunoregulation in European Sea Bass (Dicentrarchus Labrax L.). Fish Shellfish Immunol. 2019, 95, 574–583. [Google Scholar] [CrossRef]
- Hu, J.; Zuo, J.; Li, J.; Zhang, Y.; Ai, X.; Zhang, J.; Gong, D.; Sun, D. Effects of Secondary Polyethylene Microplastic Exposure on Crucian (Carassius Carassius) Growth, Liver Damage, and Gut Microbiome Composition. Sci. Total Environ. 2022, 802, 149736. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Guo, W.; Ma, X.; Liang, N.; Duan, X.; Zhang, P.; Zhang, Y.; Chang, Z.; Zhang, X. Reproductive Toxicity and Cross-Generational Effect of Polyethylene Microplastics in Paramisgurnus Dabryanus. Chemosphere 2023, 313, 137440. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.K.; Singh, J.; Mishra, P.P. Microplastics in Freshwater Ecosystem: A Serious Threat for Freshwater Environment. Int. J. Environ. Sci. Technol. 2023, 20, 9189–9204. [Google Scholar] [CrossRef]
- de Araújo, G.A.; Santana Ramos, M.C.; Dias Carvalho, G.L. Microplastic Contamination in Wild Freshwater Fish: Global Trends, Challenges and Perspectives. Environ. Pollut. 2025, 377, 126406. [Google Scholar] [CrossRef]
- Zazouli, M.; Nejati, H.; Hashempour, Y. Occurrence of Microplastics (MPs) in the Gastrointestinal Tract of Fishes: A Global Systematic Review and Meta-Analysis and Meta-Regression. Sci. Total Environ. 2022, 815, 152743. [Google Scholar] [CrossRef]
- Tokula, B.E.; Dada, A.O.; Inyinbor, A.A.; Obayomi, K.S.; Bello, O.S.; Pal, U. Agro-Waste Based Adsorbents as Sustainable Materials for Effective Adsorption of Bisphenol A from the Environment: A Review. J. Clean. Prod. 2023, 388, 135819. [Google Scholar] [CrossRef]
- Tourinho, P.S.; Kočí, V.; Loureiro, S.; Van Gestel, C.A.M. Partitioning of Chemical Contaminants to Microplastics: Sorption Mechanisms, Environmental Distribution and Effects on Toxicity and Bioaccumulation. Environ. Pollut. 2019, 252, 1246–1256. [Google Scholar] [CrossRef] [PubMed]
- Czubacka, E.; Czerczak, S.; Kupczewska-Dobecka, M. The Overview of Current Evidence on the Reproductive Toxicity of Dibutyl Phthalate. Int. J. Occup. Med. Environ. Health 2021, 34, 15–37. [Google Scholar] [CrossRef]
- Jiang, N.; Song, P.; Li, X.; Zhu, L.; Wang, J.; Yin, X.; Wang, J. Dibutyl Phthalate Induced Oxidative Stress and Genotoxicity on Adult Zebrafish (Danio Rerio) Brain. J. Hazard. Mater. 2022, 424, 127749. [Google Scholar] [CrossRef]
- Ou, M.; Yang, C.; Luo, Q.; Huang, R.; Zhang, A.-D.; Liao, L.-J.; Li, Y.-M.; He, L.-B.; Zhu, Z.-Y.; Chen, K.-C.; et al. An NGS-Based Approach for the Identification of Sex-Specific Markers in Snakehead (Channa Argus). Oncotarget 2017, 8, 98733–98744. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yuan, H.; Yang, Y.; Jiang, Z.; Xi, D. Toxicological Effects and Molecular Metabolic of Polystyrene Nanoplastics on Soybean (Glycine Max L.): Strengthening Defense Ability by Enhancing Secondary Metabolisms. Environ. Pollut. 2025, 366, 125522. [Google Scholar] [CrossRef]
- Lai, W.; Xu, D.; Li, J.; Wang, Z.; Ding, Y.; Wang, X.; Li, X.; Xu, N.; Mai, K.; Ai, Q. Dietary Polystyrene Nanoplastics Exposure Alters Liver Lipid Metabolism and Muscle Nutritional Quality in Carnivorous Marine Fish Large Yellow Croaker (Larimichthys Crocea). J. Hazard. Mater. 2021, 419, 126454. [Google Scholar] [CrossRef]
- Junaid, M.; Jia, P.-P.; Tang, Y.-M.; Xiong, W.-X.; Huang, H.-Y.; Strauss, P.R.; Li, W.-G.; Pei, D.-S. Mechanistic Toxicity of DEHP at Environmentally Relevant Concentrations (ERCs) and Ecological Risk Assessment in the Three Gorges Reservoir Area, China. Environ. Pollut. 2018, 242, 1939–1949. [Google Scholar] [CrossRef]
- Tan, H.; Gao, P.; Luo, Y.; Gou, X.; Xia, P.; Wang, P.; Yan, L.; Zhang, S.; Guo, J.; Zhang, X.; et al. Are New Phthalate Ester Substitutes Safer than Traditional DBP and DiBP? Comparative Endocrine-Disrupting Analyses on Zebrafish Using In Vivo, Transcriptome, and In Silico Approaches. Environ. Sci. Technol. 2023, 57, 13744–13756. [Google Scholar] [CrossRef]
- Molazadeh, M.; Liu, F.; Simon-Sánchez, L.; Vollersten, J. Buoyant Microplastics in Freshwater Sediments–How Do They Get There? Sci. Total Environ. 2023, 860, 160489. [Google Scholar] [CrossRef]
- Haque, A.; Holsen, T.M.; Baki, A.B.M. Distribution and Risk Assessment of Microplastic Pollution in a Rural River System near a Wastewater Treatment Plant, Hydro-Dam, and River Confluence. Sci. Rep. 2024, 14, 6006. [Google Scholar] [CrossRef] [PubMed]
- Kallenbach, E.M.F.; Rødland, E.S.; Buenaventura, N.T.; Hurley, R. Bank, M.S., Ed.; Microplastics in Terrestrial and Freshwater Environments. In Microplastic in the Environment: Pattern and Process; Springer International Publishing: Cham, Switzerland, 2022; pp. 87–130. ISBN 978-3-030-78627-4. [Google Scholar]
- Xia, X.; Sun, M.; Zhou, M.; Chang, Z.; Li, L. Polyvinyl Chloride Microplastics Induce Growth Inhibition and Oxidative Stress in Cyprinus Carpio Var. Larvae. Sci. Total Environ. 2020, 716, 136479. [Google Scholar] [CrossRef]
- Jobling, M. National Research Council (NRC): Nutrient Requirements of Fish and Shrimp; The National Academies Press, Washington, D.C., 2011, 376 + XVI Pp, £128 (Hardback), ISBN: 978-0-309-16338-5. Aquacult Int. 2012, 20, 601–602. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Yin, L.; Chen, B.; Xia, B.; Shi, X.; Qu, K. Polystyrene Microplastics Alter the Behavior, Energy Reserve and Nutritional Composition of Marine Jacopever (Sebastes Schlegelii). J. Hazard. Mater. 2018, 360, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Zeng, Y.; Cai, Z.; Wu, J.; Chan, L.L.; Zhu, J.; Zhou, J. Polystyrene Microplastics Alter the Intestinal Microbiota Function and the Hepatic Metabolism Status in Marine Medaka (Oryzias Melastigma). Sci. Total Environ. 2021, 759, 143558. [Google Scholar] [CrossRef]
- LeMoine, C.M.R.; Kelleher, B.M.; Lagarde, R.; Northam, C.; Elebute, O.O.; Cassone, B.J. Transcriptional Effects of Polyethylene Microplastics Ingestion in Developing Zebrafish (Danio Rerio). Environ. Pollut. 2018, 243, 591–600. [Google Scholar] [CrossRef]
- Chen, Q.; Gundlach, M.; Yang, S.; Jiang, J.; Velki, M.; Yin, D.; Hollert, H. Quantitative Investigation of the Mechanisms of Microplastics and Nanoplastics toward Zebrafish Larvae Locomotor Activity. Sci. Total Environ. 2017, 584–585, 1022–1031. [Google Scholar] [CrossRef]
- Zheng, J.-L.; Chen, X.; Peng, L.-B.; Wang, D.; Zhu, Q.-L.; Li, J.; Han, T. Particles Rather than Released Zn2+ from ZnO Nanoparticles Aggravate Microplastics Toxicity in Early Stages of Exposed Zebrafish and Their Unexposed Offspring. J. Hazard. Mater. 2022, 424, 127589. [Google Scholar] [CrossRef] [PubMed]
- Dang, Y.; Wang, F.; Liu, C. Real-Time PCR Array to Study the Effects of Chemicals on the Growth Hormone/Insulin-like Growth Factors (GH/IGFs) Axis of Zebrafish Embryos/Larvae. Chemosphere 2018, 207, 365–376. [Google Scholar] [CrossRef]
- Nichols, J.W.; Breen, M.; Denver, R.J.; DiStefano, J.J.; Edwards, J.S.; Hoke, R.A.; Volz, D.C.; Zhang, X. Predicting Chemical Impacts on Vertebrate Endocrine Systems. Enviro Toxic. Chem. 2011, 30, 39–51. [Google Scholar] [CrossRef]
- Li, Y.; Yang, G.; Wang, J.; Lu, L.; Li, X.; Zheng, Y.; Zhang, Z.; Ru, S. Microplastics Increase the Accumulation of Phenanthrene in the Ovaries of Marine Medaka (Oryzias Melastigma) and Its Transgenerational Toxicity. J. Hazard. Mater. 2022, 424, 127754. [Google Scholar] [CrossRef]
- Gupta, P.; Mahapatra, A.; Suman, A.; Ray, S.S.; Malafaia, G.; Singh, R.K. Polystyrene Microplastics Disrupt Female Reproductive Health and Fertility via Sirt1 Modulation in Zebrafish (Danio Rerio). J. Hazard. Mater. 2023, 460, 132359. [Google Scholar] [CrossRef]
- Zhao, C.; Chu, P.; Tang, X.; Yan, J.; Han, X.; Ji, J.; Ning, X.; Zhang, K.; Yin, S.; Wang, T. Exposure to Copper Nanoparticles or Copper Sulfate Dysregulated the Hypothalamic-Pituitary-Gonadal Axis, Gonadal Histology, and Metabolites in Pelteobagrus Fulvidraco. J. Hazard. Mater. 2023, 457, 131719. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, Y.; Deng, Y.; Jiang, W.; Zhao, Y.; Geng, J.; Ding, L.; Ren, H. Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio Rerio) and Toxic Effects in Liver. Environ. Sci. Technol. 2016, 50, 4054–4060. [Google Scholar] [CrossRef]
- Magara, G.; Elia, A.C.; Syberg, K.; Khan, F.R. Single Contaminant and Combined Exposures of Polyethylene Microplastics and Fluoranthene: Accumulation and Oxidative Stress Response in the Blue Mussel, Mytilus Edulis. J. Toxicol. Environ. Health Part A 2018, 81, 761–773. [Google Scholar] [CrossRef]
- Umamaheswari, S.; Priyadarshinee, S.; Bhattacharjee, M.; Kadirvelu, K.; Ramesh, M. Exposure to Polystyrene Microplastics Induced Gene Modulated Biological Responses in Zebrafish (Danio Rerio). Chemosphere 2021, 281, 128592. [Google Scholar] [CrossRef]
- Weng, X.; Zhu, Q.; Liao, C.; Jiang, G. Cumulative Exposure to Phthalates and Their Alternatives and Associated Female Reproductive Health: Body Burdens, Adverse Outcomes, and Underlying Mechanisms. Environ. Sci. Technol. 2023, 57, 8189–8212. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Shao, H.; Lei, P.; Zheng, C.; Qiu, C.; Yang, M.; Zheng, Y. Immunotoxicity of Bisphenol S and F Are Similar to That of Bisphenol A during Zebrafish Early Development. Chemosphere 2018, 194, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Azarm-Karnagh, S.; Sattari, M.; Banaee, M.; Shirkavand Hadavand, B.; Falco, F. Effects of Polystyrene Nanoplastics on Oxidative Stress, Blood Biochemistry, and Digestive Enzyme Activity in Goldfish (Carassius Auratus). Toxics 2025, 13, 336. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Wei, J.; Wang, T.; Wang, Y. Acute Toxicity and Responses of Antioxidant Systems to Dibutyl Phthalate in Neonate and Adult Daphnia magna. PeerJ 2019, 7, e6584. [Google Scholar] [CrossRef]
- Regoli, F.; Giuliani, M.E.; Benedetti, M.; Arukwe, A. Molecular and Biochemical Biomarkers in Environmental Monitoring: A Comparison of Biotransformation and Antioxidant Defense Systems in Multiple Tissues. Aquat. Toxicol. 2011, 105, 56–66. [Google Scholar] [CrossRef]
- Wei, L.-L.; He, L.; Ruan, J.-M.; Liu, Y.; Fu, J.-P.; Zhong, Q.-W. Oxidative Stress Response to MC-LR in the Hepatopancreas of Juvenile Grass Carp. J. Agro-Environ. Sci. 2019, 38, 44–50. [Google Scholar] [CrossRef]
- Guo, S.-N.; Zheng, J.-L.; Yuan, S.-S.; Zhu, Q.-L. Effects of Heat and Cadmium Exposure on Stress-Related Responses in the Liver of Female Zebrafish: Heat Increases Cadmium Toxicity. Sci. Total Environ. 2018, 618, 1363–1370. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Y.; Zhang, X.; Zhang, J.; Ma, E. Antioxidant Defenses at Enzymatic and Transcriptional Levels in Response to Acute Lead Administration in Oxya Chinensis. Ecotoxicol. Environ. Saf. 2019, 168, 27–34. [Google Scholar] [CrossRef]
- Guo, S.-N.; Zheng, J.-L.; Yuan, S.-S.; Zhu, Q.-L.; Wu, C.-W. Immunosuppressive Effects and Associated Compensatory Responses in Zebrafish after Full Life-Cycle Exposure to Environmentally Relevant Concentrations of Cadmium. Aquat. Toxicol. 2017, 188, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.-L.; Li, W.-Y.; Zheng, J.-L. Life-Cycle Exposure to Cadmium Induced Compensatory Responses towards Oxidative Stress in the Liver of Female Zebrafish. Chemosphere 2018, 210, 949–957. [Google Scholar] [CrossRef]
- Benedetti, M.; Fattorini, D.; Martuccio, G.; Nigro, M.; Regoli, F. Interactions between Trace Metals (Cu, Hg, Ni, Pb) and 2,3,7,8-tetrachlorodibenzo-p-dioxin in the Antarctic Fish Trematomus Bernacchii: Oxidative Effects on Biotransformation Pathway. Environ. Toxicol. Chem. 2009, 28, 818–825. [Google Scholar] [CrossRef]
- Zheng, J.-L.; Zeng, L.; Shen, B.; Xu, M.-Y.; Zhu, A.-Y.; Wu, C.-W. Antioxidant Defenses at Transcriptional and Enzymatic Levels and Gene Expression of Nrf2-Keap1 Signaling Molecules in Response to Acute Zinc Exposure in the Spleen of the Large Yellow Croaker Pseudosciaena Crocea. Fish Shellfish Immunol. 2016, 52, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Zhang, S.; Razanajatovo, R.M.; Zou, H.; Zhu, W. Accumulation, Tissue Distribution, and Biochemical Effects of Polystyrene Microplastics in the Freshwater Fish Red Tilapia (Oreochromis Niloticus). Environ. Pollut. 2018, 238, 1–9. [Google Scholar] [CrossRef]
- Luís, L.G.; Ferreira, P.; Fonte, E.; Oliveira, M.; Guilhermino, L. Does the Presence of Microplastics Influence the Acute Toxicity of Chromium(VI) to Early Juveniles of the Common Goby (Pomatoschistus Microps)? A Study with Juveniles from Two Wild Estuarine Populations. Aquat. Toxicol. 2015, 164, 163–174. [Google Scholar] [CrossRef]
- Fonte, E.; Ferreira, P.; Guilhermino, L. Temperature Rise and Microplastics Interact with the Toxicity of the Antibiotic Cefalexin to Juveniles of the Common Goby (Pomatoschistus Microps): Post-Exposure Predatory Behaviour, Acetylcholinesterase Activity and Lipid Peroxidation. Aquat. Toxicol. 2016, 180, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Kong, Q.; Tian, P.; He, Y.; Zhao, J.; Zhang, H.; Wang, G.; Chen, W. Lactic Acid Bacteria Alleviate Di-(2-Ethylhexyl) Phthalate-Induced Liver and Testis Toxicity via Their Bio-Binding Capacity, Antioxidant Capacity and Regulation of the Gut Microbiota. Environ. Pollut. 2022, 305, 119197. [Google Scholar] [CrossRef]
- Quan, J.; Zhao, X.; Xiao, Y.; Wu, H.; Di, Q.; Wu, Z.; Chen, X.; Tang, H.; Zhao, J.; Guan, Y.; et al. USP39 Regulates NF-κB–Mediated Inflammatory Responses through Deubiquitinating K48-Linked IκBα. J. Immunol. 2023, 210, 640–652. [Google Scholar] [CrossRef]
- Duan, J.; Kang, J.; Qin, W.; Deng, T.; Liu, H.; Li, B.; Yu, W.; Gong, S.; Yang, X.; Chen, M. Exposure to Formaldehyde and Diisononyl Phthalate Exacerbate Neuroinflammation through NF-κB Activation in a Mouse Asthma Model. Ecotoxicol. Environ. Saf. 2018, 163, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Y.; Chen, Q.; Liu, Z. Diethylstilbestrol Impaired Oogenesis of Yellow Catfish Juveniles through Disrupting Hypothalamic–Pituitary–Gonadal Axis and Germ Cell Development. J. Appl. Toxicol. 2018, 38, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Ba, Q.; Li, M.; Chen, P.; Huang, C.; Duan, X.; Lu, L.; Li, J.; Chu, R.; Xie, D.; Song, H.; et al. Sex-Dependent Effects of Cadmium Exposure in Early Life on Gut Microbiota and Fat Accumulation in Mice. Env. Health Perspect. 2017, 125, 437–446. [Google Scholar] [CrossRef]
- Jin, C.; Luo, T.; Zhu, Z.; Pan, Z.; Yang, J.; Wang, W.; Fu, Z.; Jin, Y. Imazalil Exposure Induces Gut Microbiota Dysbiosis and Hepatic Metabolism Disorder in Zebrafish. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 2017, 202, 85–93. [Google Scholar] [CrossRef]
- Shin, N.-R.; Whon, T.W.; Bae, J.-W. Proteobacteria: Microbial Signature of Dysbiosis in Gut Microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef]
- Lu, L.; Wan, Z.; Luo, T.; Fu, Z.; Jin, Y. Polystyrene Microplastics Induce Gut Microbiota Dysbiosis and Hepatic Lipid Metabolism Disorder in Mice. Sci. Total Environ. 2018, 631–632, 449–458. [Google Scholar] [CrossRef] [PubMed]
Group | IBW | FBW | WGR | SGR | SR |
---|---|---|---|---|---|
PSNPs-Ctrl | 12.41 ± 0.71 | 23.63 ± 1.07 c | 90.42 ± 8.06 c | 2.94 ± 0.21 c | 76.00 ± 0.09 |
PSNPs-Low | 12.80 ± 0.86 | 24.54 ± 0.92 c | 91.74 ± 7.21 d | 3.00 ± 0.17 c | 77.3 ± 0.08 |
PSNPs-Medium | 12.50 ± 0.60 | 20.77 ± 0.79 b | 66.18 ± 5.54 b | 2.34 ± 0.16 b | 76.00 ± 0.09 |
PSNPs-High | 12.20 ± 0.42 | 17.79 ± 0.80 a | 45.82 ± 6.53 a | 1.69 ± 0.17 a | 74.67 ± 0.08 |
Group | Villus Length | Muscle Layer Thickness | Villus Count | Injury Rate 1 | Injury Rate 2 |
---|---|---|---|---|---|
PSNPs-Ctrl | 195.86 ± 21.87 | 53.84 ± 9.79 | 20.0 ± 3.06 | / | / |
PSNPs-Low | 192.88 ± 11.65 | 56.42 ± 13.05 | 23.0 ± 3.51 | 17.10 ± 1.45 | / |
PSNPs-Medium | 186.50 ± 12.26 | 56.36 ± 18.92 | 23.0 ± 4.34 | / | 21.29 ± 7.90 |
PSNPs-High | 175.67 ± 15.72 | 53.50 ± 10.30 | 24.0 ± 4.83 | / | 29.04 ± 14.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, M.; Yang, Z.; Lu, Y.; Zhang, Y.; Zou, Y.; Deng, Y.; Sun, Y.; Liu, H.; Luo, Q.; Fei, S.; et al. Single and Combined Effects of Polystyrene Nanoplastics and Dibutyl Phthalate on Hybrid Snakehead (Channa maculata ♀ × Channa argus ♂). Antioxidants 2025, 14, 1084. https://doi.org/10.3390/antiox14091084
Ou M, Yang Z, Lu Y, Zhang Y, Zou Y, Deng Y, Sun Y, Liu H, Luo Q, Fei S, et al. Single and Combined Effects of Polystyrene Nanoplastics and Dibutyl Phthalate on Hybrid Snakehead (Channa maculata ♀ × Channa argus ♂). Antioxidants. 2025; 14(9):1084. https://doi.org/10.3390/antiox14091084
Chicago/Turabian StyleOu, Mi, Ziwen Yang, Yuntao Lu, Yang Zhang, Yang Zou, Yueying Deng, Yuandong Sun, Haiyang Liu, Qing Luo, Shuzhan Fei, and et al. 2025. "Single and Combined Effects of Polystyrene Nanoplastics and Dibutyl Phthalate on Hybrid Snakehead (Channa maculata ♀ × Channa argus ♂)" Antioxidants 14, no. 9: 1084. https://doi.org/10.3390/antiox14091084
APA StyleOu, M., Yang, Z., Lu, Y., Zhang, Y., Zou, Y., Deng, Y., Sun, Y., Liu, H., Luo, Q., Fei, S., Chen, K., Gao, D., & Zhao, J. (2025). Single and Combined Effects of Polystyrene Nanoplastics and Dibutyl Phthalate on Hybrid Snakehead (Channa maculata ♀ × Channa argus ♂). Antioxidants, 14(9), 1084. https://doi.org/10.3390/antiox14091084