Investigating the Molecular Impact of GGMSC on Redox and Metabolic Pathways in Pancreatic Cancer Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture and Growth Conditions
2.2. GGMSC Treatment and Cytotoxicity Assay
2.3. RNA Isolation and mRNA Library Construction
2.4. Illumina Library Preparation and Sequencing
2.5. Bioinformatics and Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Global Transcriptomic Profiling Reveals Distinct Gene Expression Changes upon GGMSC Treatment in PDAC Cell Lines
3.2. Common and Cell Line-Specific Gene Expression Profiles Induced by GGMSC
3.3. GGMSC Modulates Functional Pathways Associated with Oxidative Stress, Metabolic Rewiring, and Chromatin Regulation
3.4. Transcription Factor Responses Mirror Stress Sensitivity and Resistance
3.5. GGMSC Induces Metabolic Stress and Ferroptosis in CAPAN-2 Cells
3.6. GGMSC Suppresses Epigenetic and Antioxidant Programs While Enhancing Stress Signalling
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
GGMSC | Gamma-Glutamyl-selenomethylselenocysteine |
MSC | Selenomethylselenocysteine |
PDAC | Pancreatic ductal adenocarcinoma |
hKYAT1 | Human kynurenine aminotransferase 1 |
HDAC | Histone deacetylases |
ER | Endoplasmic reticulum |
TCA | Tricarboxylic acid |
GGT | Gamma-glutamyl transpeptidase |
References
- Kleeff, J.; Korc, M.; Apte, M.; La Vecchia, C.; Johnson, C.D.; Biankin, A.V.; Neale, R.E.; Tempero, M.; Tuveson, D.A.; Hruban, R.H.; et al. Pancreatic cancer. Nat. Rev. Dis. Primers 2016, 2, 16022. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.; Herman, J.; Schulick, R.; Hruban, R.H.; Goggins, M. Pancreatic cancer. Lancet 2011, 378, 607–620. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer statistics, 2025. CA A Cancer J. Clin. 2025, 75, 10–45. [Google Scholar] [CrossRef]
- Hidalgo, M. Pancreatic Cancer. N. Engl. J. Med. 2010, 362, 1605–1617. [Google Scholar] [CrossRef]
- Badgley, M.A.; Kremer, D.M.; Maurer, H.C.; DelGiorno, K.E.; Lee, H.J.; Purohit, V.; Sagalovskiy, I.R.; Ma, A.; Kapilian, J.; Firl, C.E.M.; et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 2020, 368, 85–89. [Google Scholar] [CrossRef]
- Misra, S.; Boylan, M.; Selvam, A.; Spallholz, J.E.; Björnstedt, M. Redox-active selenium compounds--from toxicity and cell death to cancer treatment. Nutrients 2015, 7, 3536–3556. [Google Scholar] [CrossRef] [PubMed]
- Ip, C.; Thompson, H.J.; Zhu, Z.; Ganther, H.E. In vitro and in vivo studies of methylseleninic acid: Evidence that a monomethylated selenium metabolite is critical for cancer chemoprevention. Cancer Res. 2000, 60, 2882–2886. [Google Scholar]
- Chen, W.; Hao, P.; Song, Q.; Feng, X.; Zhao, X.; Wu, J.; Gong, Z.; Zhang, J.; Fu, X.; Wang, X. Methylseleninic acid inhibits human glioma growth in vitro and in vivo by triggering ROS-dependent oxidative damage and apoptosis. Metab. Brain Dis. 2024, 39, 625–633. [Google Scholar] [CrossRef]
- Tung, Y.C.; Tsai, M.L.; Kuo, F.L.; Lai, C.S.; Badmaev, V.; Ho, C.T.; Pan, M.H. Se-Methyl-L-selenocysteine Induces Apoptosis via Endoplasmic Reticulum Stress and the Death Receptor Pathway in Human Colon Adenocarcinoma COLO 205 Cells. J. Agric. Food Chem. 2015, 63, 5008–5016. [Google Scholar] [CrossRef]
- Dong, Y.; Lisk, D.; Block, E.; Ip, C. Characterization of the biological activity of gamma-glutamyl-Se-methylselenocysteine: A novel, naturally occurring anticancer agent from garlic. Cancer Res. 2001, 61, 2923–2928. [Google Scholar] [PubMed]
- Nigam, S.N.; McConnell, W.B. Seleno amino compounds from Astragalus bisculcatus. Isolation and identification of gamma-L-glutamyl-Se-methyl-seleno-L-cysteine and Se-methylseleno-L-cysteine. Biochim. Biophys. Acta 1969, 192, 185–190. [Google Scholar] [CrossRef]
- Chun, J.Y.; Nadiminty, N.; Lee, S.O.; Onate, S.A.; Lou, W.; Gao, A.C. Mechanisms of selenium down-regulation of androgen receptor signaling in prostate cancer. Mol. Cancer Ther. 2006, 5, 913–918. [Google Scholar] [CrossRef]
- Dong, Y.; Lee, S.O.; Zhang, H.; Marshall, J.; Gao, A.C.; Ip, C. Prostate specific antigen expression is down-regulated by selenium through disruption of androgen receptor signaling. Cancer Res. 2004, 64, 19–22. [Google Scholar] [CrossRef]
- Whitfield, M.L.; Sherlock, G.; Saldanha, A.J.; Murray, J.I.; Ball, C.A.; Alexander, K.E.; Matese, J.C.; Perou, C.M.; Hurt, M.M.; Brown, P.O.; et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell 2002, 13, 1977–2000. [Google Scholar] [CrossRef]
- Picelli, S.; Björklund, Å.K.; Faridani, O.R.; Sagasser, S.; Winberg, G.; Sandberg, R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nature Methods 2013, 10, 1096–1098. [Google Scholar] [CrossRef] [PubMed]
- Kallio, M.A.; Tuimala, J.T.; Hupponen, T.; Klemelä, P.; Gentile, M.; Scheinin, I.; Koski, M.; Käki, J.; Korpelainen, E.I. Chipster: User-friendly analysis software for microarray and other high-throughput data. BMC Genom. 2011, 12, 507. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Yuan, X.; Du, Q.; Zhang, Z.; Shi, X.; Bao, J.; Ning, Y.; Peng, L. FerrDb V2: Update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations. Nucleic Acids Res. 2022, 51, D571–D582. [Google Scholar] [CrossRef]
- Chen, E.Y.; Tan, C.M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G.V.; Clark, N.R.; Ma’ayan, A. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 2013, 14, 128. [Google Scholar] [CrossRef]
- Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016, 44, W90–W97. [Google Scholar] [CrossRef]
- Xie, Z.; Bailey, A.; Kuleshov, M.V.; Clarke, D.J.B.; Evangelista, J.E.; Jenkins, S.L.; Lachmann, A.; Wojciechowicz, M.L.; Kropiwnicki, E.; Jagodnik, K.M.; et al. Gene Set Knowledge Discovery with Enrichr. Curr. Protoc. 2021, 1, e90. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.V.; Franz, M.; Siper, M.C.; Fong, D.; Durupinar, F.; Dallago, C.; Luna, A.; Giorgi, J.; Rodchenkov, I.; Babur, Ö.; et al. Author-sourced capture of pathway knowledge in computable form using Biofactoid. eLife 2021, 10, e68292. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, W. Pancreatic Cancer: A Review of Risk Factors, Diagnosis, and Treatment. Technol. Cancer Res. Treat. 2020, 19, 1533033820962117. [Google Scholar] [CrossRef]
- Hu, H.; Jiang, C.; Ip, C.; Rustum, Y.M.; Lü, J. Methylseleninic acid potentiates apoptosis induced by chemotherapeutic drugs in androgen-independent prostate cancer cells. Clin. Cancer Res. 2005, 11, 2379–2388. [Google Scholar] [CrossRef] [PubMed]
- Selvam, A.K.; Jawad, R.; Gramignoli, R.; Achour, A.; Salter, H.; Björnstedt, M. A Novel mRNA-Mediated and MicroRNA-Guided Approach to Specifically Eradicate Drug-Resistant Hepatocellular Carcinoma Cell Lines by Se-Methylselenocysteine. Antioxidants 2021, 10, 1094. [Google Scholar] [CrossRef]
- Cao, S.; Durrani, F.A.; Rustum, Y.M. Selective modulation of the therapeutic efficacy of anticancer drugs by selenium containing compounds against human tumor xenografts. Clin. Cancer Res. 2004, 10, 2561–2569. [Google Scholar] [CrossRef]
- Zong, W.X.; Rabinowitz, J.D.; White, E. Mitochondria and Cancer. Mol. Cell 2016, 61, 667–676. [Google Scholar] [CrossRef]
- Dodson, M.; Castro-Portuguez, R.; Zhang, D.D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 2019, 23, 101107. [Google Scholar] [CrossRef]
- Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 2021, 22, 266–282. [Google Scholar] [CrossRef]
- Li, J.; Cao, F.; Yin, H.L.; Huang, Z.J.; Lin, Z.T.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, present and future. Cell Death Dis. 2020, 11, 88. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Minikes, A.M.; Jiang, X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol. Cell 2022, 82, 2215–2227. [Google Scholar] [CrossRef] [PubMed]
- Alim, I.; Caulfield, J.T.; Chen, Y.; Swarup, V.; Geschwind, D.H.; Ivanova, E.; Seravalli, J.; Ai, Y.; Sansing, L.H.; Ste.Marie, E.J.; et al. Selenium Drives a Transcriptional Adaptive Program to Block Ferroptosis and Treat Stroke. Cell 2019, 177, 1262–1279.e1225. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liang, X.; Zhang, H.; Dong, J.; Zhang, Y.; Wang, J.; Li, C.; Xin, X.; Li, Y. ER Stress–Related Genes EIF2AK3, HSPA5, and DDIT3 Polymorphisms are Associated with Risk of Lung Cancer. Front. Genet. 2022, 13, 938787. [Google Scholar] [CrossRef]
- He, F.; Ru, X.; Wen, T. NRF2, a Transcription Factor for Stress Response and Beyond. Int. J. Mol. Sci. 2020, 21, 4777. [Google Scholar] [CrossRef]
- Kumar, A.; Ghaderi, M.; Björnstedt, M.; Dillner, J. Selenomethylselenocystine Induces Phenotype-Dependent Ferroptosis and Stress-Responses via the NFE2L2–ATF4 Axis in Pancreatic Cancer. SSRN 2025. [Google Scholar] [CrossRef]
- Ganther, H.E. Selenotrisulfides. Formation by the reaction of thiols with selenious acid. Biochemistry 1968, 7, 2898–2905. [Google Scholar] [CrossRef] [PubMed]
- Rooseboom, M.; Commandeur, J.N.; Vermeulen, N.P. Enzyme-catalyzed activation of anticancer prodrugs. Pharmacol. Rev. 2004, 56, 53–102. [Google Scholar] [CrossRef] [PubMed]
- West, M.B.; Wickham, S.; Quinalty, L.M.; Pavlovicz, R.E.; Li, C.; Hanigan, M.H. Autocatalytic cleavage of human gamma-glutamyl transpeptidase is highly dependent on N-glycosylation at asparagine 95. J. Biol. Chem. 2011, 286, 28876–28888. [Google Scholar] [CrossRef]
- Hanigan, M.H. Gamma-glutamyl transpeptidase: Redox regulation and drug resistance. Adv. Cancer Res. 2014, 122, 103–141. [Google Scholar] [CrossRef]
- Corti, A.; Franzini, M.; Paolicchi, A.; Pompella, A. Gamma-glutamyltransferase of cancer cells at the crossroads of tumor progression, drug resistance and drug targeting. Anticancer. Res. 2010, 30, 1169–1181. [Google Scholar]
- Wang, Q.; Shu, X.; Dong, Y.; Zhou, J.; Teng, R.; Shen, J.; Chen, Y.; Dong, M.; Zhang, W.; Huang, Y.; et al. Tumor and serum gamma-glutamyl transpeptidase, new prognostic and molecular interpretation of an old biomarker in gastric cancer. Oncotarget 2017, 8, 36171–36184. [Google Scholar] [CrossRef]
- Takemura, K.; Board, P.G.; Koga, F. A Systematic Review of Serum γ-Glutamyltransferase as a Prognostic Biomarker in Patients with Genitourinary Cancer. Antioxidants 2021, 10, 549. [Google Scholar] [CrossRef] [PubMed]
- Fadaka, A.O.; Bakare, O.O.; Sibuyi, N.R.S.; Klein, A. Gene Expression Alterations and Molecular Analysis of CHEK1 in Solid Tumors. Cancers 2020, 12, 662. [Google Scholar] [CrossRef] [PubMed]
- Soldevilla, B.; López-López, A.; Lens-Pardo, A.; Carretero-Puche, C.; Lopez-Gonzalvez, A.; La Salvia, A.; Gil-Calderon, B.; Riesco-Martinez, M.C.; Espinosa-Olarte, P.; Sarmentero, J.; et al. Comprehensive Plasma Metabolomic Profile of Patients with Advanced Neuroendocrine Tumors (NETs). Diagnostic and Biological Relevance. Cancers 2021, 13, 2634. [Google Scholar] [CrossRef] [PubMed]
Cell Line | Condition | Total DEGs | Upregulation | Downregulation |
---|---|---|---|---|
CAPAN-2 | GGMSC 500 µM-8 h | 31 | 19 | 12 |
CAPAN-2 | GGMSC 500 µM-20 h | 1637 | 738 | 899 |
HPAF-II | GGMSC 500 µM-8 h | 322 | 214 | 108 |
HPAF-II | GGMSC 500 µM-20 h | 1538 | 557 | 981 |
Biological Theme | Pathway | Source | Adjusted p-Value | Cell Line | Direction |
---|---|---|---|---|---|
Oxidative stress/NRF2 | KEAP1-NFE2L2 pathway | Reactome | 7.2 × 10−8 | CAPAN-2 | Up |
Nuclear events mediated by NFE2L2 | Reactome | 1.0 × 10−7 | CAPAN-2 | Up | |
Glutathione metabolism | KEGG | 0.0011 | HPAF-II | Down | |
UPR/ER stress signaling | Protein processing in ER | KEGG | 2.3 × 10−5 | CAPAN-2 | Up |
Response to ER stress (GO:0034976) | GO | 3.9 × 10−4 | CAPAN-2 | Up | |
Mitochondrial/metabolic | Mitochondrial matrix (GO:0005759) | GO | 3.9 × 10−5 | CAPAN-2 | Up |
Aerobic respiration and ETC | Reactome | 3.3 × 10−5 | HPAF-II | Up | |
Glycolysis/gluconeogenesis | KEGG | 1.8 × 10−5 | HPAF-II | Down | |
Cell cycle/DNA repair | Cell cycle | Reactome | CAPAN-2: 1.2 × 10−30; HPAF-II: 6.4 × 10−12 | CAPAN-2, HPAF-II | Down |
DNA replication | Reactome | 1.5 × 10−14 | CAPAN-2 | Down | |
Chromosome condensation | GO | 1.3 × 10−5 | CAPAN-2 | Down | |
Chromosome organization | GO | 3.6 × 10−10 | CAPAN-2 | Down | |
DNA repair | GO | 1.2 × 10−9 | CAPAN-2 | Down | |
Cell death & survival | Ferroptosis | KEGG | CAPAN-2:0.00013; HPAF-II: 0.0015 | CAPAN-2 (Up), HPAF-II (Down) | Mixed |
Autophagy | KEGG | 0.00405 | CAPAN-2 | Up | |
Regulation of apoptosis | Reactome | 6.4 × 10−11 | HPAF-II | Down |
Transcription Factor | log2FC (CAPAN-2) | log2FC (HPAF-II) | Function | Interpretation |
---|---|---|---|---|
ATF4 | +0.77 ↑ | ↔ | Unfolded protein response | Activated only in CAPAN-2 |
NFE2L2 | +0.77 ↑ | ↔ | Oxidative stress (NRF2) | Activated in CAPAN-2 |
BACH1 | +0.68 ↑ | ↔ | Ferroptosis regulation | May balance NRF2; ferroptosis involvement |
MYC | +0.88 ↑ | ↔ | Proliferation/oncogene | Unexpected; could reflect transient response |
NFKB1 | −1.35 ↓ | ↔ | NF-κB (survival) | Suppressed in CAPAN-2 |
DDIT3 | +1.23 ↑ | −0.44 ↓ | ER stress/apoptosis | Pro-death activation in CAPAN-2; suppressed in HPAF-II |
FOS | ↔ | −0.56 ↓ | stress/proliferation | Suppressed in HPAF-II |
HOXA3 | ↔ | +1.97 ↑ | Epithelial identity | Upregulated in HPAF-II |
HNF4A | ↔ | +0.84 ↑ | Metabolism/differentiation | Supports resistance and metabolic balance |
CBX3 | ↔ | +1.01 ↑ | Chromatin regulation | May contribute to epigenetic resistance |
CHUK | ↔ | +1.47 ↑ | NF-κB signaling | Pro-survival signaling retained in HPAF-II |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selvam, A.K.; Ghaderi, M.; Dillner, J.; Majeed, S.; Björnstedt, M. Investigating the Molecular Impact of GGMSC on Redox and Metabolic Pathways in Pancreatic Cancer Cells. Antioxidants 2025, 14, 1163. https://doi.org/10.3390/antiox14101163
Selvam AK, Ghaderi M, Dillner J, Majeed S, Björnstedt M. Investigating the Molecular Impact of GGMSC on Redox and Metabolic Pathways in Pancreatic Cancer Cells. Antioxidants. 2025; 14(10):1163. https://doi.org/10.3390/antiox14101163
Chicago/Turabian StyleSelvam, Arun Kumar, Mehran Ghaderi, Joakim Dillner, Shaheen Majeed, and Mikael Björnstedt. 2025. "Investigating the Molecular Impact of GGMSC on Redox and Metabolic Pathways in Pancreatic Cancer Cells" Antioxidants 14, no. 10: 1163. https://doi.org/10.3390/antiox14101163
APA StyleSelvam, A. K., Ghaderi, M., Dillner, J., Majeed, S., & Björnstedt, M. (2025). Investigating the Molecular Impact of GGMSC on Redox and Metabolic Pathways in Pancreatic Cancer Cells. Antioxidants, 14(10), 1163. https://doi.org/10.3390/antiox14101163