Quantifying the Antioxidant Capacity of Inorganic Nanoparticles: Challenges and Analytical Solutions
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Assay Methods
2.2.1. The Trolox Equivalent Antioxidant Capacity (TEAC) Assay Using Pyranine, Pyrogallol Red, and Rhodamine B as Indicators
2.2.2. ORAC Assay Employing Sodium Fluorescein (NaFluo) as Indicator
2.2.3. DPPH Radical Scavenging Assay in Methanol
2.2.4. ABTS Assay Using H2O2/Myoglobin as Oxidants
2.2.5. Measurement of TROLOX Equivalent Antioxidant Capacity (TEAC)
Using the Time-Dependent (Half-Life, t1/2) Data to Estimate TEAC
Estimation of TEAC Based on Area-Under-the-Curve (AUC) Analysis [32,42]
Using ABTS Assay to Estimate TEAC [43,44]
2.2.6. Ultraviolet–Visible (UV) Absorption Spectra of Oxidized Nanoparticles
2.3. Nanoparticle Preparation
2.3.1. Synthesis of 4.7 nm Ceria Nanoparticles, Concentration Determination, and Phase Transfer into Water
2.3.2. Nanoparticle Concentrations Were Measured Using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES)
2.3.3. Synthesis of 10 kDa-Branched DOPA-PEG
2.3.4. Synthesis of 17.7 nm Gold Nanoparticles, Concentration Determination, and Phase Transfer
2.3.5. Synthesis of PAA-Coated 40 nm Iron Oxide Nanocluster and Concentration Determination
2.3.6. Synthesis of Silver Nanoparticles with a 4.7 nm Diameter, Including Concentration Measurement and Phase Transfer
2.4. Nanoparticle Characterization
2.4.1. Transmission Electron Microscopy (TEM)
2.4.2. Dynamic Light Scattering (DLS)
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
AAPH | 2,2′-azobis(2-methylpropionamidine) dihydrochloride |
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
TEAC | Trolox equivalent antioxidant capacity |
ROS | Reactive oxygen species |
PGR | Pyrogallol red |
PYR | Pyranine |
RhB | Rhodamine B |
NaFluo | Fluorescein sodium salt |
References
- Rivera Lemon, E.N.; Lowe, L.E.; Lazzelle, S.M.; Tvrdy, K.C.; Owens, J.E. SNaP-C: Development of a Silver Nanoparticle Antioxidant Assay for the Selective Quantitative Analysis of Vitamin C in Beverages. ACS Omega 2025, 10, 2280–2288. [Google Scholar] [CrossRef]
- Babu, S.; Velez, A.; Wozniak, K.; Szydlowska, J.; Seal, S. Electron paramagnetic study on radical scavenging properties of ceria nanoparticles. Chem. Phys. Lett. 2007, 442, 405–408. [Google Scholar] [CrossRef]
- Filippi, A.; Liu, F.; Wilson, J.; Lelieveld, S.; Korschelt, K.; Wang, T.; Wang, Y.; Reich, T.; Poeschl, U.; Tremel, W.; et al. Antioxidant activity of cerium dioxide nanoparticles and nanorods in scavenging hydroxyl radicals. RSC Adv. 2019, 9, 11077–11081. [Google Scholar] [CrossRef]
- Bedlovičová, Z.; Strapáč, I.; Baláž, M.; Salayová, A. A Brief Overview on Antioxidant Activity Determination of Silver Nanoparticles. Molecules 2020, 25, 3191. [Google Scholar] [CrossRef]
- Kumar, H.; Bhardwaj, K.; Nepovimova, E.; Kuča, K.; Singh Dhanjal, D.; Bhardwaj, S.; Bhatia, S.K.; Verma, R.; Kumar, D. Antioxidant Functionalized Nanoparticles: A Combat against Oxidative Stress. Nanomaterials 2020, 10, 1334. [Google Scholar] [CrossRef]
- Valgimigli, L.; Baschieri, A.; Amorati, R. Antioxidant activity of nanomaterials. J. Mater. Chem. B 2018, 6, 2036–2051. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Q.; Garcia-Rojas, D.; Ling, V.; Masterson, C.M.; Bi, Y.; Xiao, Z.; Guo, X.; Villanova, J.; Dunn, J.; et al. Increasing the antioxidant capacity of ceria nanoparticles with catechol-grafted poly(ethylene glycol). J. Mater. Chem. B 2022, 10, 10042–10053. [Google Scholar] [CrossRef] [PubMed]
- Cholli, A.; Kumar, V.; Kumar, J.; Parmar, V.; Samuelson, L.; Bruno, F. Polymeric antioxidants. U.S. Patent US20070154608A1, 5 July 2007. [Google Scholar]
- Cholli, A. Polnox, a New Class of High Performance Industrial Additives. 2020. Available online: http://www.polnox.com/polnox/Home.html (accessed on 1 October 2025).
- Finley, J.W.; Kong, A.N.; Hintze, K.J.; Jeffery, E.H.; Ji, L.L.; Lei, X.G. Antioxidants in foods: State of the science important to the food industry. J. Agric. Food Chem. 2011, 59, 6837–6846. [Google Scholar] [CrossRef] [PubMed]
- Atherton, E.; Hu, Y.; Brown, S.; Papiez, E.; Ling, V.; Colvin, V.L.; Borton, D.A. A 3D in vitro model of the device-tissue interface: Functional and structural symptoms of innate neuroinflammation are mitigated by antioxidant ceria nanoparticles. J. Neural Eng. 2022, 19, 036004. [Google Scholar] [CrossRef] [PubMed]
- Khalil, I.; Yehye, W.A.; Etxeberria, A.E.; Alhadi, A.A.; Dezfooli, S.M.; Julkapli, N.B.M.; Basirun, W.J.; Seyfoddin, A. Nanoantioxidants: Recent Trends in Antioxidant Delivery Applications. Antioxidants 2019, 9, 24. [Google Scholar] [CrossRef]
- Lee, S.S.; Song, W.; Cho, M.; Puppala, H.L.; Phuc, N.; Zhu, H.; Segatori, L.; Colvin, V.L. Antioxidant Properties of Cerium Oxide Nanocrystals as a Function of Nanocrystal Diameter and Surface Coating. ACS Nano 2013, 7, 9693–9703. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.K.; Kim, T.; Choi, I.-Y.; Soh, M.; Kim, D.; Kim, Y.-J.; Jang, H.; Yang, H.-S.; Kim, J.Y.; Park, H.-K.; et al. Ceria Nanoparticles that can Protect against Ischemic Stroke. Angew. Chem. Int. Ed. 2012, 51, 11039–11043. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B.C.; Johnson, M.E.; Walker, M.L.; Riley, K.R.; Sims, C.M. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine. Antioxidants 2016, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Soo Lee, S.; Savini, M.; Popp, L.; Colvin, V.L.; Segatori, L. Ceria Nanoparticles Stabilized by Organic Surface Coatings Activate the Lysosome-Autophagy System and Enhance Autophagic Clearance. ACS Nano 2014, 8, 10328–10342. [Google Scholar] [CrossRef]
- Moldovan, B.; David, L.; Achim, M.; Clichici, S.; Filip, G.A. A green approach to phytomediated synthesis of silver nanoparticles using Sambucus nigra L. fruits extract and their antioxidant activity. J. Mol. Liq. 2016, 221, 271–278. [Google Scholar] [CrossRef]
- Wayner, D.D.M.; Burton, G.W.; Ingold, K.U.; Locke, S. Quantitative measurement of the total, peroxyl radical-trapping antioxidant capability of human-blood plasma by controlled peroxidation—The important contribution made by plasma-proteins. FEBS Lett. 1985, 187, 33–37. [Google Scholar] [CrossRef]
- Young, I.S. Measurement of total antioxidant capacity. J. Clin. Pathol. 2001, 54, 339. [Google Scholar] [CrossRef]
- Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays. J. Agric. Food Chem. 2016, 64, 997–1027. [Google Scholar] [CrossRef]
- Niki, E.; Noguchi, N. Evaluation of antioxidant capacity. What capacity is being measured by which method? IUBMB Life 2000, 50, 323–329. [Google Scholar] [CrossRef]
- du Toit, R.; Volsteedt, Y.; Apostolides, Z. Comparison of the antioxidant content of fruits, vegetables and teas measured as vitamin C equivalents. Toxicology 2001, 166, 63–69. [Google Scholar] [CrossRef]
- Sueishi, Y.; Masamoto, H.; Kotake, Y. Heat treatments of ginger root modify but not diminish its antioxidant activity as measured with multiple free radical scavenging (MULTIS) method. J. Clin. Biochem. Nutr. 2019, 64, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Wannenmacher, J.; Cotterchio, C.; Schlumberger, M.; Reuber, V.; Gastl, M.; Becker, T. Technological influence on sensory stability and antioxidant activity of beers measured by ORAC and FRAP. J. Sci. Food Agric. 2019, 99, 6628–6637. [Google Scholar] [CrossRef] [PubMed]
- Flora, S.J.S. Structural, Chemical and Biological Aspects of Antioxidants for Strategies Against Metal and Metalloid Exposure. Oxidative Med. Cell. Longev. 2009, 2, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Lü, J.-M.; Lin, P.H.; Yao, Q.; Chen, C. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell. Mol. Med. 2010, 14, 840–860. [Google Scholar] [CrossRef]
- Magnani, L.; Gaydou, E.M.; Hubaud, J.C. Spectrophotometric measurement of antioxidant properties of flavones and flavonols against superoxide anion. Anal. Chim. Acta 2000, 411, 209–216. [Google Scholar] [CrossRef]
- Bhat, V.B.; Madyastha, K.M. Scavenging of peroxynitrite by phycocyanin and phycocyanobilin from Spirulina platensis: Protection against oxidative damage to DNA. Biochem. Biophys. Res. Commun. 2001, 285, 262–266. [Google Scholar] [CrossRef]
- Gregório, B.J.R.; Ramos, I.I.; Magalhães, L.M.; Silva, E.M.P.; Reis, S.; Segundo, M.A. Microplate ORAC-pyranine spectrophotometric assay for high-throughput assessment of antioxidant capacity. Microchem. J. 2020, 158, 105156. [Google Scholar] [CrossRef]
- Mensor, L.L.; Menezes, F.S.; Leitão, G.G.; Reis, A.S.; Santos, T.C.D.; Coube, C.S.; Leitão, S.G. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Res. 2001, 15, 127–130. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.K.; Koide, M.; Rao, T.P.; Okubo, T.; Ogasawara, Y.; Juneja, L.R. ORAC and DPPH assay comparison to assess antioxidant capacity of tea infusions: Relationship between total polyphenol and individual catechin content. Int. J. Food Sci. Nutr. 2010, 61, 109–124. [Google Scholar] [CrossRef]
- Yu, F.; Xu, D.; Lei, R.; Li, N.; Li, K.A. Free-Radical Scavenging Capacity Using the Fenton Reaction with Rhodamine B as the Spectrophotometric Indicator. J. Agric. Food Chem. 2008, 56, 730–735. [Google Scholar] [CrossRef]
- Bülbül, G.; Hayat, A.; Mustafa, F.; Andreescu, S. DNA assay based on Nanoceria as Fluorescence Quenchers (NanoCeracQ DNA assay). Sci. Rep. 2018, 8, 2426. [Google Scholar] [CrossRef]
- Kroll, A.; Pillukat, M.H.; Hahn, D.; Schnekenburger, J. Interference of engineered nanoparticles with in vitro toxicity assays. Arch. Toxicol. 2012, 86, 1123–1136. [Google Scholar] [CrossRef]
- Swierczewska, M.; Lee, S.; Chen, X. The design and application of fluorophore–gold nanoparticle activatable probes. Phys. Chem. Chem. Phys. 2011, 13, 9929. [Google Scholar] [CrossRef]
- Tonelli, A.; Candiani, A.; Sozzi, M.; Zucchelli, A.; Foresti, R.; Dall’Asta, C.; Selleri, S.; Cucinotta, A. The geek and the chemist: Antioxidant capacity measurements by DPPH assay in beverages using open source tools, consumer electronics and 3D printing. Sens. Actuators B-Chem. 2019, 282, 559–566. [Google Scholar] [CrossRef]
- Arnao, M.B. Some methodological problems in the determination of antioxidant activity using chromogen radicals: A practical case. Trends Food Sci. Technol. 2000, 11, 419–421. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Herald, T.J.; Gadgil, P.; Tilley, M. High-throughput micro plate assays for screening flavonoid content and DPPH-scavenging activity in sorghum bran and flour. J. Sci. Food Agric. 2012, 92, 2326–2331. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas, A.; Gómez, M.; Frontana, C. Relationship between the chemical structures of antioxidants and the differences in their Cupric Ion Reducing Antioxidant Capacity (CUPRAC) by electrochemical methods. J. Electroanal. Chem. 2014, 729, 116–120. [Google Scholar] [CrossRef]
- Bach, C.E.; Warnock, D.D.; Van Horn, D.J.; Weintraub, M.N.; Sinsabaugh, R.L.; Allison, S.D.; German, D.P. Measuring phenol oxidase and peroxidase activities with pyrogallol, l-DOPA, and ABTS: Effect of assay conditions and soil type. Soil Biol. Biochem. 2013, 67, 183–191. [Google Scholar] [CrossRef]
- Lee, S.S.; Zhu, H.; Contreras, E.Q.; Prakash, A.; Puppala, H.L.; Colvin, V.L. High Temperature Decomposition of Cerium Precursors To Form Ceria Nanocrystal Libraries for Biological Applications. Chem. Mater. 2012, 24, 424–432. [Google Scholar] [CrossRef]
- Lassenberger, A.; Bixner, O.; Gruenewald, T.; Lichtenegger, H.; Zirbs, R.; Reimhult, E. Evaluation of High-Yield Purification Methods on Monodisperse PEG-Grafted Iron Oxide Nanoparticles. Langmuir 2016, 32, 4259–4269. [Google Scholar] [CrossRef]
- Frens, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat. Phys. Sci. 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Manson, J.; Kumar, D.; Meenan, B.J.; Dixon, D. Polyethylene glycol functionalized gold nanoparticles: The influence of capping density on stability in various media. Gold Bull. 2011, 44, 99–105. [Google Scholar] [CrossRef]
- Liu, X.; Atwater, M.; Wang, J.; Huo, Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf. B Biointerfaces 2007, 58, 3–7. [Google Scholar] [CrossRef]
- Xiao, Z.; Zhang, Q.; Guo, X.; Villanova, J.; Hu, Y.; Külaots, I.; Garcia-Rojas, D.; Guo, W.; Colvin, V.L. Libraries of Uniform Magnetic Multicore Nanoparticles with Tunable Dimensions for Biomedical and Photonic Applications. ACS Appl. Mater. Interfaces 2020, 12, 41932–41941. [Google Scholar] [CrossRef] [PubMed]
- To, T.B.; Nordstrom, D.K.; Cunningham, K.M.; Ball, J.W.; McCleskey, R.B. New Method for the Direct Determination of Dissolved Fe(III) Concentration in Acid Mine Waters. Environ. Sci. Technol. 1999, 33, 807–813. [Google Scholar] [CrossRef]
- Bakır, T.; Sönmezoglu, İ.; Apak, R. Quantification of Antioxidant Ability Against Lipid Peroxidation with an ‘Area Under Curve’ Approach. J. Am. Oil Chem. Soc. 2017, 94, 77–88. [Google Scholar] [CrossRef]
- Zulueta, A.; Esteve, M.J.; Frígola, A. ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chem. 2009, 114, 310–316. [Google Scholar] [CrossRef]
- Liu, J.; Hurt, R.H. Ion Release Kinetics and Particle Persistence in Aqueous Nano-Silver Colloids. Environ. Sci. Technol. 2010, 44, 2169–2175. [Google Scholar] [CrossRef]
- Lok, C.-N.; Ho, C.-M.; Chen, R.; He, Q.-Y.; Yu, W.-Y.; Sun, H.; Tam, P.K.-H.; Chiu, J.-F.; Che, C.-M. Silver nanoparticles: Partial oxidation and antibacterial activities. JBIC J. Biol. Inorg. Chem. 2007, 12, 527–534. [Google Scholar] [CrossRef]
- Priya Velammal, S.; Devi, T.A.; Amaladhas, T.P. Antioxidant, antimicrobial and cytotoxic activities of silver and gold nanoparticles synthesized using Plumbago zeylanica bark. J. Nanostructure Chem. 2016, 6, 247–260. [Google Scholar] [CrossRef]
- Bhattacharya, K.; Gogoi, B.; Buragohain, A.K.; Deb, P. Fe2O3/C nanocomposites having distinctive antioxidant activity and hemolysis prevention efficiency. Mater. Sci. Eng. C 2014, 42, 595–600. [Google Scholar] [CrossRef]
- Shah, S.T.; A Yehya, W.; Saad, O.; Simarani, K.; Chowdhury, Z.; Alhadi, A.A.; Al-Ani, L. Surface Functionalization of Iron Oxide Nanoparticles with Gallic Acid as Potential Antioxidant and Antimicrobial Agents. Nanomaterials 2017, 7, 306. [Google Scholar] [CrossRef]
- Xu, C.; Qu, X. Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 2014, 6, e90. [Google Scholar] [CrossRef]
- Gunawan, C.; Lord, M.S.; Lovell, E.; Wong, R.J.; Jung, M.S.; Oscar, D.; Mann, R.; Amal, R. Oxygen-Vacancy Engineering of Cerium-Oxide Nanoparticles for Antioxidant Activity. ACS Omega 2019, 4, 9473–9479. [Google Scholar] [CrossRef]
- Ghani, M.A.; Barril, C.; Bedgood, D.R.; Prenzler, P.D. Development of a Method Suitable for High-Throughput Screening to Measure Antioxidant Activity in a Linoleic Acid Emulsion. Antioxidants 2019, 8, 366. [Google Scholar] [CrossRef]
- Pustovit, V.N.; Shahbazyan, T.V. Fluorescence quenching near small metal nanoparticles. J. Chem. Phys. 2012, 136, 204701. [Google Scholar] [CrossRef]
- Zook, J.M.; Long, S.E.; Cleveland, D.; Geronimo, C.L.A.; Maccuspie, R.I. Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV–visible absorbance. Anal. Bioanal. Chem. 2011, 401, 1993–2002. [Google Scholar] [CrossRef]
- Norman, T.J.; Grant, C.D.; Magana, D.; Zhang, J.Z.; Liu, J.; Cao, D.; Bridges, F.; Van Buuren, A. Near Infrared Optical Absorption of Gold Nanoparticle Aggregates. J. Phys. Chem. B 2002, 106, 7005–7012. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
Probe | Oxidant | Method | Example | Prevalence |
---|---|---|---|---|
Pyranine | AAPH | Absorbance− | Gregorio 2020 [29] | 27 |
Pyrogallol red | AAPH | Absorbance− | Bhat 2001 [28] | 110 |
Rhodamine B | AAPH | Absorbance− | Yu 2008 [33] | 140 |
Fluorescein | AAPH | Fluorescence− | Roy 2010 [32] | 722 |
DPPH | NA | Absorbance− | Mensor 2001 [30] | 33,004 |
ABTS | Fe2+/H2O2 | Absorbance+ | Pellegrini 1999 [31] | 11,331 |
AAPH (mM) | Linear Range (μM) | PYR (μM) | Ri (μM/min) | Radicals Quenched by CexOy-10 K | Radicals Quenched by CexOy-5 K | Analysis Time (min) | Intercept (min) | R2 |
---|---|---|---|---|---|---|---|---|
5 | 0–20 | 5 | 0.109 | -- | 97.1 | 340 | 8.7 ± 9.0 | 0.998 |
10 | 0.128 | 40.0 | 53.2 | 340 | 6.1 ± 13.6 | 0.997 | ||
20 | 0.122 | 43.0 | -- | 440 | 4.7 ± 10.5 | 0.997 | ||
10 | 0–20 | 5 | 0.188 | -- | 82.0 | 200 | 5.1 ± 4.6 | 0.998 |
10 | 0.219 | 36.8 | -- | 420 | 9.5 ± 7.2 | 0.999 | ||
20 | 0.228 | 39.0 | -- | 180 | 6.4 ± 5.3 | 0.999 | ||
25 | 0.188 | -- | -- | 200 | 6.6 ± 6.9 | 0.996 | ||
15 | 0–20 | 15 | 0.262 | -- | 66.4 | 150 | 3.3 ± 3.4 | 0.998 |
20 | 0–20 | 10 | 0.380 | 30.5 | -- | 420 | 1.7 ± 3.8 | 0.997 |
20 | 0.424 | 33.2 | -- | 230 | 2.4 ± 1.8 | 1.000 | ||
50 | 0–100 | 10 | 0.913 | 25.4 | -- | 110 | 0.6 ± 0.6 | 1.000 |
20 | 1.040 | 25.8 | -- | 100 | 1.3 ± 1.1 | 0.999 | ||
100 | 0–100 | 25 | 1.965 | -- | -- | 100 | 2.9 ± 3.4 | 0.993 |
Nanoparticles | TEAC-ABTS | TEAC-PYR | TEAC-RhB | TEAC-PGR | TEAC-FL |
---|---|---|---|---|---|
Au | -- | -- | 3 | -- | 5 |
Ag | 1 | 1 | 1 | 1 | 1 |
Fe3O4 | -- | -- | -- | -- | 4 |
CexOy-PEGL | 2 | 2 | 2 | 2 | 2 |
CexOy-PEGS | 3 | 3 | 4 | -- | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Zhang, Q.; Xiao, Z.; Guo, X.; Ling, V.; Bi, Y.; Colvin, V.L. Quantifying the Antioxidant Capacity of Inorganic Nanoparticles: Challenges and Analytical Solutions. Antioxidants 2025, 14, 1254. https://doi.org/10.3390/antiox14101254
Hu Y, Zhang Q, Xiao Z, Guo X, Ling V, Bi Y, Colvin VL. Quantifying the Antioxidant Capacity of Inorganic Nanoparticles: Challenges and Analytical Solutions. Antioxidants. 2025; 14(10):1254. https://doi.org/10.3390/antiox14101254
Chicago/Turabian StyleHu, Yue, Qingbo Zhang, Zhen Xiao, Xiaoting Guo, Vivian Ling, Yidan Bi, and Vicki L. Colvin. 2025. "Quantifying the Antioxidant Capacity of Inorganic Nanoparticles: Challenges and Analytical Solutions" Antioxidants 14, no. 10: 1254. https://doi.org/10.3390/antiox14101254
APA StyleHu, Y., Zhang, Q., Xiao, Z., Guo, X., Ling, V., Bi, Y., & Colvin, V. L. (2025). Quantifying the Antioxidant Capacity of Inorganic Nanoparticles: Challenges and Analytical Solutions. Antioxidants, 14(10), 1254. https://doi.org/10.3390/antiox14101254