Evaluation of In Vitro-Derived Hop Plantlets, cv. Columbus and Magnum, as Potential Source of Bioactive Compounds
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Solvents
2.2. Plantlet Materials
2.3. Sample Extraction
2.4. Determination of Total Phenolic Content and Antioxidant Activity of Extracts
2.5. UPLC-ESI-QqQ-MS/MS Analysis
2.6. Statistical Analysis
3. Results
3.1. Total (Poly)Phenol Content and Antioxidant Activity
3.2. Characterization of Extracts from In Vitro-Derived Plantlets of Hop Genotypes through UPLC-ESI-QqQ-MS/MS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nasim, N.; Sandeep, I.S.; Mohanty, S. Plant-derived natural products for drug discovery: Current approaches and prospects. Nucleus 2022, 65, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Abram, V.; Čeh, B.; Vidmar, M.; Hercezi, M.; Lazić, N.; Bucik, V.; Smole Možina, S.; Košir, I.J.; Kač, M.; Demšar, L.; et al. A comparison of antioxidant and antimicrobial activity between hop leaves and hop cones. Ind. Crops Prod. 2015, 64, 124–134. [Google Scholar] [CrossRef]
- Carbone, K.; Amoriello, T.; Pagano, M.; Sperandio, G.; Assirelli, A.; Tarangioli, S.; Monteleone, A. Prospettive interessanti per il luppolo italiano. Inf. Agrar. 2017, 20, 49–51. [Google Scholar]
- Chiancone, B.; Guarrasi, V.; Leto, L.; Del Vecchio, L.; Calani, L.; Ganino, T.; Galaverni, M.; Cirlini, M. Vitro-derived hop (Humulus lupulus L.) leaves and roots as source of bioactive compounds: Antioxidant activity and polyphenolic profile. Plant Cell Tiss. Org. 2023, 153, 295–306. [Google Scholar] [CrossRef]
- Green, P.B. Self-organization and the formation of patterns in plants. In Dynamics of Cell and Tissue Motion. Mathematics and Biosciences in Interaction; Alt, W., Deutsch, A., Dunn, G.A., Eds.; Birkhäuser: Basel, Switzerland, 1997; pp. 243–249. [Google Scholar]
- Astray, G.; Gullón, P.; Gullón, B.; Munekata, P.E.S.; Lorenzo, J.M. Humulus lupulus L. as a natural source of functional biomolecules. Appl. Sci. 2020, 10, 5074. [Google Scholar] [CrossRef]
- Bocquet, L.; Sahpaz, S.; Hilbert, J.L.; Rambaud, C.; Rivière, C. Humulus lupulus L., a very popular beer ingredient and medicinal plant: Overview of its phytochemistry, its bioactivity, and its biotechnology. Phytochem. Rev. 2018, 17, 1047–1090. [Google Scholar] [CrossRef]
- Nezi, P.; Cicaloni, V.; Tinti, L.; Salvini, L.; Iannone, M.; Vitalini, S.; Garzoli, S. Metabolomic and proteomic profile of dried hop inflorescences (Humulus lupulus L. cv. Chinook and cv. Cascade) by SPME-GC-MS and UPLC-MS-MS. Separations 2022, 9, 204. [Google Scholar] [CrossRef]
- Nionelli, L.; Pontonio, E.; Gobbetti, M.; Rizzello, C.G. Use of hop extract as antifungal ingredient for bread making and selection of autochthonous resistant starters for sourdough fermentation. Int. J. Food Microbiol. 2018, 266, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Zanoli, P.; Zavatti, M. Pharmacognostic and pharmacological profile of Humulus lupulus L. J. Ethnopharmacol. 2008, 116, 383–396. [Google Scholar] [CrossRef]
- Roehrer, S.; Stork, V.; Ludwig, C.; Minceva, M.; Behr, J. Analyzing bioactive effects of the minor hop compound xanthohumol C on human breast cancer cells using quantitative proteomics. PLoS ONE 2019, 14, e0213469. [Google Scholar] [CrossRef]
- Stevens, J.F.; Page, J.E. Xanthohumol and related prenylflavonoids from hops and beer: To your good health! Phytochemistry 2004, 65, 1317–1330. [Google Scholar] [CrossRef]
- Neumann, H.F.; Frank, J.; Venturelli, S.; Egert, S. Bioavailability and cardiometabolic effects of xanthohumol: Evidence from animal and human studies. Mol. Nutr. Food Res. 2021, 66, 2100831. [Google Scholar] [CrossRef] [PubMed]
- Salter, S.; Brownie, S. Treating primary insomnia—The efficacy of valerian and hops. Aust. Fam. Physician 2010, 39, 433–437. [Google Scholar] [PubMed]
- Scarpa, G.M.; Prota, V.; Schianchi, N.; Manunta, F. In vitro cultures for the production of secondary metabolites. In Secondary Metabolites—Trends and Reviews; Vijayakumar, R., Raja, S.S.S., Eds.; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Čeh, B.; Kac, M.; Košir, I.J.; Abram, V. Relationships between xanthohumol and polyphenol content in hop leaves and hop cones with regard to water supply and cultivar. Int. J. Mol. Sci. 2007, 8, 989–1000. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F.A. Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–479. [Google Scholar] [CrossRef]
- Carbone, K.; Macchioni, V.; Petrella, G.; Cicero, D.O. Exploring the potential of microwaves and ultrasounds in the green extraction of bioactive compounds from Humulus lupulus for the food and pharmaceutical industry. Ind. Crops Prod. 2020, 156, 112888. [Google Scholar] [CrossRef]
- Martelli, F.; Cirlini, M.; Lazzi, C.; Neviani, E.; Bernini, V. Edible seaweeds and spirulina extracts for food application: In vitro and in situ evaluation of antimicrobial activity towards foodborne pathogenic bacteria. Foods 2020, 9, 1442. [Google Scholar] [CrossRef] [PubMed]
- Muzykiewicz, A.; Nowak, A.; Zielonka-Brzezicka, J.; Florkowska, K.; Duchnik, W.; Klimowicz, A. Comparison of antioxidant activity of extracts of hop leaves harvested in different years. Herba Pol. 2019, 65, 1–9. [Google Scholar] [CrossRef]
- Keskin, Ş.; Şirin, Y.; Çakir, H.E.; Keskin, M. An investigation of Humulus lupulus L.: Phenolic composition, antioxidant capacity and inhibition properties of clinically important enzymes. S. Afr. J. Bot. 2019, 120, 170–174. [Google Scholar] [CrossRef]
- Moon, J.K.; Shibamoto, T. Antioxidant assays for plant and food components. J. Agric. Food Chem. 2009, 57, 1655–1666. [Google Scholar] [CrossRef]
- Abid, M.; Jabbar, S.; Wu, T.; Hashim, M.M.; Hu, B.; Lei, S.; Zhang, X.; Zeng, X. Effect of ultrasound on different quality parameters of apple juice. Ultrason. Sonochem. 2013, 20, 1182–1187. [Google Scholar] [CrossRef] [PubMed]
- Paciulli, M.; Grimaldi, M.; Rinaldi, M.; Cavazza, A.; Flamminii, F.; Di Mattia, C.; Gennari, M.; Chiavaro, E. Microencapsulated olive leaf extract enhances physicochemical stability of biscuits. Future Foods 2023, 7, 100209. [Google Scholar] [CrossRef]
- Trigo, J.P.; Alexandre, E.M.; Saraiva, J.A.; Pintado, M.E. High value-added compounds from fruit and vegetable by-products–Characterization, bioactivities, and application in the development of novel food products. Crit. Rev. Food Sci. Nutr. 2020, 60, 1388–1416. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [PubMed]
- Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The effects of polyphenols and other bioactives on human health. Food Funct. 2019, 10, 514–528. [Google Scholar] [CrossRef] [PubMed]
- Barteková, M.; Adameová, A.; Görbe, A.; Ferenczyová, K.; Pecháňová, O.; Lazou, A.; Dhalla, N.S.; Ferdinandy, P.; Giricz, Z. Natural and synthetic antioxidants targeting cardiac oxidative stress and redox signaling in cardiometabolic diseases. Free Radic. Biol. Med. 2021, 169, 446–477. [Google Scholar] [CrossRef] [PubMed]
- Gebicki, J.M.; Nauser, T. Fast antioxidant reaction of polyphenols and their metabolites. Antioxidants 2021, 10, 1297. [Google Scholar] [CrossRef] [PubMed]
- Fraga, C.G.; Oteiza, P.I.; Hid, E.J.; Galleano, M. (Poly)phenols and the regulation of NADPH oxidases. Redox Biol. 2023, 67, 102927. [Google Scholar] [CrossRef]
- Mu, K.; Kitts, D.D. Intestinal polyphenol antioxidant activity involves redox signaling mechanisms facilitated by aquaporin activity. Redox Biol. 2023, 68, 102948. [Google Scholar] [CrossRef]
- da Rosa Almeida, A.; Maciel, M.V.D.O.B.; Cardoso Gasparini Gandolpho, B.; Machado, M.H.; Teixeira, G.L.; Bertoldi, F.C.; Barreto, P.L.M. Brazilian grown cascade hop (Humulus lupulus L.): LC-ESI-MS-MS and GC-MS analysis of chemical composition and antioxidant activity of extracts and essential oils. J. Am. Soc. Brew. Chem. 2021, 79, 156–166. [Google Scholar] [CrossRef]
- Paguet, A.S.; Siah, A.; Lefèvre, G.; Vandenberghe, M.; Lutun, D.; Degardin, N.; Samaillie, J.; Mathiron, D.; Dermont, C.; Michels, F.; et al. Phytochemical characterisation and aromatic potential for brewing of wild hops (Humulus lupulus L.) from Northern France: Towards a lead for local hop varieties. Food Chem. 2024, 433, 137302. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, P.J.; Vieira, J.S.; Gonçalves, L.M.; Pacheco, J.G.; Guido, L.F.; Barros, A.A. Isolation of phenolic compounds from hop extracts using polyvinylpolypyrrolidone: Characterization by high-performance liquid chromatography–diode array detection–electrospray tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 3258–3268. [Google Scholar] [CrossRef] [PubMed]
- Mongelli, A.; Rodolfi, M.; Ganino, T.; Marieschi, M.; Dall’Asta, C.; Bruni, R. Italian hop germplasm: Characterization of wild Humulus lupulus L. genotypes from Northern Italy by means of phytochemical, morphological traits and multivariate data analysis. Ind. Crops Prod. 2015, 70, 16–27. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Devaki, M. The ferric reducing/antioxidant power (FRAP) assay for non-enzymatic antioxidant capacity: Concepts, procedures, limitations and applications. In Measurement of Antioxidant Activity & Capacity: Recent Trends and Applications; Apak, R., Capanoglu, E., Shahidi, F., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018; pp. 77–106. [Google Scholar] [CrossRef]
- Bibi Sadeer, N.; Montesano, D.; Albrizio, S.; Zengin, G.; Mahomoodally, M.F. The versatility of antioxidant assays in food science and safety—Chemistry, applications, strengths, and limitations. Antioxidants 2020, 9, 709. [Google Scholar] [CrossRef] [PubMed]
- Metaj, I.; Hajdini, D.; Gliha, K.; Košir, I.J.; Ocvirk, M.; Kolar, M.; Cerar, J. Extraction of polyphenols from slovenian hop (Humulus lupulus L.) Aurora variety using deep eutectic solvents: Choice of the extraction method vs. structure of the solvent. Plants 2023, 12, 2890. [Google Scholar] [CrossRef] [PubMed]
Genotype | Extraction Method | TPC | DPPH• | ABTS+ | FRAP | ||||
---|---|---|---|---|---|---|---|---|---|
mg GAE/g | ±SD | mg TEAC/mL | ±SD | mg TEAC/ mL | ±SD | mg TEAC/ mL | ± SD | ||
Columbus | Ultrasound | 6.10 | ±0.10 | 42.98 | ±1.04 | 82.59 | ±3.18 | 68.40 | ±1.44 |
Shaker | 5.75 | ±0.29 | 41.18 | ±2.63 | 84.06 | ±4.68 | 66.17 | ±0.72 | |
Magnum | Ultrasound | 5.53 | ±0.14 | 38.78 | ±1.03 | 82.42 | ±1.94 | 67.31 | ±0.88 |
Shaker | 5.71 | ±0.18 | 39.89 | ±2.13 | 78.11 | ±2.81 | 65.83 | ±0.53 | |
Statistical analysis of factors | |||||||||
p | p | p | p | ||||||
GENOTYPE (G) | 0.018 | 0.025 | 0.135 | 0.220 | |||||
EXTRACTION METHOD (EM) | 0.431 | 0.754 | 0.472 | 0.006 | |||||
G × EM | 0.033 | 0.197 | 0.156 | 0.508 |
Family | Compound | RT (min) | Parent Ion [M-H]− (m/z) | Product Ions | Standard Used for Quantification | |||
---|---|---|---|---|---|---|---|---|
Quantifier (m/z) | Qualifier(s) (m/z) | |||||||
Hydroxybenzoic acids | 3,4,5-Trihydroxybenzoic acid (Gallic acid) | 2.36 | 169 | 125 | 97 | <LOQ | ||
Dihydroxybenzoic acid- O-hexoside isomer I | 2.60 | 315 | 153 | 109 | 152 | 108 | 3,4-Dihydroxybenzoic acid | |
Dihydroxybenzoic acid- O-hexoside isomer II | 2.65 | 315 | 152 | 153 | 109 | 108 | 3,4-Dihydroxybenzoic acid | |
Dihydroxybenzoic acid- O-hexoside isomer III | 2.83 | 315 | 153 | 109 | 152 | 108 | 3,4-Dihydroxybenzoic acid | |
Galloyl-O-hexoside | 2.87 | 331 | 169 | 125 | 3,4,5-Trihydroxybenzoic acid | |||
Dihydroxybenzoic acid- O-hexoside isomer IV | 3.17 | 315 | 153 | 109 | 152 | 108 | 3,4-Dihydroxybenzoic acid | |
3,4-Dihydroxybenzoic acid (Protocatechuic acid) | 3.19 | 153 | 109 | 81 | <LOQ | |||
Hydroxycinnamic acids | 3-Caffeoylquinic acid | 3.30 | 353 | 191 | 179 | 135 | 3-Caffeoylquinic acid | |
Coumaroylquinic acid isomer I | 3.77 | 337 | 191 | 173 | 3-Caffeoylquinic acid | |||
Coumaroylquinic acid isomer II | 3.82 | 337 | 191 | 173 | 3-Caffeoylquinic acid | |||
5-Caffeoylquinic acid | 3.84 | 353 | 191 | 179 | 135 | <LOQ | ||
4-Caffeoylquinic acid | 3.93 | 353 | 179 | 191 | 135 | <LOQ | ||
Sinapic acid acyl-hexoside | 3.93 | 385 | 223 | 205 | 190 | Sinapic acid acyl- glucoside | ||
Flavan-3-ols | (+)-Catechin | 3.97 | 289 | 245 | 109 | 203 | (+)-Catechin | |
Hydroxycinnamic acids | Coumaroylquinic acid isomer III | 4.29 | 337 | 173 | 191 | 4-Caffeoylquinic acid | ||
Sinapic acid acyl-glucoside | 4.29 | 385 | 205 | 223 | 190 | <LOQ | ||
Coumaroylquinic acid isomer IV | 4.34 | 337 | 191 | 173 | 5-Caffeoylquinic acid | |||
Flavan-3-ols | (−)-Epicatechin | 4.37 | 289 | 245 | 109 | 203 | (−)-Epicatechin | |
Flavonols | Quercetin 3-O-rutinoside (Rutin) | 4.73 | 609 | 300 | 271 | 301 | 151 | Kaempferol 3-rutinoside |
Quercetin 3/7-O-glucoside (Sum of Quercetin 3-O-glucoside and Quercetin-7-O-glucoside) | 4.86 | 463 | 300 | 271 | 255 | Quercetin 3/7-glucoside (Sum of Quercetin 3-glucoside and Quercetin-7-glucoside) | ||
Kaempferol-3-O-rutinoside | 4.95 | 593 | 285 | 255 | 227 | Kaempferol 3-rutinoside | ||
Prenylflavonoids | Isoxanthohumol | 6.88 | 353 | 119 | 233 | Isoxanthohumol | ||
8-Prenylnaringenin | 7.51 | 339 | 219 | 95 | 237 | <LOQ | ||
Iso-α-acids | Isohumulone | 7.54 | 361 | 221 | 292 | 249 | Humulone | |
Prenylflavonoids | 6-Prenylnaringenin | 8.04 | 339 | 219 | 119 | 133 | 6-Prenylnaringenin | |
Xanthohumol | 8.29 | 353 | 119 | 233 | 175 | Xanthohumol | ||
α-acids | Cohumulone | 9.42 | 347 | 278 | 235 | 223 | Humulone | |
Humulone | 9.65 | 361 | 292 | 249 | 221 | Humulone | ||
β-acids | Postlupulone | 9.91 | 385 | 273 | Humulone | |||
Colupulone | 10.18 | 399 | 287 | 330 | Humulone | |||
Lupulone/Adlupulone | 10.42 | 413 | 301 | 289 | Humulone | |||
Prelupulone | 10.78 | 427 | 315 | 358 | Humulone |
Columbus | Magnum | Factors | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Compound | US | SK | US | SK | G | EM | G × EM | ||||
µg/g | ±SD | µg/g | ±SD | µg/g | ±SD | µg/g | ±SD | p | p | p | |
Dihydroxybenzoic acid-O-hexoside isomer I | 3.02 | ±0.06 | 2.93 | ±0.42 | 4.04 | ±0.03 | 3.76 | ±0.03 | 0.012 | 0.436 | 0.676 |
Dihydroxybenzoic acid-O-hexoside isomer II | 40.79 | ±6.57 | 39.72 | ±0.13 | 27.59 | ±2.84 | 42.47 | ±2.74 | 0.244 | 0.146 | 0.106 |
Dihydroxybenzoic acid-O-hexoside isomer III | 1.44 | ±0.04 | 1.61 | ±0.08 | 1.18 | ±0.13 | 1.61 | ±0.14 | 0.307 | 0.050 | 0.296 |
Galloyl-O-hexoside | 14.26 | ±0.23 | 16.12 | ±0.72 | 47.78 | ±3.28 | 40.61 | ±0.65 | 0.000 | 0.197 | 0.058 |
Dihydroxybenzoic acid-O-hexoside isomer IV | 29.29 | ±0.19 | 33.14 | ±1.19 | 21.05 | ±0.75 | 25.71 | ±1.56 | 0.002 | 0.016 | 0.722 |
3-Caffeoylquinic acid | 8.07 | ±1.28 | 7.25 | ±0.85 | 5.00 | ±0.28 | 5.60 | ±0.41 | 0.043 | 0.899 | 0.426 |
Coumaroylquinic acid isomer I | 2.46 | ±0.35 | 2.69 | ±0.07 | 2.72 | ±0.08 | 2.71 | ±0.09 | 0.498 | 0.601 | 0.571 |
Coumaroylquinic acid isomer II | 6.30 | ±0.93 | 6.85 | ±0.70 | 6.17 | ±0.26 | 8.85 | ±0.08 | 0.193 | 0.053 | 0.150 |
Sinapic Acid Acyl-hexoside | 45.22 | ±1.12 | 47.02 | ±2.40 | 61.03 | ±0.83 | 41.58 | ±3.67 | 0.088 | 0.019 | 0.01 |
(+)-Catechin | 39.24 | ±1.38 | 44.73 | ±6.19 | 82.64 | ±14.75 | 44.03 | ±14.99 | 0.124 | 0.206 | 0.115 |
Coumaroylquinic acid isomer III | 8.55 | ±0.37 | 9.36 | ±0.41 | 9.10 | ±0.33 | 11.00 | ±0.56 | 0.062 | 0.034 | 0.271 |
Coumaroylquinic acid isomer IV | 11.08 | ±1.03 | 10.57 | ±0.26 | 17.14 | ±0.20 | 17.82 | ±0.57 | 0.000 | 0.898 | 0.389 |
(−)-Epicatechin | 33.47 | ±2.99 | 24.10 | ±0.29 | 13.09 | ±0.89 | 9.16 | ±1.80 | 0.001 | 0.021 | 0.206 |
Quercetin-3-O-rutinoside (Rutin) | 22.12 | ±2.27 | 21.68 | ±3.01 | 10.36 | ±0.27 | 5.82 | ±0.53 | 0.002 | 0.262 | 0.342 |
Quercetin-3/7-O-glucoside (Sum of Quercetin3-O-Glucoside and Quercetin-7-O-glucoside) | 31.36 | ±1.20 | 30.06 | ±5.94 | 0.00 | ±0.00 | 0.00 | ±0.00 | 0.000 | 0.776 | 0.776 |
Kaempferol-3-O-rutinoside | 16.79 | ±1.31 | 13.70 | ±2.27 | 8.47 | ±0.57 | 4.06 | ±0.34 | 0.003 | 0.050 | 0.651 |
Isoxanthohumol | 1.67 | ±0.01 | 1.61 | ±0.09 | 0.00 | ±0.00 | 0.00 | ±0.00 | 0.000 | 0.574 | 0.574 |
Isohumulone | 0.56 | ±0.01 | 0.56 | ±0.00 | 0.55 | ±0.01 | 0.57 | ±0.00 | 0.719 | 0.388 | 0.138 |
6-Prenylnaringenin | 5.57 | ±0.19 | 5.17 | ±0.28 | 0.00 | ±0.00 | 0.00 | ±0.00 | 0.000 | 0.300 | 0.300 |
Xanthohumol | 141.99 | ±7.36 | 133.63 | ±7.05 | 22.09 | ±1.43 | 34.28 | ±5.70 | 0.000 | 0.761 | 0.156 |
Cohumulone | 12.50 | ±1.05 | 13.29 | ±1.07 | 7.70 | ±0.76 | 15.24 | ±4.02 | 0.548 | 0.129 | 0.196 |
Humulone | 120.54 | ±15.25 | 121.97 | ±3.54 | 48.15 | ±7.32 | 92.95 | ±22.48 | 0.023 | 0.178 | 0.201 |
Postlupulone | 2.99 | ±0.32 | 2.72 | ±0.18 | 0.47 | ±0.01 | 0.76 | ±0.16 | 0.000 | 0.971 | 0.237 |
Colupulone | 22.39 | ±3.69 | 19.91 | ±0.55 | 2.99 | ±0.03 | 5.55 | ±1.37 | 0.001 | 0.985 | 0.273 |
Lupulone/Adlupulone | 131.18 | ±20.23 | 108.85 | ±3.51 | 13.71 | ±0.11 | 26.45 | ±5.35 | 0.001 | 0.675 | 0.174 |
Prelupulone | 11.98 | ±2.61 | 10.13 | ±0.09 | 1.07 | ±0.02 | 2.01 | ±0.49 | 0.002 | 0.750 | 0.352 |
Total (poly)phenols | 463.24 | ±17.70 | 452.5 | ±21.1 | 340.01 | ±14.98 | 299.63 | ±12.52 | 0.000 | 0.089 | 0.282 |
Total α- and β-acids | 301.57 | ±61.02 | 276.85 | ±12.38 | 74.08 | ±11.24 | 142.96 | ±47.90 | 0.000 | 0.475 | 0.171 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leto, L.; Favari, C.; Agosti, A.; Del Vecchio, L.; Di Fazio, A.; Bresciani, L.; Mena, P.; Guarrasi, V.; Cirlini, M.; Chiancone, B. Evaluation of In Vitro-Derived Hop Plantlets, cv. Columbus and Magnum, as Potential Source of Bioactive Compounds. Antioxidants 2024, 13, 909. https://doi.org/10.3390/antiox13080909
Leto L, Favari C, Agosti A, Del Vecchio L, Di Fazio A, Bresciani L, Mena P, Guarrasi V, Cirlini M, Chiancone B. Evaluation of In Vitro-Derived Hop Plantlets, cv. Columbus and Magnum, as Potential Source of Bioactive Compounds. Antioxidants. 2024; 13(8):909. https://doi.org/10.3390/antiox13080909
Chicago/Turabian StyleLeto, Leandra, Claudia Favari, Anna Agosti, Lorenzo Del Vecchio, Andrea Di Fazio, Letizia Bresciani, Pedro Mena, Valeria Guarrasi, Martina Cirlini, and Benedetta Chiancone. 2024. "Evaluation of In Vitro-Derived Hop Plantlets, cv. Columbus and Magnum, as Potential Source of Bioactive Compounds" Antioxidants 13, no. 8: 909. https://doi.org/10.3390/antiox13080909
APA StyleLeto, L., Favari, C., Agosti, A., Del Vecchio, L., Di Fazio, A., Bresciani, L., Mena, P., Guarrasi, V., Cirlini, M., & Chiancone, B. (2024). Evaluation of In Vitro-Derived Hop Plantlets, cv. Columbus and Magnum, as Potential Source of Bioactive Compounds. Antioxidants, 13(8), 909. https://doi.org/10.3390/antiox13080909