The Mechanism of Protective Action of Plant-Derived Squalane (2,6,10,15,19,23-Hexamethyltetracosane) Against UVA Radiation-Induced Apoptosis in Human Dermal Fibroblasts
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Cell Culture, Squalane Treatment, and UVA Irradiation Protocol
2.2.2. Reactive Oxygen Species (ROS) Formation
2.2.3. Apoptosis Cytometric Assay
2.2.4. Free Thiol Groups Assay
2.2.5. DNA Biosynthesis Assay
2.2.6. Immunofluorescence Staining and Confocal Microscopy
2.2.7. Western Blot Analysis
2.2.8. Antibodies
2.2.9. Statistical Analysis
3. Results and Discussion
3.1. Reactive Oxygen Species (ROS) Formation
3.2. DNA Damage and PARP Activation
3.3. Reduced Thiol Levels and Apoptosis
3.4. Mitochondrial Apoptotic Pathway
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Sq | Squalane |
HDFs | Human Dermal Fibroblasts |
UVA | Ultraviolet A Radiation |
ROS | Reactive Oxygen Species |
PARP | Poly (ADP-ribose) Polymerase |
GSH | Reduced Glutathione |
PI | Propidium Iodide |
AO | Acridine Orange |
VB-48™ | VitaBright-48™ |
DCFDA | 2′,7′-Dichlorodihydrofluorescein Diacetate |
DCF | 2′,7′-Dichlorofluorescein |
FBS | Fetal Bovine Serum |
PBS | Phosphate-Buffered Saline |
DMEM | Dulbecco’s Modified Eagle’s Medium |
IGF-IR | Insulin-Like Growth Factor I Receptor |
TGF-β | Transforming Growth Factor Beta |
ERK1/2 | Extracellular Signal-Regulated Kinases 1/2 |
COX-2 | Cyclooxygenase-2 |
NF-κB | Nuclear Factor Kappa B |
MAPKs | Mitogen-Activated Protein Kinases |
mTOR | Mammalian Target of Rapamycin Kinase |
p-Akt | Phosphorylated Protein Kinase B |
References
- Bernerd, F.; Passeron, T.; Castiel, I.; Marionnet, C. The Damaging Effects of Long UVA (UVA1) Rays: A Major Challenge to Preserve Skin Health and Integrity. Int. J. Mol. Sci. 2022, 23, 8243. [Google Scholar] [CrossRef] [PubMed]
- Strozyk, E.; Kulms, D. The Role of AKT/mTOR Pathway in Stress Response to UV-Irradiation: Implication in Skin Carcinogenesis by Regulation of Apoptosis, Autophagy and Senescence. Int. J. Mol. Sci. 2013, 14, 15260–15285. [Google Scholar] [CrossRef] [PubMed]
- Dantzer, F.; Amé, J.; Schreiber, V.; Nakamura, J.; Ménissier-de Murcia, J.; de Murcia, G. Poly(ADP-ribose) Polymerase–1 Activation During DNA Damage and Repair. In Methods in Enzymology; DNA Repair, Part B; Academic Press: Cambridge, MA, USA, 2006; Volume 409, pp. 493–510. [Google Scholar] [CrossRef]
- De Silva, W.G.M.; Sequeira, V.B.; Yang, C.; Dixon, K.M.; Holland, A.J.A.; Mason, R.S.; Rybchyn, M.S. 1,25-Dihydroxyvitamin D3 Suppresses UV-Induced Poly(ADP-Ribose) Levels in Primary Human Keratinocytes, as Detected by a Novel Whole-Cell ELISA. Int. J. Mol. Sci. 2024, 25, 5583. [Google Scholar] [CrossRef]
- Wolosik, K.; Chalecka, M.; Palka, J.; Surazynski, A. Protective Effect of Amaranthus Cruentus L. Seed Oil on UVA-Radiation-Induced Apoptosis in Human Skin Fibroblasts. Int. J. Mol. Sci. 2023, 24, 10795. [Google Scholar] [CrossRef]
- Gęgotek, A.; Jastrząb, A.; Jarocka-Karpowicz, I.; Muszyńska, M.; Skrzydlewska, E. The Effect of Sea Buckthorn (Hippophae Rhamnoides L.) Seed Oil on UV-Induced Changes in Lipid Metabolism of Human Skin Cells. Antioxidants 2018, 7, 110. [Google Scholar] [CrossRef]
- Afaq, F.; Malik, A.; Syed, D.; Maes, D.; Matsui, M.S.; Mukhtar, H. Pomegranate Fruit Extract Modulates UVB-Mediated Phosphorylation of Mitogen Activated Protein Kinases and Activation of Nuclear Factor Kappa B in Normal Human Epidermal Keratinocytes. Photochem. Photobiol. 2005, 81, 38–45. [Google Scholar] [CrossRef]
- Katiyar, S.K.; Afaq, F.; Perez, A.; Mukhtar, H. Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate Treatment of Human Skin Inhibits Ultraviolet Radiation-Induced Oxidative Stress. Carcinogenesis 2001, 22, 287–294. [Google Scholar] [CrossRef]
- Micera, M.; Botto, A.; Geddo, F.; Antoniotti, S.; Bertea, C.M.; Levi, R.; Gallo, M.P.; Querio, G. Squalene: More than a Step toward Sterols. Antioxidants 2020, 9, 688. [Google Scholar] [CrossRef]
- Wolosik, K.; Chalecka, M.; Gasiewska, G.; Palka, J.; Surazynski, A. Squalane as a Promising Agent Protecting UV-Induced Inhibition of Collagen Biosynthesis and Wound Healing in Human Dermal Fibroblast. Molecules 2025, 30, 1964. [Google Scholar] [CrossRef]
- Katiyar, S.; Elmets, C. Green Tea Polyphenolic Antioxidants and Skin Photoprotection (Review). Int. J. Oncol. 2001, 18, 1307–1313. [Google Scholar] [CrossRef]
- Abd-ElSalam, H.-A.H.; Al-Ghobashy, M.A.; Zaazaa, H.E.; Ibrahim, M.A. Stability of Catechins in Green Tea Nutraceutical Products: Application of Solid Phase Extraction–Thin Layer Chromatography Densitometry. Food Chem. 2014, 156, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.S.; Cantó, C. The Molecular Targets of Resveratrol. Biochim. Biophys. Acta BBA-Mol. Basis Dis. 2015, 1852, 1114–1123. [Google Scholar] [CrossRef] [PubMed]
- Baccarin, T.; Lemos-Senna, E. Potential Application of Nanoemulsions for Skin Delivery of Pomegranate Peel Polyphenols. AAPS PharmSciTech 2017, 18, 3307–3314. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.-R.; Lin, Y.-K.; Fang, J.-Y. Biological and Pharmacological Activities of Squalene and Related Compounds: Potential Uses in Cosmetic Dermatology. Molecules 2009, 14, 540–554. [Google Scholar] [CrossRef]
- Kelly, G.S. Squalene and Its Potential Clinical Uses. Altern. Med. Rev. A J. Clin. Ther. 1999, 4, 29–36. [Google Scholar]
- Reddy, L.H.; Couvreur, P. Squalene: A Natural Triterpene for Use in Disease Management and Therapy. Adv. Drug Deliv. Rev. 2009, 61, 1412–1426. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Chandimali, N.; Bak, S.G.; Park, E.H.; Lim, H.-J.; Won, Y.-S.; Kim, E.-K.; Park, S.-I.; Lee, S.J. Free Radicals and Their Impact on Health and Antioxidant Defenses: A Review. Cell Death Discov. 2025, 11, 19. [Google Scholar] [CrossRef]
- Leem, J.; Lee, C.; Choi, D.Y.; Oh, J.S. Distinct Characteristics of the DNA Damage Response in Mammalian Oocytes. Exp. Mol. Med. 2024, 56, 319–328. [Google Scholar] [CrossRef]
- Luo, X.; Kraus, W.L. On PAR with PARP: Cellular Stress Signaling through Poly(ADP-Ribose) and PARP-1. Genes Dev. 2012, 26, 417–432. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Chen, G.; Jin, W.; Mao, K.; Wan, H.; He, Y. Molecular Mechanisms of Parthanatos and Its Role in Diverse Diseases. Int. J. Mol. Sci. 2022, 23, 7292. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-M.; Cheng, M.-Y.; Xun, M.-H.; Zhao, Z.-W.; Zhang, Y.; Tang, W.; Cheng, J.; Ni, J.; Wang, W. Possible Mechanisms of Oxidative Stress-Induced Skin Cellular Senescence, Inflammation, and Cancer and the Therapeutic Potential of Plant Polyphenols. Int. J. Mol. Sci. 2023, 24, 3755. [Google Scholar] [CrossRef]
- Emonet, N.; Leccia, M.T.; Favier, A.; Beani, J.C.; Richard, M.J. Thiols and Selenium: Protective Effect on Human Skin Fibroblasts Exposed to UVA Radiation. J. Photochem. Photobiol. B 1997, 40, 84–90. [Google Scholar] [CrossRef]
- Cadet, J.; Douki, T. Formation of UV-induced DNA damage contributing to skin cancer development. Photochem. Photobiol. Sci. 2018, 17, 1816–1841. [Google Scholar] [CrossRef]
- Bernerd, F.; Asselineau, D. UVA Exposure of Human Skin Reconstructed in Vitro Induces Apoptosis of Dermal Fibroblasts: Subsequent Connective Tissue Repair and Implications in Photoaging. Cell Death Differ. 1998, 5, 792–802. [Google Scholar] [CrossRef]
- Morris, R.J. Keratinocyte Stem Cells: Targets for Cutaneous Carcinogens. J. Clin. Investig. 2000, 106, 3–8. [Google Scholar] [CrossRef]
- Agar, N.S.; Halliday, G.M.; Barnetson, R.S.; Ananthaswamy, H.N.; Wheeler, M.; Jones, A.M. The Basal Layer in Human Squamous Tumors Harbors More UVA than UVB Fingerprint Mutations: A Role for UVA in Human Skin Carcinogenesis. Proc. Natl. Acad. Sci. USA 2004, 101, 4954–4959. [Google Scholar] [CrossRef]
- Matés, J.M.; Segura, J.A.; Alonso, F.J.; Márquez, J. Oxidative Stress in Apoptosis and Cancer: An Update. Arch. Toxicol. 2012, 86, 1649–1665. [Google Scholar] [CrossRef]
Squalane [10,15,16,17] | Resveratrol [13] | EGCG [8] | |
---|---|---|---|
Parameter | |||
Antioxidant efficacy | Moderate to high | High | High |
Photostability under UVA | Resistant to photodegradation | Rapid photodegradation | UV-labile |
Susceptibility to lipid peroxidation | None (saturated molecule) | Minimal | Minimal |
Skin penetration potential | High (lipophilic, membrane-integrating) | Moderate | Low |
Stability in formulations | High (chemically inert, non-oxidizable) | Limited (oxidation-prone) | Low (unstable in aqueous systems) |
Mechanism of action | Redox modulation, DNA protection | MAPK/NF-κB inhibition, ROS scavenging | Anti-inflammatory, MMP inhibition |
The dpm Values of Radioactive [methyl-3H] Thymidine | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Non-UVA-Treated Cells (−UVA) | |||||||||||
I | II | III | I | II | III | I | II | III | Mean Value | % Value | |
Control | 4411 | 4316 | 4363 | 3991 | 3556 | 3639 | 4039 | 4058 | 4049 | 4046.8 | 100 |
Sq 0.005% | 3645 | 3769 | 3707 | 3877 | 3880 | 3879 | 3574 | 3991 | 3630 | 3574 | 88,334,157 |
Sq 0.01% | 3612 | 3887 | 3608 | 3914 | 3930 | 3922 | 3491 | 3395 | 3443 | 36,891,111 | 91,179,217 |
Sq 0.015% | 3808 | 3564 | 3532 | 3862 | 4265 | 3910 | 3688 | 4064 | 3710 | 38,225,556 | 94,477,399 |
UVA-Treated Cells (+UVA) | |||||||||||
UVA | 1937 | 1833 | 1944 | 2616 | 2253 | 2326 | 2371 | 2301 | 2336 | 2213 | 54.69 * |
Sq 0.005% | 2838 | 2828 | 2833 | 2838 | 2826 | 2832 | 2542 | 2525 | 2533 | 27,327,778 | 67,542,703 |
Sq 0.01% | 3026 | 3327 | 3295 | 2992 | 3165 | 3078 | 3113 | 3425 | 3134 | 31,727,778 | 78,417,642 # |
Sq 0.015% | 3421 | 3501 | 3461 | 3228 | 3214 | 3221 | 2950 | 2959 | 2954 | 32,121,111 | 79,389,795 # |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolosik, K.; Chalecka, M.; Gasiewska, G.; Palka, J.; Surazynski, A. The Mechanism of Protective Action of Plant-Derived Squalane (2,6,10,15,19,23-Hexamethyltetracosane) Against UVA Radiation-Induced Apoptosis in Human Dermal Fibroblasts. Antioxidants 2025, 14, 853. https://doi.org/10.3390/antiox14070853
Wolosik K, Chalecka M, Gasiewska G, Palka J, Surazynski A. The Mechanism of Protective Action of Plant-Derived Squalane (2,6,10,15,19,23-Hexamethyltetracosane) Against UVA Radiation-Induced Apoptosis in Human Dermal Fibroblasts. Antioxidants. 2025; 14(7):853. https://doi.org/10.3390/antiox14070853
Chicago/Turabian StyleWolosik, Katarzyna, Magda Chalecka, Gabriela Gasiewska, Jerzy Palka, and Arkadiusz Surazynski. 2025. "The Mechanism of Protective Action of Plant-Derived Squalane (2,6,10,15,19,23-Hexamethyltetracosane) Against UVA Radiation-Induced Apoptosis in Human Dermal Fibroblasts" Antioxidants 14, no. 7: 853. https://doi.org/10.3390/antiox14070853
APA StyleWolosik, K., Chalecka, M., Gasiewska, G., Palka, J., & Surazynski, A. (2025). The Mechanism of Protective Action of Plant-Derived Squalane (2,6,10,15,19,23-Hexamethyltetracosane) Against UVA Radiation-Induced Apoptosis in Human Dermal Fibroblasts. Antioxidants, 14(7), 853. https://doi.org/10.3390/antiox14070853